Selective pseudosolubilization capability of Pseudomonas sp. DG17 on n-alkanes and uptake mechanisms analysis

Fei HUA, Hongqi WANG

PDF(345 KB)
PDF(345 KB)
Front. Environ. Sci. Eng. ›› 2013, Vol. 7 ›› Issue (4) : 539-551. DOI: 10.1007/s11783-013-0498-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Selective pseudosolubilization capability of Pseudomonas sp. DG17 on n-alkanes and uptake mechanisms analysis

Author information +
History +

Abstract

Pseudosolubilized ability of Pseudomonas sp. DG17 on n-alkanes, role of biosurfactants in n-octadecane uptake and trans-membrane transport mechanism of n-octadecane were studied by analyzing amount of pseudosolubilized oil components in water phase, and the fraction of radiolabeled 14C n-octadecane in the broth and cell pellet. GC-MS results showed that pseudosolubilized oil components were mainly C12 to C28 of n-alkanes. In n-octadecane broth, pseudosolubilized n-octadecane could be accumulated as long as pseudosolubilized rate was faster than mineralization rate of substrate, and the maximum concentration of pseudosolubilized n-octadecane achieved to 45.37 mg·L-1. All of these results showed that Pseudomonas sp. DG17 mainly utilized alkanes by directly contacting with pseudosolubilized small oil droplets in the water phase. Analysis of 14C amount in cell pellet revealed that an energy-dependent system mainly controlled the trans-membrane transport of n-octadecane.

Keywords

Pseudomonas / alkane / uptake / pseudosolubilization / trans-membrane transport

Cite this article

Download citation ▾
Fei HUA, Hongqi WANG. Selective pseudosolubilization capability of Pseudomonas sp. DG17 on n-alkanes and uptake mechanisms analysis. Front Envir Sci Eng, 2013, 7(4): 539‒551 https://doi.org/10.1007/s11783-013-0498-z

References

[1]
Wentzel A, Ellingsen T E, Kotlar H K, Zotchev S B, Throne-Holst M. Bacterial metabolism of long-chain n-alkanes. Appl Microbiol Biotechnol, 2007, 76(6): 1209-1221
CrossRef Pubmed Google scholar
[2]
Kim I S, Foght J M, Gray M R. Selective transport and accumulation of alkanes by Rhodococcus erythropolis S+14He. Biotechnol Bioeng, 2002, 80(6): 650-659
CrossRef Pubmed Google scholar
[3]
Woo S H, Park J M. Microbial degradation and enhanced bioremediation of polycyclic aromatic hydrocarbons. J Ind Eng Chem, 2004, 10(1): 16-23
[4]
Al-Tahhan R, Sandrin T R, Bodour A A, Maier R M. Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: effect on cell surface properties and interaction with hydrophobic substrates. Appl Environ Microbiol, 2000, 66(8): 3262-3268
CrossRef Google scholar
[5]
Herman D C, Zhang Y, Miller R M. Rhamnolipid (biosurfactant) effects on cell aggregation and biodegradation of residual hexadecane under saturated flow conditions. Appl Environ Microbiol, 1997, 63(9): 3622-3627
Pubmed
[6]
Zhang Y, Miller R M. Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane. Appl Environ Microbiol, 1994, 60(6): 2101-2106
Pubmed
[7]
Zhang Y M, Miller R M. Effect of rhamnolipid (biosurfactant) structure on solubilization and biodegradation of n-alkanes. Appl Environ Microbiol, 1995, 61(6): 2247-2251
Pubmed
[8]
Vasileva-T E, Gesheva V. Glycolipids produced by Antartic Nocardioides sp. during growth on n-paraffin. Process Biochem, 2005, 40(7): 2387-2391
CrossRef Google scholar
[9]
Bouchez-Naitali M, Vandecasteele J P. Biosurfactants, an help in the biodegradation of hexadecane? The case of Rhodococcus and Pseudomonas strains. World J Microbiol Biotechnol, 2008, 24(9): 1901-1907
CrossRef Google scholar
[10]
Rosenberg E. Exploiting microbial growth on hydrocarbon: New markets. Trends Biotechnol, 1993, 11(10): 419-424
CrossRef Google scholar
[11]
Bouchez-Naitali M, Rakatozafy H, Marchal R, Leveau J Y, Vandecasteele J P. Diversity of bacterial strains degrading hexadecane in relation to the mode of substrate uptake. J Appl Microbiol, 1999, 86(3): 421-428
CrossRef Pubmed Google scholar
[12]
Nakahara T, Erickson L E, Gutierrez J R. Characteristics of hydrocarbon uptake in cultures with two liquid phases. Biotechnol Bioeng, 1997, 19(1): 9-25
CrossRef Pubmed Google scholar
[13]
Wick L Y, de Munain A R, Springael D, Harms H. Responses of Mycobacterium sp. LB501T to the low bioavailability of solid anthracene. Appl Microbiol Biotechnol, 2002, 58(3): 378-385
CrossRef Pubmed Google scholar
[14]
Tecon R, van der Meer J R. Effect of two types of biosurfactants on phenanthrene availability to the bacterial bioreporter Burkholderia sartisoli strain RP037. Appl Microbiol Biotechnol, 2010, 85(4): 1131-1139
CrossRef Pubmed Google scholar
[15]
Sotirova A, Spasova D, Vasileva-Tonkova E, Galabova D. Effects of rhamnolipid-biosurfactant on cell surface of Pseudomonas aeruginosa. Microbiol Res, 2009, 164(3): 297-303
CrossRef Pubmed Google scholar
[16]
Prabhu Y, Phale P S. Biodegradation of phenanthrene by Pseudomonas sp. strain PP2: novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation. Appl Microbiol Biotechnol, 2003, 61(4): 342-351
Pubmed
[17]
Cameotra S S, Singh P. Synthesis of rhamnolipid biosurfactant and mode of hexadecane uptake by Pseudomonas species. Microb Cell Fact, 2009, 8(16): 1-7
Pubmed
[18]
Beal R, Betts W B. Role of rhamnolipid biosurfactants in the uptake and mineralization of hexadecane in Pseudomonas aeruginosa. J Appl Microbiol, 2000, 89(1): 158-168
CrossRef Pubmed Google scholar
[19]
Kallimanis A, Frillingos S, Drainas C, Koukkou A I. Taxonomic identification, phenanthrene uptake activity, and membrane lipid alterations of the PAH degrading Arthrobacter sp. strain Sphe3. Appl Microbiol Biotechnol, 2007, 76(3): 709-717
CrossRef Pubmed Google scholar
[20]
Bugg T, Foght J M, Pickard M A, Gray M R. Uptake and active efflux of polycyclic aromatic hydrocarbons by Pseudomonas fluorescens LP6a. Appl Environ Microbiol, 2000, 66(12): 5387-5392
CrossRef Pubmed Google scholar
[21]
Whitman B E, Lueking D R, Mihelcic J R. Naphthalene uptake by a Pseudomonas fluorescens isolate. Can J Microbiol, 1998, 44(11): 1086-1093
Pubmed
[22]
Miyata N, Iwahori K, Foght J M, Gray M R. Saturable, energy-dependent uptake of phenanthrene in aqueous phase by Mycobacterium sp. strain RJGII-135. Appl Environ Microbiol, 2004, 70(1): 363-369
CrossRef Pubmed Google scholar
[23]
Gray R M, Bugg T. Selective biocatalysis in bacteria controlled by active membrane transport. Ind Eng Chem Res, 2001, 40(23): 5126-5131
CrossRef Google scholar
[24]
Mihelcic J R, Lueking D R, Mitzell R J, Stapleton J M. Bioavailability of sorbed and separate phase chemicals. Biodegradation, 1993, 4(3): 141-153
CrossRef Google scholar
[25]
Shishido M, Toda M. Apparent zero-order kinetics of phenol biodegradation by substrate-inhibited microbes at low substrate concentrations. Biotechnol Bioeng, 1996, 50(6): 709-717
CrossRef Pubmed Google scholar
[26]
Wen Y, Cheng H, Lu L J, Liu J, Feng Y, Guan W, Zhou Q, Huang X F. Analysis of biological demulsification process of water-in-oil emulsion by Alcaligenes sp. S-XJ-1. Bioresour Technol, 2010, 101(21): 8315-8322
CrossRef Pubmed Google scholar
[27]
Hua F, Wang H. Uptake modes of octadecane by Pseudomonas sp. DG17 and synthesis of biosurfactant. J Appl Microbiol, 2012, 112(1): 25-37
CrossRef Pubmed Google scholar
[28]
Ron E Z, Rosenberg E. Biosurfactants and oil bioremediation. Curr Opin Biotechnol, 2002, 13(3): 249-252
CrossRef Pubmed Google scholar
[29]
Goswami P, Singh H D. Different modes of hydrocarbon uptake by two Pseudomonas species. Biotechnol Bioeng, 1991, 37(1): 1-11
CrossRef Pubmed Google scholar
[30]
Cubitto M A, Morán A C, Commendatore M, Chiarello M N, Baldini M D, Siñeriz F. Effects of Bacillus subtilis O9 biosurfactant on the bioremediation of crude oil-polluted soils. Biodegradation, 2004, 15(5): 281-287
CrossRef Pubmed Google scholar
[31]
de Carvalho C C C R, Poretti A, da Fonseca M M R. Cell adaptation to solvent, substrate and product: a successful strategy to overcome product inhibition in a bioconversion system. Appl Microbiol Biotechnol, 2005, 69(3): 268-275
CrossRef Pubmed Google scholar
[32]
Abalos A, Vinas M, Sabate J, Manresa M A, Solanas A M. Enhanced biodegradation of Casablanca crude oil by a microbial consortium in presence of a rhamnolipid produced by Pseudomonas aeruginosa AT10. Biodegradation, 2004, 15(4): 249-260
CrossRef Pubmed Google scholar
[33]
Ivshina I B, Kuyukina M S, Philp J C, Christofi N. Oil desorption from mineral and organic materials using biosurfactant complexes produced by Rhodococcus species. World J Microbiol Biotechnol, 1998, 14(5): 711-717
CrossRef Google scholar
[34]
Lindley N D, Heydeman M T. The uptake of n-alkanes from alkane mixtures during growth of the hydrocarbon-utilizing fungus Cladosporium resinae. Appl Microbiol Biotechnol, 1996, 23(5): 384-388
CrossRef Google scholar
[35]
Lee M H, Hwang M O, Choi S Y, Min K H. n-Alkane dissimilation by Rhodopseudomonas sphaeroides transferred OCT plasmid. Microb Ecol, 1993, 26(3): 219-226
CrossRef Google scholar
[36]
Vasileva-Tonkova E, Gesheva V. Biosurfactant production by antarctic facultative anaerobe Pantoea sp. during growth on hydrocarbons. Curr Microbiol, 2007, 54(2): 136-141
CrossRef Pubmed Google scholar
[37]
Perfumo A, Banat I M, Canganella F, Marchant R. Rhamnolipid production by a novel thermophilic hydrocarbon-degrading Pseudomonas aeruginosa AP02-1. Appl Microbiol Biotechnol, 2006, 72(1): 132-138
CrossRef Pubmed Google scholar
[38]
Rosenberg E, Gottlieb A, Rosenberg M. Inhibition of bacterial adherence to hydrocarbons and epithelial cells by emulsan. Infect Immun, 1983, 39(3): 1024-1028
Pubmed
[39]
Scott C C L, Finnerty W R. Characterization of intracytoplasmic hydrocarbon inclusions from the hydrocarbon-oxidizing Acinetobacter species HO1-N. J Bacteriol, 1976, 127(1): 481-489
Pubmed
[40]
Heipieper H J, Meinhardt F, Segura A. The cis-trans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio: biochemistry, molecular biology and physiological function of a unique stress adaptive mechanism. FEMS Microbiol Lett, 2003, 229(1): 1-7
CrossRef Pubmed Google scholar
[41]
Witholt B, de met M J, Kingma J, Vanbeilen J B, Kok M, Lageveen R G, Eggink G. Bioconversion of aliphatic hydrocarbons by Pseudomonas oleovorans in multiphase bioreactors: background and economic potential. Trends Biotechnol, 1990, 8: 46-52
CrossRef Pubmed Google scholar
[42]
Chauhan A, Fazlurrahman, Oakeshott J G, Jain R K. Bacterial metabolism of polycyclic aromatic hydrocarbons: strategies for bioremediation. Indian J Microbiol, 2008, 48(1): 95-113
CrossRef Google scholar
[43]
Barabas G, Vargha G, Szabo I M, Penyige A, Damjanovich S, Szollosi J, Matko J, Hirano T, Matyus A, Szabó I. n-Alkane uptake and utilisation by Streptomyces strains. Antonie van Leeuwenhoek, 2001, 79(3-4): 269-276
CrossRef Pubmed Google scholar

Acknowledgements

This paper is sponsored by the Research Fund for National Natural Science Foundation of China (Grant No. 41072177).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(345 KB)

Accesses

Citations

Detail

Sections
Recommended

/