DOW CORNING 1-2577 Conformal Coating as an efficient diffusion material for cathode in the microbial fuel cell

Yanping HOU , Haiping LUO , Guangli LIU , Renduo ZHANG , Yong LUO , Bangyu QIN , Shanshan CHEN

Front. Environ. Sci. Eng. ›› 2013, Vol. 7 ›› Issue (4) : 526 -530.

PDF (112KB)
Front. Environ. Sci. Eng. ›› 2013, Vol. 7 ›› Issue (4) : 526 -530. DOI: 10.1007/s11783-013-0532-1
SHORT COMMUNICATION
SHORT COMMUNICATION

DOW CORNING 1-2577 Conformal Coating as an efficient diffusion material for cathode in the microbial fuel cell

Author information +
History +
PDF (112KB)

Abstract

In this study, DOW CORNING 1-2577 Conformal Coating was proposed for the cathode diffusion layer of the microbial fuel cell (MFC). In MFCs, stainless steel mesh cathodes using DOW CORNING 1-2577 Conformal Coating/carbon as the diffusion layer and two poly (dimethylsiloxane) (PDMS)/carbon diffusion layers and carbon cloth cathode with four poly (tetrafluoroethylene) (PTFE) diffusion layers were constructed for comparison. Under the same operational condition, the MFCs with the DOW CORNING 1-2577 Conformal Coating/carbon diffusion layer produced the maximum power density of 1585±52 mW·m-2, compared with those using poly (tetrafluoroethylene) (PTFE) diffusion layers (1421±45 mW·m-2) and poly (dimethylsiloxane) (PDMS)/carbon diffusion layers (1353±49 mW·m-2). The DOW CORNING 1-2577 Conformal Coating could be an alternative for the diffusion layer construction in the MFC due to its remarkable performance and much simple construction procedure.

Keywords

microbial fuel cell / diffusion layer / power density / DOW CORNING1-2577 Conformal Coating

Cite this article

Download citation ▾
Yanping HOU, Haiping LUO, Guangli LIU, Renduo ZHANG, Yong LUO, Bangyu QIN, Shanshan CHEN. DOW CORNING 1-2577 Conformal Coating as an efficient diffusion material for cathode in the microbial fuel cell. Front. Environ. Sci. Eng., 2013, 7(4): 526-530 DOI:10.1007/s11783-013-0532-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Oh S E, Min B, Logan B E. Cathode performance as a factor in electricity generation in microbial fuel cells. Environmental Science & Technology, 2004, 38(18): 4900-4904

[2]

Rabaey K, Verstraete W. Microbial fuel cells: novel biotechnology for energy generation. Trends in Biotechnology, 2005, 23(6): 291-298

[3]

Lovley D R. The microbe electric: conversion of organic matter to electricity. Current Opinion in Biotechnology, 2008, 19(6): 564-571

[4]

Logan B E. Exoelectrogenic bacteria that power microbial fuel cells. Nature Reviews. Microbiology, 2009, 7(5): 375-381

[5]

Cheng S A, Liu H, Logan B E. Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochemistry Communications, 2006, 8(3): 489-494

[6]

Liu H, Logan B E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environmental Science & Technology, 2004, 38(14): 4040-4046

[7]

Logan B E, Cheng S A, Watson V, Estadt G. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environmental Science & Technology, 2007, 41(9): 3341-3346

[8]

Cheng S A, Liu H, Logan B E. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (nafion and PTFE) in single chamber microbial fuel cells. Environmental Science & Technology, 2006, 40(1): 364-369

[9]

Zhang F, Saito T, Cheng S A, Hickner M A, Logan B E. Microbial fuel cell cathodes with poly(dimethylsiloxane) diffusion layers constructed around stainless steel mesh current collectors. Environmental Science & Technology, 2010, 44(4): 1490-1495

[10]

Luo Y, Zhang F, Wei B, Liu G L, Zhang R D, Logan B E. Power generation using carbon mesh cathodes with different diffusion layers in microbial fuel cells. Journal of Power Sources, 2011, 196(22): 9317-9321

[11]

Lovley D R, Phillips E J P. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Applied and Environmental Microbiology, 1988, 54(6): 1472-1480

[12]

Logan B E, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K. Microbial fuel cells: methodology and technology. Environmental Science & Technology, 2006, 40(17): 5181-5192

[13]

Zhang F, Merrill M D, Tokash J C, Saito T, Cheng S A, Hickner M A, Logan B E. Mesh optimization for microbial fuel cell cathodes constructed around stainless steel current collectors. Journal of Power Sources, 2011, 196(3): 1097-1102

[14]

Chen Y F, Lv Z S, Xu J M, Peng D Q, Liu Y X, Chen J X, Sun X B, Feng C H, Wei C H. Stainless steel mesh coated with MnO2/carbon nanotube and polymethylphenyl siloxane as low-cost and high-performance microbial fuel cell cathode materials. Journal of Power Sources, 2012, 201: 136-141

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (112KB)

2894

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/