Comparison of the removal of monovalent and divalent cations in the microbial desalination cell

Shanshan CHEN , Haiping LUO , Yanping HOU , Guangli LIU , Renduo ZHANG , Bangyu QIN

Front. Environ. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (2) : 317 -323.

PDF (571KB)
Front. Environ. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (2) : 317 -323. DOI: 10.1007/s11783-013-0596-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Comparison of the removal of monovalent and divalent cations in the microbial desalination cell

Author information +
History +
PDF (571KB)

Abstract

Microbial desalination cell (MDC) is a promising technology to desalinate water and generate electrical power simultaneously. The objectives of this study were to investigate the desalination performance of monovalent and divalent cations in the MDC, and discuss the effect of ion characteristics, ion concentrations, and electrical characteristics. Mixed salt solutions of NaCl, MgCl2, KCl, and CaCl2 with the same concentration were used in the desalination chamber to study removal of cations. Results showed that in the mixed salt solutions, the electrodialysis desalination rates of cations were: Ca2+ >Mg2+>Na+>K+. Higher ionic charges and smaller hydrated ionic radii resulted in higher desalination rates of the cations, in which the ionic charge was more important than the hydrated ionic radius. Mixed solutions of NaCl and MgCl2 with different concentrations were used in the desalination chamber to study the effect of ion concentrations. Results showed that when ion concentrations of Na+ were one-fifth to five times of Mg2+, ion concentration influenced the dialysis more profoundly than electrodialysis. With the current densities below a certain value, charge transfer efficiencies became very low and the dialysis was the main process responsible for the desalination. And the phosphate transfer from the anode chamber and potassium transfer from the cathode chamber could balance 1%–3% of the charge transfer in the MDC.

Keywords

divalent ion / electrodialysis / ion characteristic / microbial desalination cell / monovalent ion

Cite this article

Download citation ▾
Shanshan CHEN, Haiping LUO, Yanping HOU, Guangli LIU, Renduo ZHANG, Bangyu QIN. Comparison of the removal of monovalent and divalent cations in the microbial desalination cell. Front. Environ. Sci. Eng., 2015, 9(2): 317-323 DOI:10.1007/s11783-013-0596-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cao X, Huang X, Liang P, Xiao K, Zhou Y, Zhang X, Logan B E. A new method for water desalination using microbial desalination cells. Environmental Science & Technology, 2009, 43(18): 7148–7152

[2]

Logan B E, Regan J M. Microbial fuel cells–challenges and applications. Environmental Science & Technology, 2006, 40(17): 5172–5180

[3]

Hou Y, Li K, Luo H, Liu G, Zhang R, Qin B, Chen S. Using crosslinked polyvinyl alcohol polymer membrane as a separator in the microbial fuel cell. Frontiers of Environmental Science and Engineering, 2014, 8(1): 137–143

[4]

Chen X, Xia X, Liang P, Cao X, Sun H, Huang X. Stacked microbial desalination cells to enhance water desalination efficiency. Environmental Science & Technology, 2011, 45(6): 2465–2470

[5]

Jacobson K S, Drew D M, He Z. Efficient salt removal in a continuously operated upflow microbial desalination cell with an air cathode. Bioresource Technology, 2011, 102(1): 376–380

[6]

Kim Y, Logan B E. Series assembly of microbial desalination cells containing stacked electrodialysis cells for partial or complete seawater desalination. Environmental Science & Technology, 2011, 45(13): 5840–5845

[7]

Luo H, Jenkins P E, Ren Z. Concurrent desalination and hydrogen generation using microbial electrolysis and desalination cells. Environmental Science & Technology, 2011, 45(1): 340–344

[8]

Mehanna M, Kiely P D, Call D F, Logan B E. Microbial electrodialysis cell for simultaneous water desalination and hydrogen gas production. Environmental Science & Technology, 2010, 44(24): 9578–9583

[9]

Chen S, Liu G, Zhang R, Qin B, Luo Y. Development of the microbial electrolysis desalination and chemical-production cell for desalination as well as acid and alkali productions. Environmental Science & Technology, 2012, 46(4): 2467–2472

[10]

Chen S, Liu G, Zhang R, Qin B, Luo Y, Hou Y. Improved performance of the microbial electrolysis desalination and chemical-production cell using the stack structure.Bioresource Technology, 2012, 116: 507–511

[11]

Jacobson K S, Drew D M, He Z. Use of a liter-scale microbial desalination cell as a platform to study bioelectrochemical desalination with salt solution or artificial seawater. Environmental Science & Technology, 2011, 45(10): 4652–4657

[12]

Mehanna M, Saito T, Yan J L, Hickner M, Cao X, Huang X, Logan B E. Using microbial desalination cells to reduce water salinity prior to reverse osmosis. Energy & Environmental Science, 2010, 3(8): 1114–1120

[13]

Cheng S, Xing D, Call D F, Logan B E. Direct biological conversion of electrical current into methane by electromethanogenesis. Environmental Science & Technology, 2009, 43(10): 3953–3958

[14]

Liu H, Cheng S, Logan B E. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environmental Science & Technology, 2005, 39(2): 658–662

[15]

Logan B E, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K. Microbial fuel cells: methodology and technology. Environmental Science & Technology, 2006, 40(17): 5181–5192

[16]

Firdaous L, Quéméneur F, Schlumpf J P, Malériat J P. Modification of the ionic composition of salt solutions by electrodialysis. Desalination, 2004, 167: 397–402

[17]

Walha K, Amar R B, Firdaous L, Quéméneur F, Jaouen P. Brackish groundwater treatment by nanofiltration, reverse osmosis and electrodialysis in Tunisia: performance and cost comparison. Desalination, 2007, 207(1–3): 95–106

[18]

Luo H, Xu P, Jenkins P E, Ren Z. Ionic composition and transport mechanisms in microbial desalination cells. Journal of Membrane Science, 2012, 409–410: 16–23

[19]

Kim J R, Cheng S, Oh S E, Logan B E. Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environmental Science & Technology, 2007, 41(3): 1004–1009

[20]

Choi J H, Lee H J, Moon S H. Effects of electrolytes on the transport phenomena in a cation-exchange membrane. Journal of Colloid and Interface Science, 2001, 238(1): 188–195

[21]

Rozendal R A, Sleutels T H J A, Hamelers H V M, Buisman C J N. Effect of the type of ion exchange membrane on performance, ion transport, and pH in biocatalyzed electrolysis of wastewater. Water Science and Technology, 2008, 57(11): 1757–1762

[22]

Elattar A, Elmindaoui A, Pismenskaia N, Gavach C, Pourcelly G. Comparison of transport properties of monovalent anions through anion-exchange membranes. Journal of Membrane Science, 1998, 143(1–2): 249–261

[23]

Sleutelsa T H J A, Hamelersa H V M, Rozendal R A, Buisman C J N. Ion transport resistance in microbial electrolysis cells with anion and cation exchange membranes. International Journal of Hydrogen Energy, 2009, 34(9): 3612–3620

[24]

Rozendal R A, Hamelers H V M, Molenkamp R J, Buisman C J N. Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes. Water Research, 2007, 41(9): 1984–1994

[25]

FanY, Hu H, Liu H, Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms. Environmental Science & Technology, 2007, 41(23): 8154–8158

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (571KB)

2416

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/