Crystalline mesoporous transition metal oxides: hard-templating synthesis and application in environmental catalysis

Zhen MA , Bei ZHOU , Yu REN

Front. Environ. Sci. Eng. ›› 2013, Vol. 7 ›› Issue (3) : 341 -355.

PDF (654KB)
Front. Environ. Sci. Eng. ›› 2013, Vol. 7 ›› Issue (3) : 341 -355. DOI: 10.1007/s11783-012-0472-1
REVIEW ARTICLE
REVIEW ARTICLE

Crystalline mesoporous transition metal oxides: hard-templating synthesis and application in environmental catalysis

Author information +
History +
PDF (654KB)

Abstract

Mesoporous silicas such as MCM-41 and SBA-15 possess high surface areas, ordered nanopores, and excellent thermal stability, and have been often used as catalyst supports. Although mesoporous metal oxides have lower surface areas compared to mesoporous silicas, they generally have more diversified functionalities. Mesoporous metal oxides can be synthesized via a soft-templating or hard-templating approach, and these materials have recently found some applications in environmental catalysis, such as CO oxidation, N2O decomposition, and elimination of organic pollutants. In this review, we summarize the synthesis of mesoporous transition metal oxides using mesoporous silicas as hard templates, highlight the application of these materials in environmental catalysis, and furnish some prospects for future development.

Keywords

mesoporous materials / silica / metal oxide / hard-templating / environmental catalysis

Cite this article

Download citation ▾
Zhen MA, Bei ZHOU, Yu REN. Crystalline mesoporous transition metal oxides: hard-templating synthesis and application in environmental catalysis. Front. Environ. Sci. Eng., 2013, 7(3): 341-355 DOI:10.1007/s11783-012-0472-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Beck J S, Vartuli J C, Roth W J, Leonowicz M E, Kresge C T, Schmitt K D, Chu C T W, Olson D H, Sheppard E W, Mccullen S B, Higgins J B, Schlenker J L. A new family of mesoporous molecular-sieves prepared with liquid-crystal templates. Journal of the American Chemical Society, 1992, 114(27): 10834–10843

[2]

Zhao D Y, Huo Q S, Feng J L, Chmelka B F, Stucky G D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the American Chemical Society, 1998, 120(24): 6024–6036

[3]

Corma A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chemical Reviews, 1997, 97(6): 2373–2420

[4]

Ying J Y, Mehnert C P, Wong M S. Synthesis and applications of supramolecular-templated mesoporous materials. Angewandte Chemie International Edition, 1999, 38(1-2): 56–77

[5]

Wan Y, Zhao D Y. On the controllable soft-templating approach to mesoporous silicates. Chemical Reviews, 2007, 107(7): 2821–2860

[6]

On D T, Desplantier-Giscard D, Danumah C, Kaliaguine S. Perspectives in catalytic applications of mesostructured materials. Applied Catalysis A, General, 2003, 253(2): 545–602

[7]

Taguchi A, Schüth F. Ordered mesoporous materials in catalysis. Microporous and Mesoporous Materials, 2005, 77(1): 1–45

[8]

Schüth F. Non-siliceous mesostructured and mesoporous materials. Chemistry of Materials, 2001, 13(10): 3184–3195

[9]

Kondo J N, Domen K. Crystallization of mesoporous metal oxides. Chemistry of Materials, 2008, 20(3): 835–847

[10]

Bruce P G, Scrosati B, Tarascon J M. Nanomaterials for rechargeable lithium batteries. Angewandte Chemie International Edition, 2008, 47(16): 2930–2946

[11]

Ren Y, Ma Z, Bruce P G. Ordered mesoporous metal oxides: synthesis and applications. Chemical Society Reviews, 2012, 41(14): 4909–4927

[12]

Huo Q S, Margolese D I, Ciesla U, Feng P Y, Gier T E, Sieger P, Leon R, Petroff P M, Schüth F, Stucky G D. Generalized synthesis of periodic surfactant inorganic composite-materials. Nature, 1994, 368(6469): 317–321

[13]

Yang P D, Zhao D Y, Margolese D I, Chmelka B F, Stucky G D. Generalized synthesis of large-pore mesoporous metal oxides with nanocrystalline walls. Nature, 1998, 396(6707): 152–155

[14]

Yu C Z, Tian B Z, Zhao D Y. Recent advances in the synthesis of non-siliceous mesoporous materials. Current Opinion in Solid State and Materials Science, 2003, 7(3): 191–197

[15]

Boettcher S W, Fan J, Tsung C K, Shi Q H, Stucky G D. Harnessing the sol-gel process for the assembly of non-silicate mesostructured oxide materials. Accounts of Chemical Research, 2007, 40(9): 784–792

[16]

Lu A H, Schüth F. Nanocasting: A versatile strategy for creating nanostructured porous materials. Advanced Materials, 2006, 18(14): 1793–1805

[17]

Ryoo R, Joo S H, Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. Journal of Physical Chemistry B, 1999, 103(37): 7743–7746

[18]

Lee J, Yoon S, Hyeon T, Oh S M, Kim K B. Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors. Chemical Communications, 1999, 21: 2177–2178

[19]

Ryoo R, Ko C H, Kruk M, Antochshuk V, Jaroniec M. Block-copolymer-templated ordered mesoporous silica: array of uniform mesopores or mesopore-micropore network? Journal of Physical Chemistry B, 2000, 104(48): 11465–11471

[20]

Schüth F. Endo- and exotemplating to create high-surface-area inorganic materials. Angewandte Chemie International Edition, 2003, 42(31): 3604–3622

[21]

Lu A H, Schüth F. Nanocasting pathways to create ordered mesoporous solids. Comptes Rendus. Chimie, 2005, 8(3-4): 609–620

[22]

Yang H F, Zhao D Y. Synthesis of replica mesostructures by the nanocasting strategy. Journal of Materials Chemistry, 2005, 15: 1217–1231

[23]

Valdés-Solís T, Fuertes A B. High-surface area inorganic compounds prepared by nanocasting techniques. Materials Research Bulletin, 2006, 41(12): 2187–2197

[24]

Wang Y G, Wang Y J, Li C L, Liu X H, Wang Y Q, Lu G Z. Synthetic methods of mesostructured metal oxides/composites. Progress in Chemistry, 2006, 18: 1338–1344

[25]

Tiemann M. Repeated templating. Chemistry of Materials, 2008, 20(3): 961–971

[26]

Yue W B, Zhou W Z. Crystalline mesoporous metal oxide. Progress in Natural Science, 2008, 18(11): 1329–1338

[27]

Rao Y X, Antonelli D M. Mesoporous transition metal oxides: Characterization and applications in heterogeneous catalysis. Journal of Materials Chemistry, 2009, 19(14): 1937–1944

[28]

Roggenbuck J, Schäfer H, Tsoncheva T, Minchev C, Hanss J, Tiemann M. Mesoporous CeO2: Synthesis by nanocasting, characterization and catalytic properties. Microporous and Mesoporous Materials, 2007, 101(3): 335–341

[29]

Carabineiro S A C, Bastos S S T, Órfão J J M, Pereira M F R, Delgado J J, Figueiredo J L. Exotemplated ceria catalysts with gold for CO oxidation. Applied Catalysis A, General, 2010, 381(1-2): 150–160

[30]

Carabineiro S A C, Bastos S S T, Órfão J J M, Pereira M F R, Delgado J J, Figueiredo J L. Carbon monoxide oxidation catalysed by exotemplated manganes oxides. Catalysis Letters, 2010, 134(3-4): 217–227

[31]

Bastos S S T, Carabineiro S A C, Órfão J J M, Pereira M F R, Delgado J J, Figueiredo J L. Total oxidation of ethyl acetate, ethanol and toluene catalyzed by exotemplated manganese and cerium oxides loaded with gold. Catalysis Today, 2012, 180(1): 148–154

[32]

Laha S C, Ryoo R. Synthesis of thermally stable mesoporous cerium oxide with nanocrystalline frameworks using mesoporous silica templates. Chemical Communications, 2003, 17: 2138–2139

[33]

Zhu K K, Yue B, Zhou W Z, He H Y. Preparation of three-dimensional chromium oxide porous single crystals templated by SBA-15. Chemical Communications, 2003, 1: 98–99

[34]

Jiao K, Zhang B, Yue B, Ren Y, Liu S X, Yan S R, Dickinson C, Zhou W Z, He H Y. Growth of porous single-crystal Cr2O3 in a 3-D mesopore system. Chemical Communications, 2005, 45: 5618–5620

[35]

Zhu K K, He H Y, Xie S H, Zhang X, Zhou W Z, Jin S, Yue B. Crystalline WO3 nanowires synthesized by templating method. Chemical Physics Letters, 2003, 377(3-4): 317–321

[36]

Jiao F, Yue B, Zhu K K, Zhao D Y, He H Y. α-Fe2O3 nanowires. Confined synthesis and catalytic hydroxylation of phenol. Chemistry Letters, 2003, 32(8): 770–771

[37]

Yue B, Tang H L, Kong Z P, Zhu K K, Dickinson C, Zhou W Z, He H Y. Preparation and characterization of three-dimensional mesoporous crystals of tungsten oxide. Chemical Physics Letters, 2005, 407(1-3): 83–86

[38]

Tian B Z, Liu X Y, Yang H F, Xie S H, Yu C Z, Tu B, Zhao D Y. General synthesis of ordered crystallized metal oxide nanoarrays replicated by microwave-digested mesoporous silica. Advanced Materials (Deerfield Beach, Fla.), 2003, 15(16): 1370–1374

[39]

Tian B Z, Lui X, Yu C Z, Gao F, Luo Q, Xie S H, Tu B, Zhao D Y. Microwave assisted template removal of siliceous porous materials. Chemical Communications, 2002, 11: 1186–1187

[40]

Tian B Z, Liu X Y, Solovyov L A, Liu Z, Yang H F, Zhang Z D, Xie S H, Zhang F Q, Tu B, Yu C Z, Terasaki O, Zhao D Y. Facile synthesis and characterization of novel mesoporous and mesorelief oxides with gyroidal structures. Journal of the American Chemical Society, 2004, 126(3): 865–875

[41]

Yang H F, Shi Q H, Tian B Z, Lu Q Y, Gao F, Xie S H, Fan J, Yu C Z, Tu B, Zhao D Y. One-step nanocasting synthesis of highly ordered single crystalline indium oxide nanowire arrays from mesostructured frameworks. Journal of the American Chemical Society, 2003, 125(16): 4724–4725

[42]

Yue W B, Hill A H, Harrison A, Zhou W Z. Mesoporous single-crystal Co3O4 templated by cage-containing mesoporous silica. Chemical Communications, 2007, 24: 2518–2520

[43]

Yue W B, Zhou W Z. Mesoporous metal oxides templated by FDU-12 using a new convient method. Studies in Surface Science and Catalysis, 2007, 170: 1755–1762

[44]

Yue W B, Zhou W Z. Porous crystals of cubic metal oxides templated by cage-containing mesoporous silica. Journal of Materials Chemistry, 2007, 17(47): 4947–4952

[45]

Wang Y Q, Yang C M, Schmidt W, Spliethoff B, Bill E, Schüth F. Weakly ferromagnetic ordered mesoporous Co3O4 synthesized by nanocasting from vinyl-functionaluzed cubic Ia3d mesoporous silica. Advanced Materials, 2005, 17: 53–56

[46]

Rumplecker A, Kleitz F, Salabas E L, Schüth F. Hard templating pathways for the synthesis of nanostructured porous Co3O4. Chemistry of Materials, 2007, 19(3): 485–496

[47]

Shen W H, Dong X P, Zhu Y F, Chen H R, Shi J L. Mesoporous CeO2 and CuO-loaded mesoporous CeO2: Synthesis, characterization, and CO catalytic oxidation property. Microporous and Mesoporous Materials, 2005, 85(1-2): 157–162

[48]

Yue W B, Zhou W Z. Synthesis of porous single crystals of metal oxides via a solid-liquid route. Chemistry of Materials, 2007, 19(9): 2359–2363

[49]

Wang Y G, Wang Y Q, Liu X H, Guo Y, Guo Y L, Lu G Z, Schüth F. Nanocasted synthesis of mesoporous metal oxides and mixed oxides from mesoporous cubic (Ia3d) vinylsilica. Journal of Nanoscience and Nanotechnology, 2008, 8(11): 5652–5658

[50]

Puertolas B, Solsona B, Agouram S, Murillo R, Mastral A M, Aranda A, Taylor S H, Garcia T. The catalytic performance of mesoporous cerium oxides prepared through a nanocasting route for the total oxidation of naphthalene. Applied Catalysis B: Environmental, 2010, 93(3-4): 395–405

[51]

Jin M S, Park J N, Shon J K, Li Z H, Yoon M Y, Na H J, Park Y W, Kim J M. Synthesis of highly ordered mesoporous CeO2 and low temperature CO oxidation over Pd/mesoporous CeO2. Research on Chemical Intermediates, 2011, 37(9): 1181–1192

[52]

Shen W H, Shi J L, Chen H R, Gu J L, Zhu Y F, Dong X P. Synthesis and CO oxidation catalytic character of high surface area ruthenium dioxide replicated by cubic mesoporous silica. Chemistry Letters, 2005, 34(3): 390–391

[53]

Park J N, Shon J K, Jin M, Kong S S, Moon K, Park G O, Boo J H, Kim J M. Room-temperature CO oxidation over a highly ordered mesoporous RuO2 catalyst. Reaction Kinetics. Mechanism and Catalysis, 2011, 103: 87–99

[54]

Wang Y G, Xia Y Y. Electrochemical capacitance characterization of NiO with ordered mesostructure synthesized by template SBA-15. Electrochimica Acta, 2006, 51(16): 3223–3227

[55]

Jiao F, Hill A H, Harrison A, Berko A, Chadwick A V, Bruce P G. Synthesis of ordered mesoporous NiO with crystalline walls and a bimodal pore size distribution. Journal of the American Chemical Society, 2008, 130(15): 5262–5266

[56]

Kong A G, Zhu H Y, Wang W J, Zhang Q Y, Yang F, Shan Y K. Novel nanocasting method for synthesis of ordered mesoporous metal oxides. Journal of Porous Materials, 2011, 18(1): 107–112

[57]

Jiao F, Harrison A, Jumas J C, Chadwick A V, Kockelmann W, Bruce P G. Ordered mesoporous Fe2O3 with crystalline walls. Journal of the American Chemical Society, 2006, 128(16): 5468–5474

[58]

Zhou Q, Li X, Li Y G, Tian B Z, Zhao D Y, Jiang Z Y. Synthesis and electrochemical properties of semicrystalline gyroidal mesoporous MnO2. Chinese Journal of Chemistry, 2006, 24(7): 835–839

[59]

Luo J Y, Xia Y Y. Effect of pore structure on the electrochemical capacitive performance of MnO2. Journal of the Electrochemical Society, 2007, 154(11): A987–A992

[60]

Jiao F, Bruce P G. Mesoporous crystalline β-MnO2: a reversible positive electrode for rechargeable lithium batteries. Advanced Materials (Deerfield Beach, Fla.), 2007, 19(5): 657–660

[61]

Chandru R A, Patra S, Oommen C, Munichandraiah N, Raghunandan B N. Exceptional activity of mesoporous β-MnO2 in the catalytic thermal sensitization of ammonium perchlorate. Journal of Materials Chemistry, 2012, 22(14): 6536–6538

[62]

Du Y C, Meng Q, Wang J S, Yan J, Fan H G, Liu Y X, Dai H X. Three-dimensional mesoporous manganese oxides and cobalt oxides: highly-efficiency catalysts for the removal of toluene and carbon monoxide. Microporous and Mesoporous Materials, 2012, 162: 199–206

[63]

Jiao F, Harrison A, Hill A H, Bruce P G. Mesoporous Mn2O3 and Mn3O4 with crystalline walls. Advanced Materials (Deerfield Beach, Fla.), 2007, 19(22): 4063–4066

[64]

Jin M, Kim J W, Kim J M, Jurng J, Bae G N, Jeon J K, Park Y K. Effect of calcination temperature on the oxidation of benzene with ozone at low temperature over mesoporous α-Mn2O3. Powder Technology, 2011, 214(3): 458–462

[65]

Dickinson C, Zhou W Z, Hodgkins R, Shi Y F, Zhao D Y, He H Y. Formation mechanism of porous single-crystal Cr2O3 and Co3O4 templated by mesoporous silica. Chemistry of Materials, 2006, 18(13): 3088–3095

[66]

Wang Y G, Yuan X H, Liu X H, Ren J W, Tong W Y, Wang Y Q, Lu G Z. Mesoporous single-crystal Cr2O3: Synthesis, characterization, and its activity in toluene removal. Solid State Sciences, 2008, 10(9): 1117–1123

[67]

Wang Y M, Wu Z Y, Wang H J, Zhu J H. Fabrication of metal oxides occluded in ordered mesoporous hosts via a solid-state grinding route: the influence of host-guest interactions. Advanced Functional Materials, 2006, 16(18): 2374–2386

[68]

Wang G X, Liu H, Horvat J, Wang B, Qiao S Z, Park J, Ahn H. Highly ordered mesoporous cobalt oxide nanostructures: synthesis, characterisation, magnetic properties, and applications for electrochemical energy devices. Chemistry-A European Journal, 2010, 16(36): 11020–11027

[69]

Sun S J, Gao Q M, Wang H L, Zhu J K, Guo H L. Influence of textural parameters on the catalytic behavior for CO oxidation over ordered mesoporous Co3O4. Applied Catalysis B: Environmental, 2010, 97(1-2): 284–291

[70]

Garcia T, Agouram S, Sánchez-Royo J, Murillo R, Mastral A M, Aranda A A, Vázquez I, Dejoz A, Solsona B. Deep oxidation of volatile organic compounds using ordered cobalt oxides prepared by a nanocasting route. Applied Catalysis A, General, 2010, 386(1-2): 16–27

[71]

Zhang Y H, Wang A Q, Huang Y Q, Xu Q Q, Yin J Z, Zhang T. Nanocasting synthesis of mesostructured Co3O4 via a supercritical CO2 deposition method and the catalytic performance for CO oxidation. Catalysis Letters, 2012, 142(2): 275–281

[72]

Zhou L, Ren Q J, Zhou X F, Tang J W, Chen Z H, Yu C Z. Comprehensive understanding on the formation of highly ordered mesoporous tungsten oxides by X-ray diffraction and Raman spectroscopy. Microporous and Mesoporous Materials, 2008, 109(1-3): 248–257

[73]

Cui X Z, Zhang H, Dong X P, Chen H R, Zhang L X, Guo L M, Shi J L. Electrochemical catalytic activity for the hydrogen oxidation of mesoporous WO3 and WO3/C composites. Journal of Materials Chemistry, 2008, 18(30): 3575–3580

[74]

Yue W B, Xu X X, Irvine J T, Attidekou P S, Liu C, He H Y, Zhao D Y, Zhou W Z. Mesoporous monocrystalline TiO2 and its solid-state electrochemical properties and its solid-state electrochemical properties. Chemistry of Materials, 2009, 21(12): 2540–2546

[75]

Yue W B, Randorn C, Attidekou P S, Su Z X, Irvine J T S, Zhou W Z. Synthesis, Li insertion, and photocatalytic of mesoporous crystalline TiO2. Advanced Functional Materials, 2009, 19(17): 2826–2833

[76]

Ren Y, Hardwick L J, Bruce P G. Lithium intercalation into mesoporous anatase with an ordered 3D pore structure. Angewandte Chemie International Edition, 2010, 49(14): 2570–2574

[77]

Ren Y, Armstrong A R, Jiao F, Bruce P G. Influence of size on the rate of mesoporous electrodes for lithium batteries. Journal of the American Chemical Society, 2010, 132(3): 996–1004

[78]

Waitz T, Wagner T, Sauerwald T, Kohl C D, Tiemann M. Ordered mesoporous In2O3: synthesis by structure replication and application as a methane gas sensor. Advanced Functional Materials, 2009, 19(4): 653–661

[79]

Shu P, Ruan J F, Gao C B, Li H C, Che S A. Formation of mesoporous Co3O4 replicas of different mesostructures with different pore sizes. Microporous and Mesoporous Materials, 2009, 123(1-3): 314–323

[80]

Zheng M B, Cao J, Liao S T, Liu J S, Chen H Q, Zhao Y, Dai W J, Ji G B, Cao J M, Tao J. Preparation of mesoporous Co3O4 nanoparticles via solid-liquid route and effects of calcination temperature and textural parameters on their electrochemical capacitive behaviors. Journal of Physical Chemistry C, 2009, 113(9): 3887–3894

[81]

Jin H X, Gu X J, Hong B, Lin L S, Wang C Y, Jin D F, Peng X L, Wang X Q, Ge H L. Fabrication of mesoporous Co3O4 from LP-FDU-12 via nanocasting poute and effect of wall/pore size on their magnetic properties. Journal of Physical Chemistry C, 2012, 116(24): 13374–13381

[82]

Ren Y, Jiao F, Bruce P G. Tailoring the pore size/wall thickness of mesoporous transition metal oxides. Microporous and Mesoporous Materials, 2009, 121(1-3): 90–94

[83]

Wang Y G, Wang Y Q, Ren J W, Mi Y, Zhang F Y, Li C L, Liu X H, Guo Y, Guo Y L, Lu G Z. Synthesis of morphology-controllable mesoporous Co3O4 and CeO2. Journal of Solid State Chemistry, 2010, 183(2): 277–284

[84]

Haffer S, Waitz T, Tiemann M. Mesoporous In2O3 with regular morphology by nanocasting: A simple relation between defined particle shape and growth mechanism. Journal of Physical Chemistry C, 2010, 114(5): 2075–2081

[85]

Ma Z, Ren Y, Bruce P G. Co3O4-KIT-6 composite catalysts: Synthesis, characterization, and application in catalytic decomposition of N2O. Journal of Nanoparticle Research, 2012, 14(8): 874

[86]

Ren Y, Ma Z, Bruce P G. Ordered mesoporous NiMn2Ox with hematite or spinel structure: synthesis and application in electrochemical storage and catalytic conversion of N2O. CrystEngComm, 2011, 13(23): 6955–6959

[87]

Ren Y, Ma Z, Bruce P G. Ordered mesoporous NiCoMnO4: synthesis and application in energy storage and catalytic decomposition of N2O. Journal of Materials Chemistry, 2012, 22(30): 15121–15127

[88]

Jiao F, Bao J L, Hill A H, Bruce P G. Synthesis of ordered mesoporous Li-Mn-O spinel as a positive electrode for rechargeable lithium batteries. Angewandte Chemie International Edition, 2008, 47(50): 9711–9716

[89]

Jiao F, Jumas J C, Womes M, Chadwick A V, Harrison A, Bruce P G. Synthesis of ordered mesoporous Fe3O4 and γ-Fe2O3 with crystalline walls using post-template reduction/oxidation. Journal of the American Chemical Society, 2006, 128(39): 12905–12909

[90]

Ren Y, Bruce P G, Ma Z. Solid-solid conversion of ordered crystalline mesoporous metal oxides under reducing atmosphere. Journal of Materials Chemistry, 2011, 21(25): 9312–9318

[91]

Tüysüz H, Liu Y, Weidenthaler C, Schüth F. Pseudomorphic transformation of highly ordered mesoporous Co3O4 to CoO via reduction with glycerol. Journal of the American Chemical Society, 2008, 130(43): 14108–14110

[92]

Tüysüz H, Weidenthaler C, Schüth F. A strategy for the synthesis of mesostructured metal oxides with lower oxidation states. Chemistry-A European Journal, 2012, 18(16): 5080–5086

[93]

Ren Y, Ma Z, Bruce P G. Transformation of mesoporous Cu/Cu2O into porous Cu2O nanowires in ethanol. CrystEngComm, 2012, 14(8): 2617–2620

[94]

Tüysüz H, Salabaş E L, Bill E, Bongard H, Spliethoff B, Lehmann C W, Schüth F. Synthesis of hard magnetic ordered mesoporous Co3O4/CoFe2O4 nanocomposites. Chemistry of Materials, 2012, 24(13): 2493–2500

[95]

Shi Y F, Wan Y, Zhang R Y, Zhao D Y. Synthesis of self-supported ordered mesoporous cobalt and chromium nitrides. Advanced Functional Materials, 2008, 18(16): 2436–2443

[96]

Shi Y F, Guo B K, Corr S A, Shi Q H, Hu Y S, Heier K R, Chen L Q, Seshadri R, Stucky G D. Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity. Nano Letters, 2009, 9(12): 4215–4220

[97]

Kang E, An S, Yoon S, Kim J K, Lee J. Ordered mesoporous WO3-x possessing electronically conductive framework comparable to carbon framework toward long-term stable cathode supports for fuel cells. Journal of Materials Chemistry, 2010, 20(35): 7416–7421

[98]

Yen H, Seo Y, Guillet-Nicolas R, Kaliaguine S, Kleitz F. One-step-impregnation hard templating synthesis of high-surface-area nanostructured mixed metal oxides (NiFe2O4, CuFe2O4 and Cu/CeO2). Chemical Communications, 2011, 47(37): 10473–10475

[99]

Wang Y G, Ren J W, Wang Y Q, Zhang F Y, Liu X H, Guo Y, Lu G Z. Nanocated synthesis of mesoporous LaCoO3 perovskite with extremely high surface area and excellent activity in methane combustion. Journal of Physical Chemistry C, 2008, 112(39): 15293–15298

[100]

Wang Y G, Wang Y Q, Liu X H, Guo Y, Guo Y L, Lu G Z. Nanocasted synthesis of the mesostructured LaCoO3 perovskite and its catalytic activity in methane combustion. Journal of Nanoscience and Nanotechnology, 2009, 9(2): 933–936

[101]

Nair M M, Kleitz F, Kaliaguine S. Kinetics of methanol oxidation over mesoporous perovskite catalysts. ChemCatChem, 2012, 4(3): 387–394

[102]

Zhu J K, Gao Q M. Mesoporous MCo2O4 (M= Cu, Mn and Ni) spinels: Structural replication, characterization and catalytic application in CO oxidation. Microporous and Mesoporous Materials, 2009, 124(1-3): 144–152

[103]

Cabo M, Pellicer E, Rossinyol E, Castell O, Suriñach S, Baró M D. Mesoporous NiCo2O4 spinel: influence of calcination temperature over phase purity and thermal stability. Crystal Growth & Design, 2009, 9(11): 4814–4821

[104]

Cabo M, Pellicer E, Rossinyol E, Solsona P, Castell O, Suriñach S, Baró M D. Influence of the preparation method on the morphology of templated NiCo2O4 spinel. Journal of Nanoparticle Research, 2011, 13(9): 3671–3681

[105]

Ma C Y, Mu Z, He C, Li P, Li J J, Hao Z P. Catalytic oxidation of benzene over nanostructured porous Co3O4-CeO2 composite catalysts. Journal of Environmental Sciences (China), 2011, 23(12): 2078–2086

[106]

Cabo M, Pellicer E, Rossinyol E, Estrader M, López-Ortega A, Nogués J, Castell O, Suriñach S, Baró M D. Synthesis of compositionally graded nanocast NiO/NiCo2O4/Co3O4 mesoporous composites with tunable magnetic properties. Journal of Materials Chemistry, 2010, 20(33): 7021–7028

[107]

Sun Y Y, Ji G B, Zheng M B, Chang X F, Li S D, Zhang Y. Synthesis and magnetic properties of crystalline mesoporous CoFe2O4 with large specific surface area. Journal of Materials Chemistry, 2010, 20(5): 945–952

[108]

Gu X, Zhu W M, Jia C J, Zhao R, Schmidt W, Wang Y Q. Synthesis and microwave absorbing properties of highly ordered mesoporous crystalline NiFe2O4. Chemical Communications, 2011, 47(18): 5337–5339

[109]

Hill M R, Booth J, Bourgeois L, Whitfield H J. Periodic mesoporous Lix(Mn1/3Ni1/3Co1/3)O2 spinel. Dalton Transactions (Cambridge, England), 2010, 39(22): 5306–5309

[110]

Haruta M. Catalysis of gold nanoparticles deposited on metal oxides. CATTECH, 2002, 6(3): 102–115

[111]

Ma Z, Dai S. Development of novel supported gold catalysts: A materials perspective. Nano Research, 2011, 4(1): 3–32

[112]

Ma Z, Dai S. Design of novel structured gold nanocatalysts. Acs Catalysis, 2011, 1(7): 805–818

[113]

Zhu J K, Gao Q M, Chen Z. Preparation of mesoporous copper cerium bimetal oxides with high performance for catalytic oxidation of carbon monoxide. Applied Catalysis B: Environmental, 2008, 81(3-4): 236–243

[114]

Ren Y, Ma Z, Qian L P, Dai S, He H Y, Bruce P G. Ordered crystalline mesoporous oxide as catalysts for CO oxidation. Catalysis Letters, 2009, 131(1-2): 146–154

[115]

Wang H J, Teng Y H, Radhakrishnan L, Nemoto Y, Imura M, Shimakawa Y, Yamauchi Y. Mesoporous Co3O4 for low temperature CO oxidation: effect of calcination temperatures on their catalytic performance. Journal of Nanoscience and Nanotechnology, 2011, 11(5): 3843–3850

[116]

Tüysüz H, Lehmann C W, Bongard H, Tesche B, Schmidt R, Schüth F. Direct imaging of surface topology and pore system of ordered mesoporous silica (MCM-41, SBA-15, and KIT-6) and nanocast metal oxides by high resolution scanning electron microscopy. Journal of the American Chemical Society, 2008, 130(34): 11510–11517

[117]

Tüysüz H, Comotti M, Schüth F. Ordered mesoporous Co3O4 as highly active catalyst for low temperature CO-oxidation. Chemical Communications, 2008, (34): 4022–4024

[118]

Xie X W, Li Y, Liu Z Q, Haruta M, Shen W J. Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature, 2009, 458(7239): 746–749

[119]

Yu Y B, Takei T, Ohashi H, He H, Zhang X L, Haruta M. Pretreatments of Co3O4 at moderate temperature for CO oxidation at -80 °C. Journal of Catalysis, 2009, 267(2): 121–128

[120]

Kapteijn F, Rodriguez-Mirasol J, Moulijn J A. Heterogeneous catalytic decomposition of nitrous oxide. Applied Catalysis B: Environmental, 1996, 9: 25–64

[121]

Kannan S. Catalytic applications of hydrotalcite-like materials and their derived forms. Catalysis Surveys from Asia, 2006, 10(3-4): 117–137

[122]

Deng J G, Zhang L, Dai H X, Xia Y S, Jiang H Y, Zhang H, He H. Ultrasound-assisted nanocasting fabrication of ordered mesoporous MnO2 and Co3O4 with high surface areas and polycrystalline walls. Journal of Physical Chemistry C, 2010, 114(6): 2694–2700

[123]

Xia Y S, Dai H X, Jiang H Y, Deng J G, He H, Au C T. Mesoporous chromia with ordered three-dimensional structures for the complete oxidation of toluene and ethyl acetate. Environmental Science & Technology, 2009, 43(21): 8355–8360

[124]

Xia Y S, Dai H X, Zhang L, Deng J G, He H, Au C T. Ultrasound-assisted nanocasting fabrication and excellent catalytic performance of three-dimensionally ordered mesoporous chromia for the combustion of formaldehyde, acetone, and methanol. Applied Catalysis B: Environmental, 2010, 100(1-2): 229–237

[125]

Xia Y S, Dai H X, Jiang H Y, Zhang L, Deng J G, Liu Y. Three-dimensionally ordered and wormhole-like mesoporous iron oxide catalysts highly active for the oxidation of acetone and methanol. Journal of Hazardous Materials, 2011, 186(1): 84–91

[126]

Ma C Y, Mu Z, Li J J, Jin Y G, Cheng J, Lu G Q, Hao Z P, Qiao S Z. Mesoporous Co3O4 and Au/Co3O4 catalysts for low-temperature oxidation of trace ethylene. Journal of the American Chemical Society, 2010, 132(8): 2608–2613

[127]

Ma C Y, Wang D H, Xue W J, Dou B J, Wang H L, Hao Z P. Investigation of formaldehyde oxidation over Co3O4-Ce2 and Au/Co3O4-CeO2 catalysts at room temperature: effective removal and determination of reaction mechanism. Environmental Science & Technology, 2011, 45(8): 3628–3634

[128]

Aranda A, Puértolas B, Solsona B, Agouram S, Murillo R, Mastral A M, Taylor S H, Garcia T. Total oxidation of naphthalene using mesoporous CeO2 catalysts synthesized by nanocasting from two dimensional SBA-15 and three dimensional KIT-6 and MCM-48 silica templates. Catalysis Letters, 2010, 134(1-2): 110–117

[129]

Sun S M, Wang W Z, Zeng S Z, Shang M, Zhang L. Preparation of ordered mesoporous Ag/WO3 and its highly efficient degradation of acetaldehyde under visible-light irradiation. Journal of Hazardous Materials, 2010, 178(1-3): 427–433

[130]

Solsona B, Aylón E, Murillo R, Mastral A M, Monzonís A, Agouram S, Davies T E, Taylor S H, Garcia T. Deep oxidation of pollutants using gold deposited on a high surface area cobalt oxide prepared by a nanocasting route. Journal of Hazardous Materials, 2011, 187(1-3): 544–552

[131]

Ying F, Wang S J, Au C T, Lai S Y. Highly active and stable mesoporous Au/CeO2 catalysts prepared from MCM-48 hard-template. Microporous and Mesoporous Materials, 2011, 142(1): 308–315

[132]

Djinović P, Batista J, Pintar A. Efficient catalytic abatement of greenhouse gases: Methane reforming with CO2 using a novel and thermally stable Rh-CeO2 catalyst. International Journal of Hydrogen Energy, 2012, 37(3): 2699–2707

[133]

Jin M, Park J N, Shon J K, Kim J H, Li Z H, Park Y K, Kim J M. Low temperature CO oxidation over Pd catalysts supported on highly ordered mesoporous metal oxides. Catalysis Today, 2012, 185(1): 183–190

[134]

Armatas G, Katsoulidis A P, Petrakis D E, Pomonis P J, Kanatzidis M G. Nanocasting of ordered mesoporous Co3O4-based polyoxometalate composite frameworks. Chemistry of Materials, 2010, 22(20): 5739–5746

[135]

Tamiolakis I, Lykakis I N, Katsoulidis A P, Stratakis M, Armatas G S. Mesoporous Cr2O3-phosphomolybdic acid solid solution frameworks with high catalytic activity. Chemistry of Materials, 2011, 23(18): 4204–4211

[136]

Tamiolakis I, Lykakis I N, Katsoulidis A P, Malliakas C D, Armatas G S. Ordered mesoporous Cr2O3 frameworks incorporating Keggin-type 12-phosphotungstic acids as efficient catalysts for oxidation of benzyl alcohols. Journal of Materials Chemistry, 2012, 22(14): 6919–6927

[137]

Djinović P, Batista J, Levec J, Pintar A. Comparison of water-gas shift reaction activity and long-term stability of nanostructured CuO-CeO2 catalysts prepared by hard template and co-precipitation methods. Applied Catalysis A, General, 2009, 364(1-2): 156–165

[138]

Park J N, Shon J K, Jin M, Hwang S H, Park G O, Boo J H, Han T H, Kim J M. Highly ordered mesoporous α-MnO2 for catalytic decomposition of H2O2 at low temperatures. Chemistry Letters, 2010, 39(5): 493–494

[139]

Cui X Z, Zhou J, Ye Z Q, Chen H R, Li L, Ruan M L, Shi J L. Selective catalytic oxidation of ammonia to nitrogen over mesoporous CuO/RuO2 synthesized by co-casting-replication method. Journal of Catalysis, 2010, 270(2): 310–317

[140]

Gong L, Sun L B, Sun Y H, Li T T, Liu X Q. Exploring in situ functionalization strategy in a hard template process: Preparation of sodium-modified mesoporous trtragonal zirconia with superbasicity. Journal of Physical Chemistry C, 2011, 115(23): 11633–11640

[141]

Liu T T, Sun L B, Gong L, Liu X Y, Liu X Q. In situ generation of superbasic sites on mesoporous ceria and their application in transesterification. Journal of Molecular Catalysis A: Chemical, 2012, 352(1): 38–44

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (654KB)

4003

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/