Effects of two transition metal sulfate salts on secondary organic aerosol formation in toluene/NOx photooxidation

Biwu CHU , Jiming HAO , Junhua LI , Hideto TAKEKAWA , Kun WANG , Jingkun JIANG

Front. Environ. Sci. Eng. ›› 2013, Vol. 7 ›› Issue (1) : 1 -9.

PDF (358KB)
Front. Environ. Sci. Eng. ›› 2013, Vol. 7 ›› Issue (1) : 1 -9. DOI: 10.1007/s11783-012-0476-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Effects of two transition metal sulfate salts on secondary organic aerosol formation in toluene/NOx photooxidation

Author information +
History +
PDF (358KB)

Abstract

Aerosol phase reactions play a very important role on secondary organic aerosol (SOA) formation, and metal-containing aerosols are important components in the atmosphere. In this study, we tested the effects of two transition metal sulfate salts, manganese sulfate (MnSO4) and zinc sulfate (ZnSO4), on the photochemical reactions of a toluene/NOx photooxidation system in a 2 m3 smog chamber. By comparing photochemical reaction products of experiments with and without transition metal sulfate seed aerosols, we evaluated the effects of transition metal sulfate seed aerosols on toluene consumption, NOx conversion and the formation of ozone and SOA. MnSO4 and ZnSO4 seed aerosols were found to have similar effects on photochemical reactions, both enhance the SOA production, while showing negligible effects on the gas phase compounds. These observations are consistent when varying metal sulfate aerosol concentrations. This is attributed to the catalytic effects of MnSO4 and ZnSO4 seed aerosols which may enhance the formation of condensable semivolatile compounds. Their subsequent partitioning into the aerosol phase leads to the observed SOA formation enhancement.

Keywords

manganese sulfate / zinc sulfate / seed aerosols / toluene photooxidation / secondary organic aerosol

Cite this article

Download citation ▾
Biwu CHU, Jiming HAO, Junhua LI, Hideto TAKEKAWA, Kun WANG, Jingkun JIANG. Effects of two transition metal sulfate salts on secondary organic aerosol formation in toluene/NOx photooxidation. Front. Environ. Sci. Eng., 2013, 7(1): 1-9 DOI:10.1007/s11783-012-0476-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

He K B, Yang F M, Ma Y L, Zhang Q, Yao X, Chan C K, Cadle S, Chan T, Mulawa P. The characteristics of PM2.5 in Beijing, China. Atmospheric Environment, 2001, 35(29): 4959-4970

[2]

Duan F K, He K B, Ma Y L, Jia Y, Yang F, Lei Y, Tanaka S, Okuta T. Characteristics of carbonaceous aerosols in Beijing, China. Chemosphere, 2005, 60(3): 355-364

[3]

Calvert J G, Atkinson R, Becker K H, Kamens R M, Seinfeld J H, Wallington T J, Yarwood G. The Mechanisms of Atmospheric Oxidation of Aromatic Hydrocarbons. New York: Oxford University Press, 2002

[4]

Lewandowski M, Jaoui M, Offenberg J H, Kleindienst T E, Edney E O, Sheesley R J, Schauer J J. Primary and secondary contributions to ambient PM in the midwestern United States. Environmental Science & Technology, 2008, 42(9): 3303-3309

[5]

Volkamer R, Jimenez J L, San Martini F, Dzepina K, Zhang Q, Salcedo D, Molina L T, Worsnop D R, Molina M J. Secondary organic aerosol formation from anthropogenic air pollution: rapid and higher than expected. Geophysical Research Letters, 2006, 33(17): L17811

[6]

Takekawa H, Minoura H, Yamazaki S. Temperature dependence of secondary organic aerosol formation by photo-oxidation of hydrocarbons. Atmospheric Environment, 2003, 37(24): 3413-3424

[7]

Prisle N L, Engelhart G J, Bilde M, Donahue N M. Humidity influence on gas-particle phase partitioning of alpha-pinene+ O3 secondary organic aerosol. Geophysical Research Letters, 2010, 37(1): L01802

[8]

Song C, Na K S, Cocker D R 3rd. Impact of the hydrocarbon to NOx ratio on secondary organic aerosol formation. Environmental Science & Technology, 2005, 39(9): 3143-3149

[9]

Jang M S, Czoschke N M, Lee S, Kamens R M. Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reactions. Science, 2002, 298(5594): 814-817

[10]

Lu Z F, Hao J M, Takekawa H, Hu L, Li J. Effect of high concentrations of inorganic seed aerosols on secondary organic aerosol formation in the m-xylene/NOx photooxidation system. Atmospheric Environment, 2009, 43(4): 897-904

[11]

Loranger S, Zayed J. Environmental contamination and human exposure to airborne total and respirable manganese in Montreal. Journal of the Air & Waste Management Association, 1997, 47(9): 983-989

[12]

Terhaar G L, Griffing M E, Brandt M, Oberding D G, Kapron M. Methylcyclopentadienyl manganese tricarbonyl as an antiknock: composition and fate of manganese exhaust products. Journal of the Air Pollution Control Association, 1975, 25(8): 858-859 doi:10.1080/00022470.1975.10470152

[13]

Wang Y, Li A, Zhan Y, Wei L, Li Y, Zhang G, Xie Y, Zhang J, Zhang Y, Shan Z. Speciation of elements in atmospheric particulate matter by XANES. Journal of Radioanalytical and Nuclear Chemistry, 2007, 273(1): 247-251

[14]

Makkonen U, Hellén H, Anttila P, Ferm M. Size distribution and chemical composition of airborne particles in south-eastern Finland during different seasons and wildfire episodes in 2006. Science of the Total Environment, 2010, 408(3): 644-651

[15]

Osán J, Meirer F, Groma V, Török S, Ingerle D, Streli C, Pepponi G. Speciation of copper and zinc in size-fractionated atmospheric particulate matter using total reflection mode X-ray absorption near-edge structure spectrometry. Spectrochimica Acta. Part B, Atomic Spectroscopy, 2010, 65(12): 1008-1013

[16]

Wu S, Lu Z F, Hao J M, Zhao Z, Li J, Takekawa H, Minoura H, Yasuda A. Construction and characterization of an atmospheric simulation smog chamber. Advances in Atmospheric Sciences, 2007, 24(2): 250-258

[17]

Takekawa H, Karasawa M, Inoue M, Ogawa T, Esaki Y. Product analysis of the aerosol produced by photochemical reaction of α-pinene. Earozoru Kenkyu, 2000, 15(1): 35-42

[18]

Chu B, Hao J, Takekawa H, Li J, Wang K, Jiang J. The remarkable effect of FeSO4 seed aerosols on secondary organic aerosol formation from photooxidation of α-pinene/NOx and toluene/NOx. Atmospheric Environment, 2012, 55(1): 26-34 doi:10.1016/j.atmosenv.2012.03.006

[19]

Pandis S N, Harley R A, Cass G R, Seinfeld J H. Secondary organic aerosol formation and transport. Atmospheric Environment Part A-General Topics, 1992, 26(13): 2269-2282

[20]

Odum J R, Hoffmann T, Bowman F, Collins D, Flagan R C, Seinfeld J H. Gas/particle partitioning and secondary organic aerosol yields. Environmental Science & Technology, 1996, 30(8): 2580-2585

[21]

Henry F, Coeur-Tourneur C, Ledoux F, Tomas A, Menu D. Secondary organic aerosol formation from the gas phase reaction of hydroxyl radicals with m-, o- and p-cresol. Atmospheric Environment, 2008, 42(13): 3035-3045

[22]

Verheggen B, Mozurkewich M, Caffrey P, Frick G, Hoppel W, Sullivan W. Alpha-pinene oxidation in the presence of seed aerosol: estimates of nucleation rates, growth rates, and yield. Environmental Science & Technology, 2007, 41(17): 6046-6051

[23]

Lu Z F, Hao J M, Li J H, Wu S. Effect of calcium sulfate and ammonium sulfate aerosol on secondary organic aerosol formation. Acta Chimica Sinica, 2008, 66(4): 419-423

[24]

Kroll J H, Chan A W H, Ng N L, Flagan R C, Seinfeld J H. Reactions of semivolatile organics and their effects on secondary organic aerosol formation. Environmental Science & Technology, 2007, 41(10): 3545-3550

[25]

Cao G, Jang M. Effects of particle acidity and UV light on secondary organic aerosol formation from oxidation of aromatics in the absence of NOx. Atmospheric Environment, 2007, 41(35): 7603-7613

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (358KB)

3814

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/