Review on research and application of mesoporous transitional metal oxides in water treatment

Minghao SUI , Lei SHE

Front. Environ. Sci. Eng. ›› 2013, Vol. 7 ›› Issue (6) : 795 -802.

PDF (165KB)
Front. Environ. Sci. Eng. ›› 2013, Vol. 7 ›› Issue (6) : 795 -802. DOI: 10.1007/s11783-013-0521-4
REVIEW ARTICLE
REVIEW ARTICLE

Review on research and application of mesoporous transitional metal oxides in water treatment

Author information +
History +
PDF (165KB)

Abstract

This paper reviews the application of mesoporous transitional metal oxides in water treatment on basis of the catalysis and adsorption. Mesoporous transitional metal oxides are characterized by their intrinsic features, such as a high surface area, a highly ordered array of unidimensional pores with a very narrow pore size distribution, and highly dispersed active sites. Finally, the suggestions of further study on application are proposed.

Keywords

mesoporous materials / transitional metal oxides / catalysis / adsorption / water treatment

Cite this article

Download citation ▾
Minghao SUI, Lei SHE. Review on research and application of mesoporous transitional metal oxides in water treatment. Front. Environ. Sci. Eng., 2013, 7(6): 795-802 DOI:10.1007/s11783-013-0521-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lowell S, Shields J E. Powder Surface Area and Porosity. London: Chapman & Hall, 1998

[2]

Davis M E. Organizing for better synthesis. Nature, 1993, 364(6436): 391-393

[3]

Beck J S, Vartuli J C, Roth W J, Leonowicz M E, Kresge C T, Schmitt K D, Chu T W, Olson D H, Sheppard E W. A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 1992, 114(27): 10834-10843

[4]

Kresge C T, Leonowicz M E, Roth W J, Vartuli J C, Beck J S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359(6397): 710-712

[5]

Zhao D Y, Huo Q S, Feng J L, Chmelka B F, Stucky G D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the American Chemical Society, 1998, 120(24): 6024-6036

[6]

Joo S H, Ryoo R, Kruk M, Jaroniec M. Evidence for general nature of pore interconnectivity in 2-dimensional hexagonal mesoporous silicas prepared using block copolymer templates. The Journal of Physical Chemistry B, 2002, 106(18): 4640-4646

[7]

Antonelli D M, Ying J Y. Synthesis of hexagonally packed mesoporous TiO2 by a modified sol-gel method. Angewandte Chemie International Edition in English, 1995, 34(18): 2014-2017

[8]

Xia Y S, Dai H X, Jiang H Y, Zhang L, Deng J, Liu Y X. Three-dimensionally ordered and wormhole-like mesoporous iron oxide catalysts highly active for the oxidation of acetone and methanol. Journal of Hazardous Materials, 2011, 186(1): 84-91

[9]

Gao Q X, Wang X F, Wu X C, Tao Y R, Zhu J J. Mesoporous zirconia nanobelts: Preparation, characterization and applications in catalytical methane combustion. Microporous and Mesoporous Materials, 2011, 143(2): 333-340

[10]

Huo Q S, Margolese D I, Ciesla U, Demuth DG, Feng P Y, Gier T E, Sieger P, Firouzi A, Chmelka B F. Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays. Chemistry of Materials, 1994, 6(8): 1176-1191

[11]

Wang P, Lo I M. Synthesis of mesoporous magnetic γ-Fe2O3 and its application to Cr(VI) removal from contaminated water. Water Research, 2009, 43(15): 3727-3734

[12]

Wu Z S, Zhang W M, Sui Z X. Surface complexation constants of mesoporous Fe2O3. Acta Chimica Sinica, 2010, 68(8): 769-774 (in Chinese)

[13]

Sun S P, Lemley A T. p-Nitrophenol degradation by a heterogeneous Fenton-like reaction on nano-magnetite: process optimization, kinetics, and degradation pathways. Journal of Molecular Catalysis A: Chemical, 2011, 349(1): 71-79

[14]

Tamiolakis I, Lykakis I N, Katsoulidis A P, Malliakas C D, Armatas G S. Ordered mesoporous Cr2O3 frameworks incorporating Keggin-type 12-phosphotungstic acids as efficient catalysts for oxidation of benzyl alcohols. Journal of Materials Chemistry, 2012, 22(14): 6919-6927

[15]

Jin M S, Kim J W, Kim J M, Jurng J S, Bae G N, Jeon J K, Park Y K. Effect of calcination temperature on the oxidation of benzene with ozone at low temperature over mesoporous α-Mn2O3. Powder Technology, 2011, 214(3): 458-462

[16]

Xiao T, Yang C, Tian X K. Research on the preparation of mesoporous CeO2-ZrO2 and its adsorption of Cr6+ in water. Nanoscience & Nanotechnology, 2009, 6: 11-15 (in Chinese)

[17]

Hu C, Xing S T, Qu J H, He H. Catalytic ozonation of herbicide 2,4-D over cobalt oxide supported on mesoporous zirconia. Journal of Physical Chemistry C, 2008, 112(15): 5978-5983

[18]

Yu D Z, Deng Z S, Zheng M M, Cai R X. Preparation of nano-zirconium dioxide and its property of adsorbing dyestuff. Environmental Science & Technology, 2004, 27: 75-76 (in Chinese)

[19]

Yang Y X, Ma J, Qin Q D, Zhai X D. Degradation of nitrobenzene by nano-TiO2 catalyzed ozonation. Journal of Molecular Catalysis A Chemical, 2007, 267(1): 41-48

[20]

Guo C S, Ge M, Liu L, Gao G D, Feng Y C, Wang Y Q. Directed synthesis of mesoporous TiO2 microspheres: catalysts and their photocatalysis for bisphenol A degradation. Environmental Science & Technology, 2010, 44(1): 419-425

[21]

Wang G Q. Preparation of mesoporous TiO2 photocatalyst and photocatalytic degradation of organic dye. Environmental Pollution & Control, 2008, 30: 1-3 (in Chinese)

[22]

Iwasaki M, Hara M, Kawada H, Tada H, Ito S. Cobalt ion-doped TiO2 photocatalyst response to visible light. Journal of Colloid and Interface Science, 2000, 224(1): 202-204

[23]

Hu Q H, Zhang W P, Liu L Q, Tao C Y, Yang Q Y. Degradation of methyl orange catalyzed by Fe3+-doped mesoporous TiO2. Industrial Catalysis, 2009, 17: 66-71 (in Chinese)

[24]

Xiang W C, Hu P, Zhang X, Yao M S, Xu R F, Yuan F L. Synthesis of porous TiO2 hollow spheres by hydrothermal method and their adsorption property to Cr(VI). The Chinese Journal of Process Engineering, 2011, 11: 678-683 (in Chinese)

[25]

Pérez León C, Kador L, Peng B, Thelakkat M. Characterization of the adsorption of Ru-bpy dyes on mesoporous TiO2 films with UV-Vis, Raman, and FTIR Spectroscopies. The Journal of Physical Chemistry B, 2006, 110(17): 8723-8730

[26]

Lei J H, Xiong H C, Chen Y X. Non-siliceous mesoporous materials and their applications. Journal of the Chinese Ceramic Society, 2004, 32: 1003-1007 (in Chinese)

[27]

Pignatello J J, Oliveros E, Mackay AAdvanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Critical Reviews in Environmental Science and Technology, 2006, 36(1): 1-84

[28]

Chen J X, Zhu L Z. Heterogeneous UV-Fenton catalytic degradation of dyestuff in water with hydroxyl-Fe pillared bentonite. Catalysis Today, 2007, 126(3-4): 463-470

[29]

Legube B, Karpel V L N. Catalytic ozonation: a promising advanced oxidation technology for water treatment. Catalysis Today, 1999, 53(1): 61-72

[30]

Thomas J M, Thomas W J, Anderson J R, Boudart M. Principles and Practice of Heterogeneous Catalysis. Weinheim: VCH, 1997

[31]

Yu J C, Wang X C, Fu X Z. Pore-wall chemistry and photocatalytic activity of mesoporous titania molecular sieve films. Chemistry of Materials, 2004, 16(8): 1523-1530

[32]

Linsebigler A L, Lu G, Yates J T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical Reviews, 1995, 95(3): 735-758

[33]

Wu S J, Li F T, Zhang B R. Research progress in the application of mesoporous adsorbent to the field of water treatment. Industrial Water Treatment, 2010, 30: 1-4 (in Chinese)

[34]

Zhou D H, Li X Y, Xu F L. Some experimental problems related to distinguishing specific adsorption from non-specific adsorption of heavy metal on the surface of oxides. Acta Pedologica Sinica, 1997, 34: 348-351 (in Chinese)

[35]

Lata H, Garg V K, Gupta R K. Adsorptive removal of basic dye by chemically activated Parthenium biomass: equilibrium and kinetic modeling. Desalination, 2008, 219(1-3): 250-261

[36]

Babel S, Kurniawan T A. Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan. Chemosphere, 2004, 54(7): 951-967

[37]

De Castro Dantas T N, Neto A A D, De A. Moura M C P. Removal of chromium from aqueous solutions by diatomite treated with microemulsion. Water Research, 2001, 35(9): 2219-2224

[38]

Kang M, Choung S, Park J Y. Photocatalytic performance of nanometersized FexOy/TiO2 particle synthesized by hydrothermal method. Catalysis Today, 2003, 87(1-4): 87-97

[39]

Bach U, Lupo D, Comte P, Moser J E, Weissortel F, Salbeck J, Spreitzer H, Gratzel M. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature, 1998, 395(6702): 583-585

[40]

Lee K, Park S W, Ko M J, Kim K, Park N G. Selective positioning of organic dyes in a mesoporous inorganic oxide film. Nature Materials, 2009, 8(8): 665-671

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (165KB)

2270

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/