PDF
(345KB)
Abstract
Pseudosolubilized ability of Pseudomonas sp. DG17 on n-alkanes, role of biosurfactants in n-octadecane uptake and trans-membrane transport mechanism of n-octadecane were studied by analyzing amount of pseudosolubilized oil components in water phase, and the fraction of radiolabeled 14C n-octadecane in the broth and cell pellet. GC-MS results showed that pseudosolubilized oil components were mainly C12 to C28 of n-alkanes. In n-octadecane broth, pseudosolubilized n-octadecane could be accumulated as long as pseudosolubilized rate was faster than mineralization rate of substrate, and the maximum concentration of pseudosolubilized n-octadecane achieved to 45.37 mg·L-1. All of these results showed that Pseudomonas sp. DG17 mainly utilized alkanes by directly contacting with pseudosolubilized small oil droplets in the water phase. Analysis of 14C amount in cell pellet revealed that an energy-dependent system mainly controlled the trans-membrane transport of n-octadecane.
Keywords
Pseudomonas
/
alkane
/
uptake
/
pseudosolubilization
/
trans-membrane transport
Cite this article
Download citation ▾
Fei HUA, Hongqi WANG.
Selective pseudosolubilization capability of Pseudomonas sp. DG17 on n-alkanes and uptake mechanisms analysis.
Front. Environ. Sci. Eng., 2013, 7(4): 539-551 DOI:10.1007/s11783-013-0498-z
| [1] |
Wentzel A, Ellingsen T E, Kotlar H K, Zotchev S B, Throne-Holst M. Bacterial metabolism of long-chain n-alkanes. Appl Microbiol Biotechnol, 2007, 76(6): 1209-1221
|
| [2] |
Kim I S, Foght J M, Gray M R. Selective transport and accumulation of alkanes by Rhodococcus erythropolis S+14He. Biotechnol Bioeng, 2002, 80(6): 650-659
|
| [3] |
Woo S H, Park J M. Microbial degradation and enhanced bioremediation of polycyclic aromatic hydrocarbons. J Ind Eng Chem, 2004, 10(1): 16-23
|
| [4] |
Al-Tahhan R, Sandrin T R, Bodour A A, Maier R M. Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: effect on cell surface properties and interaction with hydrophobic substrates. Appl Environ Microbiol, 2000, 66(8): 3262-3268
|
| [5] |
Herman D C, Zhang Y, Miller R M. Rhamnolipid (biosurfactant) effects on cell aggregation and biodegradation of residual hexadecane under saturated flow conditions. Appl Environ Microbiol, 1997, 63(9): 3622-3627
|
| [6] |
Zhang Y, Miller R M. Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane. Appl Environ Microbiol, 1994, 60(6): 2101-2106
|
| [7] |
Zhang Y M, Miller R M. Effect of rhamnolipid (biosurfactant) structure on solubilization and biodegradation of n-alkanes. Appl Environ Microbiol, 1995, 61(6): 2247-2251
|
| [8] |
Vasileva-T E, Gesheva V. Glycolipids produced by Antartic Nocardioides sp. during growth on n-paraffin. Process Biochem, 2005, 40(7): 2387-2391
|
| [9] |
Bouchez-Naitali M, Vandecasteele J P. Biosurfactants, an help in the biodegradation of hexadecane? The case of Rhodococcus and Pseudomonas strains. World J Microbiol Biotechnol, 2008, 24(9): 1901-1907
|
| [10] |
Rosenberg E. Exploiting microbial growth on hydrocarbon: New markets. Trends Biotechnol, 1993, 11(10): 419-424
|
| [11] |
Bouchez-Naitali M, Rakatozafy H, Marchal R, Leveau J Y, Vandecasteele J P. Diversity of bacterial strains degrading hexadecane in relation to the mode of substrate uptake. J Appl Microbiol, 1999, 86(3): 421-428
|
| [12] |
Nakahara T, Erickson L E, Gutierrez J R. Characteristics of hydrocarbon uptake in cultures with two liquid phases. Biotechnol Bioeng, 1997, 19(1): 9-25
|
| [13] |
Wick L Y, de Munain A R, Springael D, Harms H. Responses of Mycobacterium sp. LB501T to the low bioavailability of solid anthracene. Appl Microbiol Biotechnol, 2002, 58(3): 378-385
|
| [14] |
Tecon R, van der Meer J R. Effect of two types of biosurfactants on phenanthrene availability to the bacterial bioreporter Burkholderia sartisoli strain RP037. Appl Microbiol Biotechnol, 2010, 85(4): 1131-1139
|
| [15] |
Sotirova A, Spasova D, Vasileva-Tonkova E, Galabova D. Effects of rhamnolipid-biosurfactant on cell surface of Pseudomonas aeruginosa. Microbiol Res, 2009, 164(3): 297-303
|
| [16] |
Prabhu Y, Phale P S. Biodegradation of phenanthrene by Pseudomonas sp. strain PP2: novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation. Appl Microbiol Biotechnol, 2003, 61(4): 342-351
|
| [17] |
Cameotra S S, Singh P. Synthesis of rhamnolipid biosurfactant and mode of hexadecane uptake by Pseudomonas species. Microb Cell Fact, 2009, 8(16): 1-7
|
| [18] |
Beal R, Betts W B. Role of rhamnolipid biosurfactants in the uptake and mineralization of hexadecane in Pseudomonas aeruginosa. J Appl Microbiol, 2000, 89(1): 158-168
|
| [19] |
Kallimanis A, Frillingos S, Drainas C, Koukkou A I. Taxonomic identification, phenanthrene uptake activity, and membrane lipid alterations of the PAH degrading Arthrobacter sp. strain Sphe3. Appl Microbiol Biotechnol, 2007, 76(3): 709-717
|
| [20] |
Bugg T, Foght J M, Pickard M A, Gray M R. Uptake and active efflux of polycyclic aromatic hydrocarbons by Pseudomonas fluorescens LP6a. Appl Environ Microbiol, 2000, 66(12): 5387-5392
|
| [21] |
Whitman B E, Lueking D R, Mihelcic J R. Naphthalene uptake by a Pseudomonas fluorescens isolate. Can J Microbiol, 1998, 44(11): 1086-1093
|
| [22] |
Miyata N, Iwahori K, Foght J M, Gray M R. Saturable, energy-dependent uptake of phenanthrene in aqueous phase by Mycobacterium sp. strain RJGII-135. Appl Environ Microbiol, 2004, 70(1): 363-369
|
| [23] |
Gray R M, Bugg T. Selective biocatalysis in bacteria controlled by active membrane transport. Ind Eng Chem Res, 2001, 40(23): 5126-5131
|
| [24] |
Mihelcic J R, Lueking D R, Mitzell R J, Stapleton J M. Bioavailability of sorbed and separate phase chemicals. Biodegradation, 1993, 4(3): 141-153
|
| [25] |
Shishido M, Toda M. Apparent zero-order kinetics of phenol biodegradation by substrate-inhibited microbes at low substrate concentrations. Biotechnol Bioeng, 1996, 50(6): 709-717
|
| [26] |
Wen Y, Cheng H, Lu L J, Liu J, Feng Y, Guan W, Zhou Q, Huang X F. Analysis of biological demulsification process of water-in-oil emulsion by Alcaligenes sp. S-XJ-1. Bioresour Technol, 2010, 101(21): 8315-8322
|
| [27] |
Hua F, Wang H. Uptake modes of octadecane by Pseudomonas sp. DG17 and synthesis of biosurfactant. J Appl Microbiol, 2012, 112(1): 25-37
|
| [28] |
Ron E Z, Rosenberg E. Biosurfactants and oil bioremediation. Curr Opin Biotechnol, 2002, 13(3): 249-252
|
| [29] |
Goswami P, Singh H D. Different modes of hydrocarbon uptake by two Pseudomonas species. Biotechnol Bioeng, 1991, 37(1): 1-11
|
| [30] |
Cubitto M A, Morán A C, Commendatore M, Chiarello M N, Baldini M D, Siñeriz F. Effects of Bacillus subtilis O9 biosurfactant on the bioremediation of crude oil-polluted soils. Biodegradation, 2004, 15(5): 281-287
|
| [31] |
de Carvalho C C C R, Poretti A, da Fonseca M M R. Cell adaptation to solvent, substrate and product: a successful strategy to overcome product inhibition in a bioconversion system. Appl Microbiol Biotechnol, 2005, 69(3): 268-275
|
| [32] |
Abalos A, Vinas M, Sabate J, Manresa M A, Solanas A M. Enhanced biodegradation of Casablanca crude oil by a microbial consortium in presence of a rhamnolipid produced by Pseudomonas aeruginosa AT10. Biodegradation, 2004, 15(4): 249-260
|
| [33] |
Ivshina I B, Kuyukina M S, Philp J C, Christofi N. Oil desorption from mineral and organic materials using biosurfactant complexes produced by Rhodococcus species. World J Microbiol Biotechnol, 1998, 14(5): 711-717
|
| [34] |
Lindley N D, Heydeman M T. The uptake of n-alkanes from alkane mixtures during growth of the hydrocarbon-utilizing fungus Cladosporium resinae. Appl Microbiol Biotechnol, 1996, 23(5): 384-388
|
| [35] |
Lee M H, Hwang M O, Choi S Y, Min K H. n-Alkane dissimilation by Rhodopseudomonas sphaeroides transferred OCT plasmid. Microb Ecol, 1993, 26(3): 219-226
|
| [36] |
Vasileva-Tonkova E, Gesheva V. Biosurfactant production by antarctic facultative anaerobe Pantoea sp. during growth on hydrocarbons. Curr Microbiol, 2007, 54(2): 136-141
|
| [37] |
Perfumo A, Banat I M, Canganella F, Marchant R. Rhamnolipid production by a novel thermophilic hydrocarbon-degrading Pseudomonas aeruginosa AP02-1. Appl Microbiol Biotechnol, 2006, 72(1): 132-138
|
| [38] |
Rosenberg E, Gottlieb A, Rosenberg M. Inhibition of bacterial adherence to hydrocarbons and epithelial cells by emulsan. Infect Immun, 1983, 39(3): 1024-1028
|
| [39] |
Scott C C L, Finnerty W R. Characterization of intracytoplasmic hydrocarbon inclusions from the hydrocarbon-oxidizing Acinetobacter species HO1-N. J Bacteriol, 1976, 127(1): 481-489
|
| [40] |
Heipieper H J, Meinhardt F, Segura A. The cis-trans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio: biochemistry, molecular biology and physiological function of a unique stress adaptive mechanism. FEMS Microbiol Lett, 2003, 229(1): 1-7
|
| [41] |
Witholt B, de met M J, Kingma J, Vanbeilen J B, Kok M, Lageveen R G, Eggink G. Bioconversion of aliphatic hydrocarbons by Pseudomonas oleovorans in multiphase bioreactors: background and economic potential. Trends Biotechnol, 1990, 8: 46-52
|
| [42] |
Chauhan A, Fazlurrahman, Oakeshott J G, Jain R K. Bacterial metabolism of polycyclic aromatic hydrocarbons: strategies for bioremediation. Indian J Microbiol, 2008, 48(1): 95-113
|
| [43] |
Barabas G, Vargha G, Szabo I M, Penyige A, Damjanovich S, Szollosi J, Matko J, Hirano T, Matyus A, Szabó I. n-Alkane uptake and utilisation by Streptomyces strains. Antonie van Leeuwenhoek, 2001, 79(3-4): 269-276
|
RIGHTS & PERMISSIONS
Higher Education Press and Springer-Verlag Berlin Heidelberg