Activated carbons and amine-modified materials for carbon dioxide capture –– a review
Zhenhe CHEN, Shubo DENG, Haoran WEI, Bin WANG, Jun HUANG, Gang YU
Activated carbons and amine-modified materials for carbon dioxide capture –– a review
Rapidly increasing concentration of CO2 in the atmosphere has drawn more and more attention in recent years, and adsorption has been considered as an effective technology for CO2 capture from the anthropogenic sources. In this paper, the attractive adsorbents including activated carbons and amine-modified materials were mainly reviewed and discussed with particular attention on progress in the adsorbent preparation and CO2 adsorption capacity. Carbon materials can be prepared from different precursors including fossil fuels, biomass and resins using the carbonization-activation or only activation process, and activated carbons prepared by KOH activation with high CO2 adsorbed amount were reviewed in the preparation, adsorption capacity as well as the relationship between the pore characteristics and CO2 adsorption. For the amine-modified materials, the physical impregnation and chemical graft of polyethylenimine (PEI) on the different porous materials were introduced in terms of preparation method and adsorption performance as well as their advantages and disadvantages for CO2 adsorption. In the last section, the issues and prospect of solid adsorbents for CO2 adsorption were summarized, and it is expected that this review will be helpful for the fundamental studies and industrial applications of activated carbons and amine-modified adsorbents for CO2 capture.
adsorption capacity / CO2 capture / activated carbon / amine-impregnated adsorbents
[1] |
Metz B, Davidson O, de Coninck H, Loos M, Meye L. Special Report on Carbon Dioxide Capture and Storage, http://www.ipcc.ch/
|
[2] |
Trachtenberg M C, Cowan R M, Smith D A. In: Proceedings of the Sixth Annual Conference on Carbon Capture & Sequestration, Pittsburgh, 2007
|
[3] |
http://en.wikipedia.org/wiki/Atmosphere_of_Earth#cite_note-0
|
[4] |
www.esrl.noaa.gov/gmd/ccgg/trends/
|
[5] |
D’Alessandro D M, Smit B, Long J R. Carbon dioxide capture: prospects for new materials. Angewandte Chemie International Edition, 2010, 49(35): 6058-6082
CrossRef
Pubmed
Google scholar
|
[6] |
Chaffee A L, Knowles G P, Liang Z, Zhang J, Xiao P, Webley P A. CO2 capture by adsorption: materials and process development. International Journal of Greenhouse Gas Control, 2007, 1(1): 11-18
CrossRef
Google scholar
|
[7] |
Jassim M S, Rochelle G, Eimer D, Ramshaw C. Carbon dioxide absorption and desorption in aqueous monoethanolamine solutions in a rotating packed bed. Industrial & Engineering Chemistry Research, 2007, 46(9): 2823-2833
CrossRef
Google scholar
|
[8] |
Shen C Z, Grande C A, Li P, Yu J G, Rodrigues A E. Adsorption equilibria and kinetics of CO2 and N2 on activated carbon beads. Chemical Engineering Journal, 2010, 160(2): 398-407
CrossRef
Google scholar
|
[9] |
Shen W Z, He Y, Zhang S C, Li J F, Fan W B. Yeast-based microporous carbon materials for carbon dioxide capture. ChemSusChem, 2012, 5(7): 1274-1279
CrossRef
Pubmed
Google scholar
|
[10] |
Bae Y S, Snurr R Q. Development and evaluation of porous materials for carbon dioxide separation and capture. Angewandte Chemie International Edition, 2011, 50(49): 11586-11596
CrossRef
Pubmed
Google scholar
|
[11] |
Liu J, Thallapally P K, McGrail B P, Brown D R, Liu J. Progress in adsorption-based CO2 capture by metal-organic frameworks. Chemical Society Reviews, 2012, 41(6): 2308-2322
CrossRef
Pubmed
Google scholar
|
[12] |
Samanta A, Zhao A, Shimizu G H, Sarkar P, Gupta R. Post-combustion CO2 capture using solid sorbents: a review. Industrial & Engineering Chemistry Research, 2012, 51(4): 1438-1463
CrossRef
Google scholar
|
[13] |
Siriwardane R V, Shen M S, Fisher E P, Losch J. Adsorption of CO2 on zeolites at moderate temperatures. Energy & Fuels, 2005, 19(3): 1153-1159
CrossRef
Google scholar
|
[14] |
Heydari-Gorji A, Belmabkhout Y, Sayari A. Polyethylenimine-impregnated mesoporous silica: effect of amine loading and surface alkyl chains on CO2 adsorption. Langmuir, 2011, 27(20): 12411-12416
CrossRef
Pubmed
Google scholar
|
[15] |
Lee S, Filburn T P, Gray M, Park J W, Song H J. Screening test of solid amine sorbents for CO2 capture. Industrial & Engineering Chemistry Research, 2008, 47(19): 7419-7423
CrossRef
Google scholar
|
[16] |
Wang Q, Luo J Z, Zhong Z Y, Borgna A. CO2 capture by solid adsorbents and their applications: current status and new trends. Energy & Environmental Science, 2011, 4(1): 42-55
CrossRef
Google scholar
|
[17] |
Koirala R, Reddy G K, Smirniotis P G. Single nozzle flame-made highly durable metal doped Ca-based sorbents for CO2 capture at high temperature. Energy & Fuels, 2012, 26(5): 3103-3109
CrossRef
Google scholar
|
[18] |
Brandani F, Ruthven D M. The effect of water on the adsorption of CO2 and C3H8 on type X zeolites. Industrial & Engineering Chemistry Research, 2004, 43(26): 8339-8344
CrossRef
Google scholar
|
[19] |
Li G, Xiao P, Webley P, Zhang J, Singh R, Marshall M. Capture of CO2 from high humidity flue gas by vacuum swing adsorption with zeolite 13X. Adsorption, 2008, 14(2-3): 415-422
CrossRef
Google scholar
|
[20] |
Silvestre-Albero J, Wahby A, Sepúlveda-Escribano A, Martínez-Escandell M, Kaneko K, Rodríguez-Reinoso F. Ultrahigh CO2 adsorption capacity on carbon molecular sieves at room temperature. Chemical Communications, 2011, 47(24): 6840-6842
CrossRef
Pubmed
Google scholar
|
[21] |
Plaza M G, Pevida C, Arias B, Fermoso J, Rubiera F, Pis J J. A comparison of two methods for producing CO2 capture adsorbents. Energy Procedia, 2009, 1(1): 1107-1113
CrossRef
Google scholar
|
[22] |
Siriwardane R V, Shen M S, Fisher E P, Poston J A. Adsorption of CO2 on molecular sieves and activated carbon. Energy & Fuels, 2001, 15(2): 279-284
CrossRef
Google scholar
|
[23] |
Drage T C, Blackman J M, Pevida C, Snape C E. Evaluation of activated carbon adsorbents for CO2 capture in gasification. Energy & Fuels, 2009, 23(5): 2790-2796
CrossRef
Google scholar
|
[24] |
Sevilla M, Valle-Vigon P, Fuertes A B. N-Doped polypyrrole-based porous carbons for CO2 capture. Advanced Functional Materials, 2011, 21(14): 2781-2787
CrossRef
Google scholar
|
[25] |
Hao G P, Li W C, Qian D, Lu A H. Rapid synthesis of nitrogen-doped porous carbon monolith for CO2 capture. Advanced Materials, 2010, 22(7): 853-857
CrossRef
Pubmed
Google scholar
|
[26] |
Drage T C, Arenillas A, Smith K M, Pevida C, Piippo S, Snape C E. Preparation of carbon dioxide adsorbents from the chemical activation of urea-formaldehyde and melamine-formaldehyde resins. Fuel, 2007, 86(1-2): 22-31
CrossRef
Google scholar
|
[27] |
Chandra V, Yu S U, Kim S H, Yoon Y S, Kim D Y, Kwon A H, Meyyappan M, Kim K S. Highly selective CO2 capture on N-doped carbon produced by chemical activation of polypyrrole functionalized graphene sheets. Chemical communications, 2012, 48(5): 735-737
CrossRef
Pubmed
Google scholar
|
[28] |
Chen C, Kim J, Ahn W S. Efficient carbon dioxide capture over a nitrogen-rich carbon having a hierarchical micro-mesopore structure. Fuel, 2012, 95(1): 360-364
CrossRef
Google scholar
|
[29] |
Alcañiz-Monge J, Marco-Lozar J P, Lillo-Rodenas M A. CO2 separation by carbon molecular sieve monoliths prepared from nitrated coal tar pitch. Fuel Processing Technology, 2011, 92(5): 915-919
CrossRef
Google scholar
|
[30] |
Wahby A, Ramos-Fernández J M, Martínez-Escandell M, Sepúlveda-Escribano A, Silvestre-Albero J, Rodríguez-Reinoso F. High-surface-area carbon molecular sieves for selective CO2 adsorption. ChemSusChem, 2010, 3(8): 974-981
CrossRef
Pubmed
Google scholar
|
[31] |
Hu X, Radosz M, Cychosz K A, Thommes M. CO2-filling capacity and selectivity of carbon nanopores: synthesis, texture, and pore-size distribution from quenched-solid density functional theory (QSDFT). Environmental Science & Technology, 2011, 45(16): 7068-7074
CrossRef
Pubmed
Google scholar
|
[32] |
Maroto-Valer M M, Tang Z, Zhang Y Z. CO2 capture by activated and impregnated anthracites. Fuel Processing Technology, 2005, 86(14-15): 1487-1502
CrossRef
Google scholar
|
[33] |
Olivares-Marín M, Maroto-Valer M M. Preparation of a highly microporous carbon from a carpet material and its application as CO2 sorbent. Fuel Processing Technology, 2011, 92(3): 322-329
CrossRef
Google scholar
|
[34] |
Drage T C, Blackman J M, Pevida C, Snape C E. Evaluation of activated carbon adsorbents for CO2 capture in gasification. Energy & Fuels, 2009, 23(5): 2790-2796
CrossRef
Google scholar
|
[35] |
Sevilla M, Fuertes A B. Sustainable porous carbons with a superior performance for CO2 capture. Energy & Environmental Science, 2011, 4(5): 1765-1771
CrossRef
Google scholar
|
[36] |
Plaza M G, Pevida C, Martín C F, FermosoJ, Pis J J, Rubiera F. Developing almond shell-derived activated carbons as CO2 adsorbents. Separation and Purification Technology, 2010, 71(1): 102-106
CrossRef
Google scholar
|
[37] |
Plaza M G, Pevida C, Arias B, Fermoso J, Casal M D, Martín C F, Rubiera F, Pis J J. Development of low-cost biomass-based adsorbents for postcombustion CO2 capture. Fuel, 2009, 88(12): 2442-2447
CrossRef
Google scholar
|
[38] |
Thote J A, Iyer K S, Chatti R, Labhsetwar N K, Biniwale R B, Rayalu S S. In situ nitrogen enriched carbon for carbon dioxide capture. Carbon, 2010, 48(2): 396-402
CrossRef
Google scholar
|
[39] |
Hao G P, Li W C, Qian D, Wang G H, Zhang W P, Zhang T, Wang A Q, Schüth F, Bongard H J, Lu A H. Structurally designed synthesis of mechanically stable poly(benzoxazine-co-resol)-based porous carbon monoliths and their application as high-performance CO2 capture sorbents. Journal of the American Chemical Society, 2011, 133(29): 11378-11388
CrossRef
Pubmed
Google scholar
|
[40] |
Saha D, Deng S G. Adsorption equilibrium and kinetics of CO2, CH4, N2O, and NH3 on ordered mesoporous carbon. Journal of Colloid and Interface Science, 2010, 345(2): 402-409
CrossRef
Pubmed
Google scholar
|
[41] |
Wang L F, Yang R T. Significantly Increased CO2 adsorption performance of nanostructured templated carbon by tuning surface area and nitrogen doping. Journal of Physical Chemistry C, 2012, 116(1): 1099-1106
CrossRef
Google scholar
|
[42] |
Xia Y D, Mokaya R, Walker G S, Zhu Y Q. Superior CO2 adsorption capacity on N-doped, high-surface-area, microporous carbons templated from zeolite. Advanced Energy Materials, 2011, 1(4): 678-683
CrossRef
Google scholar
|
[43] |
Pevida C, Drage T C, Snape C E. Silica-templated melamine-formaldehyde resin derived adsorbents for CO2 capture. Carbon, 2008, 46(11): 1464-1474
CrossRef
Google scholar
|
[44] |
Li Q, Yang J P, Feng D, Wu Z X, Wu Q L, Park S S, Ha C S, Zhao D Y. Facile synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO2 capture. Nano Research, 2010, 3(9): 632-642
CrossRef
Google scholar
|
[45] |
Silvestre-Albero J, Wahby A, Sepúlveda-Escribano A, Martínez-Escandell M, Kaneko K, Rodríguez-Reinoso F. Ultrahigh CO2 adsorption capacity on carbon molecular sieves at room temperature. Chemical Communications, 2011, 47(24): 6840-6842
CrossRef
Pubmed
Google scholar
|
[46] |
Presser V, McDonough J, Yeon S H, Gogotsi Y. Effect of pore size on carbon dioxide sorption by carbide derived carbon. Energy & Environmental Science, 2011, 4(8): 3059-3066
CrossRef
Google scholar
|
[47] |
Garrido J, Linares-Solano A, Martin-Martinez J M, Molina-Sabio M, Rodriguez-Reinoso F, Torregrosa R. Use of nitrogen vs. carbon dioxide in the characterization of activated carbons. Langmuir, 1987, 3(1): 76-81
CrossRef
Google scholar
|
[48] |
Rios R A, Silvestre-Albero J, Sepúlveda-Escribano A, Molina-Sabio M, Rodríguez-Reinoso F. Kinetic restrictions in the characterization of narrow microporosity in carbon materials. Journal of Physical Chemistry C, 2007, 111(10): 3803-3805
CrossRef
Google scholar
|
[49] |
Wei H R, Deng S B, Hu B Y, Chen Z H, Wang B, Huang J, Yu G. Granular bamboo-derived activated carbon for high CO2 adsorption: the dominant role of narrow micropores. ChemSusChem, 2012, (in press)
CrossRef
Google scholar
|
[50] |
Wang Y X, Zhou Y P, Liu C M, Zhou L. Comparative studies of CO2 and CH4 sorption on activated carbon in presence of water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 322(1-3): 14-18
CrossRef
Google scholar
|
[51] |
Ma Z X, Kyotani T, Liu Z, Terasaki O, Tomita A. Very high surface area microporous carbon with a three-dimensional nano-array structure: synthesis and its molecular structure. Chemistry of Materials, 2001, 13(12): 4413-4415
CrossRef
Google scholar
|
[52] |
Xu X C, Song C S, Andresen J M, Miller B G, Scaroni A W. Novel Polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture. Energy & Fuels, 2002, 16(6): 1463-1469
CrossRef
Google scholar
|
[53] |
Chen C, Yang S T, Ahn W S, Ryoo R. Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO2 capture capacity. Chemical Communications, 2009, 45(24): 3627-3629
CrossRef
Pubmed
Google scholar
|
[54] |
Qi G G, Wang Y B, Estevez L, Duan X N, Anako N, Park A A, Li W, Jones C W, Giannelis E P. High efficiency nanocomposite sorbents for CO2 capture based on amine-functionalized mesoporous capsules. Energy & Environmental Science, 2011, 4(2): 444-452
CrossRef
Google scholar
|
[55] |
Wang J T, Long D H, Zhou H H, Chen Q J, Liu X J, Ling L C. Surfactant promoted solid amine sorbents for CO2 capture. Energy & Environmental Science, 2012, 5(2): 5742-5749
CrossRef
Google scholar
|
[56] |
Yan W, Tang J, Bian Z J, Hu J, Liu H L. Carbon dioxide capture by amine-impregnated mesocellular-foam-containing template. Industrial & Engineering Chemistry Research, 2012, 51(9): 3653-3662
CrossRef
Google scholar
|
[57] |
Wang D X, Ma X L, Sentorun-Shalaby C, Song C S. Development of carbon-based “molecular basket” sorbent for CO2 capture. Industrial & Engineering Chemistry Research, 2012, 51(7): 3048-3057
CrossRef
Google scholar
|
[58] |
Heydari-Gorji A, Yang Y, Sayari A. Effect of the pore length on CO2 adsorption over amine-modified mesoporous silicas. Energy & Fuels, 2011, 25(9): 4206-4210
CrossRef
Google scholar
|
[59] |
Gray M L, Hoffman J S, Hreha D C, Fauth D J, Hedges S W, Champagne K J, Pennline H W. Parametric study of solid amine sorbents for the capture of carbon dioxide. Energy & Fuels, 2009, 23(10): 4840-4844
CrossRef
Google scholar
|
[60] |
Chaikittisilp W, Kim H J, Jones C W. Mesoporous alumina-supported amines as potential steam-stable adsorbents for capturing CO2 from simulated flue gas and ambient air. Energy & Fuels, 2011, 25(11): 5528-5537
CrossRef
Google scholar
|
[61] |
Yan X L, Zhang Y, Qiao K, Li X, Zhang Z Q, Yan Z F, Komarneni S. Clover leaf-shaped Al2O3 extrudate as a support for high-capacity and cost-effective CO2 sorbent. Journal of Hazardous Materials, 2011, 192(3): 1505-1508
CrossRef
Pubmed
Google scholar
|
[62] |
Yan X L, Zhang L, Zhang Y,Yang G D, Yan Z F. Amine-modified SBA-15: effect of pore structure on the performance for CO2 capture. Industrial & Engineering Chemistry Research, 2011, 50(6): 3220-3226
CrossRef
Google scholar
|
[63] |
Son W J, Choi J S, Ahn W S. Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials. Microporous and Mesoporous Materials, 2008, 113(1-3): 31-40
CrossRef
Google scholar
|
[64] |
Goeppert A, Czaun M, May R B, Prakash G K, Olah G A, Narayanan S R. Carbon dioxide capture from the air using a polyamine based regenerable solid adsorbent. Journal of the American Chemical Society, 2011, 133(50): 20164-20167
CrossRef
Pubmed
Google scholar
|
[65] |
Goeppert A, Meth S, Prakash G S, Olah G A. Nanostructured silica as a support for regenerable high-capacity organoamine-based CO2 sorbents. Energy & Environmental Science, 2010, 3(12): 1949-1960
CrossRef
Google scholar
|
[66] |
Li P Y, Ge B Q, Zhang S J, Chen S X, Zhang Q K, Zhao Y N. CO2 capture by polyethylenimine-modified fibrous adsorbent. Langmuir, 2008, 24(13): 6567-6574
CrossRef
Pubmed
Google scholar
|
[67] |
Li P Y, Zhang S J, Chen S X, Zhang Q K, Pan J J, Ge B Q. Preparation and adsorption properties of polyethylenimine containing fibrous adsorbent for carbon dioxide capture. Journal of Applied Polymer Science, 2008, 108(6): 3851-3858
CrossRef
Google scholar
|
[68] |
Zhao D Y, Feng J L, Huo Q S, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998, 279(5350): 548-552
CrossRef
Pubmed
Google scholar
|
[69] |
Subagyono D N, Liang Z J, Knowles G P, Chaffee A L. Amine modified mesocellular siliceous foam (MCF) as a sorbent for CO2. Chemical Engineering Research & Design, 2011, 89(9): 1647-1657
CrossRef
Google scholar
|
[70] |
Yan X L, Zhang L, Zhang Y, Qiao K, Yan Z F, Komarneni S. Amine-modified mesocellular silica foams for CO2 capture. Chemical Engineering Journal, 2011, 168(2): 918-924
CrossRef
Google scholar
|
[71] |
Chaikittisilp W, Khunsupat R, Chen T T, Jones C W. Poly(allylamine) mesoporous silica composite materials for CO2 capture from simulated flue gas or ambient air. Industrial & Engineering Chemistry Research, 2011, 50(24): 14203-14210
CrossRef
Google scholar
|
[72] |
Li J X, Zhou L H, Han X, Hu J, Liu H L, Xu J. Direct electrochemistry of hemoglobin immobilized on siliceous mesostructured cellular foam. Sensors and Actuators. B, Chemical, 2009, 138(2): 545-549
CrossRef
Google scholar
|
[73] |
Smått J H, Schunk S, Lindén M. Versatile double-templating synthesis route to silica monoliths exhibiting a multimodal hierarchical porosity. Chemistry of Materials, 2003, 15(12): 2354-2361
CrossRef
Google scholar
|
[74] |
Qi G G, Wang Y B, Estevez L, Switzer A K, Duan X N, Yang X F, Giannelis E P. Facile and scalable synthesis of monodispersed spherical capsules with a mesoporous shell. Chemistry of Materials, 2010, 22(9): 2693-2695
CrossRef
Google scholar
|
[75] |
Yue M B, Chun Y, Cao Y, Dong X, Zhu J H. CO2 capture by as-prepared SBA-15 with an occluded organic template. Advanced Functional Materials, 2006, 16(13): 1717-1722
CrossRef
Google scholar
|
[76] |
Yue M B, Sun L B, Cao Y, Wang Y, Wang Z J, Zhu J H. Efficient CO2 capturer derived from as-synthesized MCM-41 modified with amine. Chemistry A European Journal, 2008, 14(11): 3442-3451
CrossRef
Pubmed
Google scholar
|
[77] |
Li B Y, Jiang B B, Fauth D J, Gray M L, Pennline H W, Richards G A. Innovative nano-layered solid sorbents for CO2 capture. Chemical Communications, 2011, 47(6): 1719-1721
CrossRef
Pubmed
Google scholar
|
[78] |
Sayari A, Belmabkhout Y, Da’na E. CO2 deactivation of supported amines: does the nature of amine matter? Langmuir, 2012, 28(9): 4241-4247
CrossRef
Pubmed
Google scholar
|
[79] |
Sayari A, Belmabkhout Y. Stabilization of amine-containing CO2 adsorbents: dramatic effect of water vapor. Journal of the American Chemical Society, 2010, 132(18): 6312-6314
CrossRef
Pubmed
Google scholar
|
[80] |
Serna-Guerrero R, Belmabkhout Y, Sayari A. Influence of regeneration conditions on the cyclic performance of amine-grafted mesoporous silica for CO2 capture: an experimental and statistical study. Chemical Engineering Science, 2010, 65(14): 4166-4172
CrossRef
Google scholar
|
[81] |
Serna-Guerrero R, Da’na E, Sayari A. New insights into the interactions of CO2 with amine-functionalized silica. Industrial & Engineering Chemistry Research, 2008, 47(23): 9406-9412
CrossRef
Google scholar
|
[82] |
Huang H Y, Yang R T, Chinn D, Munson C L. Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas. Industrial & Engineering Chemistry Research, 2003, 42(12): 2427-2433
CrossRef
Google scholar
|
[83] |
Hiyoshi N, Yogo K, Yashima T. Adsorption characteristics of carbon dioxide on organically functionalized SBA-15. Microporous and Mesoporous Materials, 2005, 84(1-3): 357-365
CrossRef
Google scholar
|
[84] |
Kim S N, Son W J, Choi J S, Ahn W S. CO2 adsorption using amine-functionalized mesoporous silica prepared via anionic surfactant-mediated synthesis. Microporous and Mesoporous Materials, 2008, 115(3): 497-503
CrossRef
Google scholar
|
[85] |
Knowles G P, Graham J V, Delaney S W, Chaffee A L. Aminopropyl-functionalized mesoporous silicas as CO2 adsorbents. Fuel Processing Technology, 2005, 86(14-15): 1435-1448
CrossRef
Google scholar
|
[86] |
Zeleňák V, Badanicová M, Halamová D, Čejka J, Zukal A, Murafa N, Goerigk G. Amine-modified ordered mesoporous silica: effect of pore size on carbon dioxide capture. Chemical Engineering Journal, 2008, 144(2): 336-342
CrossRef
Google scholar
|
[87] |
Harlick P E, Sayari A. Applications of pore-expanded mesoporous silicas. 3. Triamine silane grafting for enhanced CO2 adsorption. Industrial & Engineering Chemistry Research, 2006, 45(9): 3248-3255
CrossRef
Google scholar
|
[88] |
Hiyoshi N, Yogo K, Yashima T. Adsorption of carbon dioxide on amine modified SBA-15 in the presence of water vapor. Chemistry Letters, 2004, 33(5): 510-511
CrossRef
Google scholar
|
[89] |
Hsu S C, Lu C S, Su F S, Zeng W T, Chen W F. Thermodynamics and regeneration studies of CO2 adsorption on multiwalled carbon nanotubes. Chemical Engineering Science, 2010, 65(4): 1354-1361
CrossRef
Google scholar
|
[90] |
Su F, Lu C, Cnen W, Bai H, Hwang J F. Capture of CO2 from flue gas via multiwalled carbon nanotubes. The Science of the total environment, 2009, 407(8): 3017-3023
CrossRef
Pubmed
Google scholar
|
[91] |
Gebald C, Wurzbacher J A, Tingaut P, Zimmermann T, Steinfeld A. Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air. Environmental Science & Technology, 2011, 45(20): 9101-9108
CrossRef
Pubmed
Google scholar
|
[92] |
Bhagiyalakshmi M, Yun L J, Anuradha R, Jang H T. Utilization of rice husk ash as silica source for the synthesis of mesoporous silicas and their application to CO2 adsorption through TREN/TEPA grafting. Journal of Hazardous Materials, 2010, 175(1-3): 928-938
CrossRef
Pubmed
Google scholar
|
[93] |
Kassab H, Maksoud M, Aguado S, Pera-Titus M, Albela B, Bonneviot L. Polyethylenimine covalently grafted on mesostructured porous silica for CO2 capture. RSC Advances, 2012, 2(6): 2508-2516
CrossRef
Google scholar
|
[94] |
Lu W G, Sculley J P, Yuan D Q, Krishna R, Wei Z W, Zhou H C. Polyamine-tethered porous polymer networks for carbon dioxide capture from flue gas. Angewandte Chemie International Edition, 2012, 51(30): 7480-7484
CrossRef
Pubmed
Google scholar
|
[95] |
Drese J H, Choi S H, Lively R P, Koros W J, Fauth D J, Gray M L, Jones C W. Synthesis-structure-property relationships for hyperbranched aminosilica CO2 adsorbents. Advanced Functional Materials, 2009, 19(23): 3821-3832
CrossRef
Google scholar
|
[96] |
Li W, Bollini P, Didas S A, Choi S H, Drese J H, Jones C W. Structural changes of silica mesocellular foam supported amine-functionalized CO2 adsorbents upon exposure to steam. ACS Applied Materials & Interfaces, 2010, 2(11): 3363-3372
CrossRef
Pubmed
Google scholar
|
[97] |
Liang Z J, Fadhel B, Schneider C J, Chaffee A L. Adsorption of CO2 on mesocellular siliceous foam iteratively functionalized with dendrimers. Adsorption, 2009, 15(5-6): 429-437
CrossRef
Google scholar
|
[98] |
Yang Y, Li H C, Chen S X, Zhao Y N, Li Q H. Preparation and characterization of a solid amine adsorbent for capturing CO2 by grafting allylamine onto PAN fiber. Langmuir, 2010, 26(17): 13897-13902
CrossRef
Pubmed
Google scholar
|
[99] |
Liang Z J, Fadhel B, Schneider C J, Chaffee A L. Stepwise growth of melamine-based dendrimers into mesopores and their CO2 adsorption properties. Microporous and Mesoporous Materials, 2008, 111(1-3): 536-543
CrossRef
Google scholar
|
[100] |
Hicks J C, Drese J H, Fauth D J, Gray M L, Qi G G, Jones C W. Designing adsorbents for CO2 capture from flue gas-hyperbranched aminosilicas capable of capturing CO2 reversibly. Journal of the American Chemical Society, 2008, 130(10): 2902-2903
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |