Using crosslinked polyvinyl alcohol polymer membrane as a separator in the microbial fuel cell

Yanping HOU , Kaiming LI , Haiping LUO , Guangli LIU , Renduo ZHANG , Bangyu QIN , Shanshan CHEN

Front. Environ. Sci. Eng. ›› 2014, Vol. 8 ›› Issue (1) : 137 -143.

PDF (166KB)
Front. Environ. Sci. Eng. ›› 2014, Vol. 8 ›› Issue (1) : 137 -143. DOI: 10.1007/s11783-013-0534-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Using crosslinked polyvinyl alcohol polymer membrane as a separator in the microbial fuel cell

Author information +
History +
PDF (166KB)

Abstract

Separator between anode and cathode is an essential part of the microbial fuel cell (MFC) and its property could significantly influence the system performance. In this study we used polyvinyl alcohol (PVA) polymer membrane crosslinked with sulfosuccinic acid (SSA) as a new separator for the MFC. The highest power density of 759±4 mW·m-2 was obtained when MFC using the PVA membrane crosslinked with 15% of SSA due to its desirable proton conductivity (5.16 × 10-2 S·cm-1). The power density significantly increased to 1106±30mW·m-2 with a separator-electrode-assembly configuration, which was comparable with glass fiber (1170±46mW·m-2). The coulombic efficiencies of the MFCs with crosslinked PVA membranes ranged from 36.3% to 45.7% at a fix external resistance of 1000 Ω. The crosslinked PVA membrane could be a promising alternative to separator materials for constructing practical MFC system.

Keywords

microbial fuel cell / crosslinked polyvinyl alcohol (PVA) membrane / separator material / power generation / coulombic efficiency

Cite this article

Download citation ▾
Yanping HOU, Kaiming LI, Haiping LUO, Guangli LIU, Renduo ZHANG, Bangyu QIN, Shanshan CHEN. Using crosslinked polyvinyl alcohol polymer membrane as a separator in the microbial fuel cell. Front. Environ. Sci. Eng., 2014, 8(1): 137-143 DOI:10.1007/s11783-013-0534-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Logan B E. Microbial Fuel Cells. New York: Wiley, 2007

[2]

Lovley D R. The microbe electric: conversion of organic matter to electricity. Current Opinion in Biotechnology, 2008, 19(6): 564–571

[3]

Mohan Y, Manojmuthukumar S, Das D. Electricity generation using microbial fuel cells. Inernational Journal of Hydrogen Energy, 2008, 33(1): 423–426

[4]

Rabaey K, Verstraete W. Microbial fuel cells: novel biotechnology for energy generation. Trends in Biotechnology, 2005, 23(6): 291–298

[5]

Liu H, Cheng S A, Logan B E. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environmental Science & Technology, 2005, 39(14): 5488–5493

[6]

Cheng S A, Liu H, Logan B E. Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environmental Science & Technology, 2006, 40(7): 2426–2432

[7]

Du Z, Li H, Gu T. A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnology Advances, 2007, 25(5): 464–482

[8]

Liu H, Logan B E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environmental Science & Technology, 2004, 38(14): 4040–4046

[9]

Kim J R, Premier G C, Hawkes F R, Dinsdale R M, Guwy A J. Development of a tubular microbial fuel cell (MFC) employing a membrane electrode assembly cathode. Journal of Power Sources, 2009, 187(2): 393–399

[10]

Zhang X Y, Cheng S A, Huang X, Logan B E. Improved performance of single-chamber microbial fuel cells through control of membrane deformation. Biosensors & Bioelectronics, 2010, 25(7): 1825–1828

[11]

Rozendal R A, Hamelers H V M, Molenkamp R J, Buisman C J N. Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes. Water Research, 2007, 41(9): 1984–1994

[12]

Kim J R, Cheng S A, Oh S E, Logan B E. Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environmental Science & Technology, 2007, 41(3): 1004–1009

[13]

Biffinger J C, Ray R, Little B, Ringeisen B R. Diversifying biological fuel cell designs by use of nanoporous filters. Environmental Science & Technology, 2007, 41(4): 1444–1449

[14]

Fan Y Z, Hu H Q, Liu H. Enhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. Journal of Power Sources, 2007, 171(2): 348–354

[15]

Zhang X Y, Cheng S A, Wang X, Huang X, Logan B E. Separator characteristics for increasing performance of microbial fuel cells. Environmental Science & Technology, 2009, 43(21): 8456–8461

[16]

Finch C A. Poly(vinyl alcohol). New York: Wiley, 1992

[17]

Chuang W Y, Young T H, Chiu W Y, Lin C Y. The effect of polymeric additives on the structure and permeability of poly (vinyl alcohol) asymmetric membranes. Polymer, 2000, 41(15): 5633–5641

[18]

Bolto B, Tran T, Hoang M, Xie Z, Xie J L. Crosslinked poly(vinyl alcohol) membranes. Progress in Polymer Science, 2009, 34(9): 969–981

[19]

Rhim J W, Park H B, Lee C S, Jun J H, Kim D S, Lee Y M. Crosslinked poly(vinyl alcohol) membranes containing sulfonic acid group: proton and methanol transport through membranes. Journal of Membrane Science, 2004, 238(1–2): 143–151

[20]

Yang C C, Chiu S J, Chien W C. Development of alkaline direct methanol fuel cells based on crosslinked PVA polymer membranes. Journal of Power Sources, 2006, 162(1): 21–29

[21]

Yang C C. Synthesis and characterization of the cross-linked PVA/TiO2 composite polymer membrane for alkaline DMFC. Journal of Membrane Science, 2007, 288(1–2): 51–60

[22]

Yang C C, Lin C T, Chiu S J. Preparation of the PVA/HAP composite polymer membrane for alkaline DMFC application. Desalination, 2008, 233(1–3): 137–146

[23]

Logan B E, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K. Microbial fuel cells: methodology and technology. Environmental Science & Technology, 2006, 40(17): 5181–5192

[24]

Picioreanu C, Head I M, Katuri K P, van Loosdrecht M C, Scott K. A computational model for biofilm-based microbial fuel cells. Water Research, 2007, 41(13): 2921–2940

[25]

Zuo Y, Cheng S A, Logan B E. Ion exchange membrane cathodes for scalable microbial fuel cells. Environmental Science & Technology, 2008, 42(18): 6967–6972

[26]

Watson V J, Saito T, Hickner M A, Logan B E. Polymer coatings as separator layers for microbial fuel cell cathodes. Journal of Power Sources, 2011, 196(6): 3009–3014

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (166KB)

2725

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/