Crystalline mesoporous transition metal oxides: hard-templating synthesis and application in environmental catalysis

Zhen MA, Bei ZHOU, Yu REN

PDF(654 KB)
PDF(654 KB)
Front. Environ. Sci. Eng. ›› 2013, Vol. 7 ›› Issue (3) : 341-355. DOI: 10.1007/s11783-012-0472-1
REVIEW ARTICLE
REVIEW ARTICLE

Crystalline mesoporous transition metal oxides: hard-templating synthesis and application in environmental catalysis

Author information +
History +

Abstract

Mesoporous silicas such as MCM-41 and SBA-15 possess high surface areas, ordered nanopores, and excellent thermal stability, and have been often used as catalyst supports. Although mesoporous metal oxides have lower surface areas compared to mesoporous silicas, they generally have more diversified functionalities. Mesoporous metal oxides can be synthesized via a soft-templating or hard-templating approach, and these materials have recently found some applications in environmental catalysis, such as CO oxidation, N2O decomposition, and elimination of organic pollutants. In this review, we summarize the synthesis of mesoporous transition metal oxides using mesoporous silicas as hard templates, highlight the application of these materials in environmental catalysis, and furnish some prospects for future development.

Keywords

mesoporous materials / silica / metal oxide / hard-templating / environmental catalysis

Cite this article

Download citation ▾
Zhen MA, Bei ZHOU, Yu REN. Crystalline mesoporous transition metal oxides: hard-templating synthesis and application in environmental catalysis. Front Envir Sci Eng, 2013, 7(3): 341‒355 https://doi.org/10.1007/s11783-012-0472-1

References

[1]
Beck J S, Vartuli J C, Roth W J, Leonowicz M E, Kresge C T, Schmitt K D, Chu C T W, Olson D H, Sheppard E W, Mccullen S B, Higgins J B, Schlenker J L. A new family of mesoporous molecular-sieves prepared with liquid-crystal templates. Journal of the American Chemical Society, 1992, 114(27): 10834–10843
CrossRef Google scholar
[2]
Zhao D Y, Huo Q S, Feng J L, Chmelka B F, Stucky G D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the American Chemical Society, 1998, 120(24): 6024–6036
CrossRef Google scholar
[3]
Corma A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chemical Reviews, 1997, 97(6): 2373–2420
CrossRef Pubmed Google scholar
[4]
Ying J Y, Mehnert C P, Wong M S. Synthesis and applications of supramolecular-templated mesoporous materials. Angewandte Chemie International Edition, 1999, 38(1-2): 56–77
CrossRef Google scholar
[5]
Wan Y, Zhao D Y. On the controllable soft-templating approach to mesoporous silicates. Chemical Reviews, 2007, 107(7): 2821–2860
CrossRef Pubmed Google scholar
[6]
On D T, Desplantier-Giscard D, Danumah C, Kaliaguine S. Perspectives in catalytic applications of mesostructured materials. Applied Catalysis A, General, 2003, 253(2): 545–602
CrossRef Google scholar
[7]
Taguchi A, Schüth F. Ordered mesoporous materials in catalysis. Microporous and Mesoporous Materials, 2005, 77(1): 1–45
CrossRef Google scholar
[8]
Schüth F. Non-siliceous mesostructured and mesoporous materials. Chemistry of Materials, 2001, 13(10): 3184–3195
CrossRef Google scholar
[9]
Kondo J N, Domen K. Crystallization of mesoporous metal oxides. Chemistry of Materials, 2008, 20(3): 835–847
CrossRef Google scholar
[10]
Bruce P G, Scrosati B, Tarascon J M. Nanomaterials for rechargeable lithium batteries. Angewandte Chemie International Edition, 2008, 47(16): 2930–2946
CrossRef Pubmed Google scholar
[11]
Ren Y, Ma Z, Bruce P G. Ordered mesoporous metal oxides: synthesis and applications. Chemical Society Reviews, 2012, 41(14): 4909–4927
CrossRef Pubmed Google scholar
[12]
Huo Q S, Margolese D I, Ciesla U, Feng P Y, Gier T E, Sieger P, Leon R, Petroff P M, Schüth F, Stucky G D. Generalized synthesis of periodic surfactant inorganic composite-materials. Nature, 1994, 368(6469): 317–321
CrossRef Google scholar
[13]
Yang P D, Zhao D Y, Margolese D I, Chmelka B F, Stucky G D. Generalized synthesis of large-pore mesoporous metal oxides with nanocrystalline walls. Nature, 1998, 396(6707): 152–155
CrossRef Google scholar
[14]
Yu C Z, Tian B Z, Zhao D Y. Recent advances in the synthesis of non-siliceous mesoporous materials. Current Opinion in Solid State and Materials Science, 2003, 7(3): 191–197
CrossRef Google scholar
[15]
Boettcher S W, Fan J, Tsung C K, Shi Q H, Stucky G D. Harnessing the sol-gel process for the assembly of non-silicate mesostructured oxide materials. Accounts of Chemical Research, 2007, 40(9): 784–792
CrossRef Pubmed Google scholar
[16]
Lu A H, Schüth F. Nanocasting: A versatile strategy for creating nanostructured porous materials. Advanced Materials, 2006, 18(14): 1793–1805
CrossRef Google scholar
[17]
Ryoo R, Joo S H, Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. Journal of Physical Chemistry B, 1999, 103(37): 7743–7746
CrossRef Google scholar
[18]
Lee J, Yoon S, Hyeon T, Oh S M, Kim K B. Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors. Chemical Communications, 1999, 21: 2177–2178
CrossRef Google scholar
[19]
Ryoo R, Ko C H, Kruk M, Antochshuk V, Jaroniec M. Block-copolymer-templated ordered mesoporous silica: array of uniform mesopores or mesopore-micropore network? Journal of Physical Chemistry B, 2000, 104(48): 11465–11471
CrossRef Google scholar
[20]
Schüth F. Endo- and exotemplating to create high-surface-area inorganic materials. Angewandte Chemie International Edition, 2003, 42(31): 3604–3622
CrossRef Pubmed Google scholar
[21]
Lu A H, Schüth F. Nanocasting pathways to create ordered mesoporous solids. Comptes Rendus. Chimie, 2005, 8(3-4): 609–620
CrossRef Google scholar
[22]
Yang H F, Zhao D Y. Synthesis of replica mesostructures by the nanocasting strategy. Journal of Materials Chemistry, 2005, 15: 1217–1231
[23]
Valdés-Solís T, Fuertes A B. High-surface area inorganic compounds prepared by nanocasting techniques. Materials Research Bulletin, 2006, 41(12): 2187–2197
CrossRef Google scholar
[24]
Wang Y G, Wang Y J, Li C L, Liu X H, Wang Y Q, Lu G Z. Synthetic methods of mesostructured metal oxides/composites. Progress in Chemistry, 2006, 18: 1338–1344
[25]
Tiemann M. Repeated templating. Chemistry of Materials, 2008, 20(3): 961–971
CrossRef Google scholar
[26]
Yue W B, Zhou W Z. Crystalline mesoporous metal oxide. Progress in Natural Science, 2008, 18(11): 1329–1338
CrossRef Google scholar
[27]
Rao Y X, Antonelli D M. Mesoporous transition metal oxides: Characterization and applications in heterogeneous catalysis. Journal of Materials Chemistry, 2009, 19(14): 1937–1944
CrossRef Google scholar
[28]
Roggenbuck J, Schäfer H, Tsoncheva T, Minchev C, Hanss J, Tiemann M. Mesoporous CeO2: Synthesis by nanocasting, characterization and catalytic properties. Microporous and Mesoporous Materials, 2007, 101(3): 335–341
CrossRef Google scholar
[29]
Carabineiro S A C, Bastos S S T, Órfão J J M, Pereira M F R, Delgado J J, Figueiredo J L. Exotemplated ceria catalysts with gold for CO oxidation. Applied Catalysis A, General, 2010, 381(1-2): 150–160
CrossRef Google scholar
[30]
Carabineiro S A C, Bastos S S T, Órfão J J M, Pereira M F R, Delgado J J, Figueiredo J L. Carbon monoxide oxidation catalysed by exotemplated manganes oxides. Catalysis Letters, 2010, 134(3-4): 217–227
CrossRef Google scholar
[31]
Bastos S S T, Carabineiro S A C, Órfão J J M, Pereira M F R, Delgado J J, Figueiredo J L. Total oxidation of ethyl acetate, ethanol and toluene catalyzed by exotemplated manganese and cerium oxides loaded with gold. Catalysis Today, 2012, 180(1): 148–154
CrossRef Google scholar
[32]
Laha S C, Ryoo R. Synthesis of thermally stable mesoporous cerium oxide with nanocrystalline frameworks using mesoporous silica templates. Chemical Communications, 2003, 17: 2138–2139
CrossRef Pubmed Google scholar
[33]
Zhu K K, Yue B, Zhou W Z, He H Y. Preparation of three-dimensional chromium oxide porous single crystals templated by SBA-15. Chemical Communications, 2003, 1: 98–99
CrossRef Pubmed Google scholar
[34]
Jiao K, Zhang B, Yue B, Ren Y, Liu S X, Yan S R, Dickinson C, Zhou W Z, He H Y. Growth of porous single-crystal Cr2O3 in a 3-D mesopore system. Chemical Communications, 2005, 45: 5618–5620
CrossRef Pubmed Google scholar
[35]
Zhu K K, He H Y, Xie S H, Zhang X, Zhou W Z, Jin S, Yue B. Crystalline WO3 nanowires synthesized by templating method. Chemical Physics Letters, 2003, 377(3-4): 317–321
CrossRef Google scholar
[36]
Jiao F, Yue B, Zhu K K, Zhao D Y, He H Y. α-Fe2O3 nanowires. Confined synthesis and catalytic hydroxylation of phenol. Chemistry Letters, 2003, 32(8): 770–771
CrossRef Google scholar
[37]
Yue B, Tang H L, Kong Z P, Zhu K K, Dickinson C, Zhou W Z, He H Y. Preparation and characterization of three-dimensional mesoporous crystals of tungsten oxide. Chemical Physics Letters, 2005, 407(1-3): 83–86
CrossRef Google scholar
[38]
Tian B Z, Liu X Y, Yang H F, Xie S H, Yu C Z, Tu B, Zhao D Y. General synthesis of ordered crystallized metal oxide nanoarrays replicated by microwave-digested mesoporous silica. Advanced Materials (Deerfield Beach, Fla.), 2003, 15(16): 1370–1374
CrossRef Google scholar
[39]
Tian B Z, Lui X, Yu C Z, Gao F, Luo Q, Xie S H, Tu B, Zhao D Y. Microwave assisted template removal of siliceous porous materials. Chemical Communications, 2002, 11: 1186–1187
CrossRef Pubmed Google scholar
[40]
Tian B Z, Liu X Y, Solovyov L A, Liu Z, Yang H F, Zhang Z D, Xie S H, Zhang F Q, Tu B, Yu C Z, Terasaki O, Zhao D Y. Facile synthesis and characterization of novel mesoporous and mesorelief oxides with gyroidal structures. Journal of the American Chemical Society, 2004, 126(3): 865–875
CrossRef Pubmed Google scholar
[41]
Yang H F, Shi Q H, Tian B Z, Lu Q Y, Gao F, Xie S H, Fan J, Yu C Z, Tu B, Zhao D Y. One-step nanocasting synthesis of highly ordered single crystalline indium oxide nanowire arrays from mesostructured frameworks. Journal of the American Chemical Society, 2003, 125(16): 4724–4725
CrossRef Pubmed Google scholar
[42]
Yue W B, Hill A H, Harrison A, Zhou W Z. Mesoporous single-crystal Co3O4 templated by cage-containing mesoporous silica. Chemical Communications, 2007, 24: 2518–2520
CrossRef Pubmed Google scholar
[43]
Yue W B, Zhou W Z. Mesoporous metal oxides templated by FDU-12 using a new convient method. Studies in Surface Science and Catalysis, 2007, 170: 1755–1762
CrossRef Google scholar
[44]
Yue W B, Zhou W Z. Porous crystals of cubic metal oxides templated by cage-containing mesoporous silica. Journal of Materials Chemistry, 2007, 17(47): 4947–4952
CrossRef Google scholar
[45]
Wang Y Q, Yang C M, Schmidt W, Spliethoff B, Bill E, Schüth F. Weakly ferromagnetic ordered mesoporous Co3O4 synthesized by nanocasting from vinyl-functionaluzed cubic Ia3d mesoporous silica. Advanced Materials, 2005, 17: 53–56
CrossRef Google scholar
[46]
Rumplecker A, Kleitz F, Salabas E L, Schüth F. Hard templating pathways for the synthesis of nanostructured porous Co3O4. Chemistry of Materials, 2007, 19(3): 485–496
CrossRef Google scholar
[47]
Shen W H, Dong X P, Zhu Y F, Chen H R, Shi J L. Mesoporous CeO2 and CuO-loaded mesoporous CeO2: Synthesis, characterization, and CO catalytic oxidation property. Microporous and Mesoporous Materials, 2005, 85(1-2): 157–162
CrossRef Google scholar
[48]
Yue W B, Zhou W Z. Synthesis of porous single crystals of metal oxides via a solid-liquid route. Chemistry of Materials, 2007, 19(9): 2359–2363
CrossRef Google scholar
[49]
Wang Y G, Wang Y Q, Liu X H, Guo Y, Guo Y L, Lu G Z, Schüth F. Nanocasted synthesis of mesoporous metal oxides and mixed oxides from mesoporous cubic (Ia3d) vinylsilica. Journal of Nanoscience and Nanotechnology, 2008, 8(11): 5652–5658
CrossRef Pubmed Google scholar
[50]
Puertolas B, Solsona B, Agouram S, Murillo R, Mastral A M, Aranda A, Taylor S H, Garcia T. The catalytic performance of mesoporous cerium oxides prepared through a nanocasting route for the total oxidation of naphthalene. Applied Catalysis B: Environmental, 2010, 93(3-4): 395–405
CrossRef Google scholar
[51]
Jin M S, Park J N, Shon J K, Li Z H, Yoon M Y, Na H J, Park Y W, Kim J M. Synthesis of highly ordered mesoporous CeO2 and low temperature CO oxidation over Pd/mesoporous CeO2. Research on Chemical Intermediates, 2011, 37(9): 1181–1192
CrossRef Google scholar
[52]
Shen W H, Shi J L, Chen H R, Gu J L, Zhu Y F, Dong X P. Synthesis and CO oxidation catalytic character of high surface area ruthenium dioxide replicated by cubic mesoporous silica. Chemistry Letters, 2005, 34(3): 390–391
CrossRef Google scholar
[53]
Park J N, Shon J K, Jin M, Kong S S, Moon K, Park G O, Boo J H, Kim J M. Room-temperature CO oxidation over a highly ordered mesoporous RuO2 catalyst. Reaction Kinetics. Mechanism and Catalysis, 2011, 103: 87–99
[54]
Wang Y G, Xia Y Y. Electrochemical capacitance characterization of NiO with ordered mesostructure synthesized by template SBA-15. Electrochimica Acta, 2006, 51(16): 3223–3227
CrossRef Google scholar
[55]
Jiao F, Hill A H, Harrison A, Berko A, Chadwick A V, Bruce P G. Synthesis of ordered mesoporous NiO with crystalline walls and a bimodal pore size distribution. Journal of the American Chemical Society, 2008, 130(15): 5262–5266
CrossRef Pubmed Google scholar
[56]
Kong A G, Zhu H Y, Wang W J, Zhang Q Y, Yang F, Shan Y K. Novel nanocasting method for synthesis of ordered mesoporous metal oxides. Journal of Porous Materials, 2011, 18(1): 107–112
CrossRef Google scholar
[57]
Jiao F, Harrison A, Jumas J C, Chadwick A V, Kockelmann W, Bruce P G. Ordered mesoporous Fe2O3 with crystalline walls. Journal of the American Chemical Society, 2006, 128(16): 5468–5474
CrossRef Pubmed Google scholar
[58]
Zhou Q, Li X, Li Y G, Tian B Z, Zhao D Y, Jiang Z Y. Synthesis and electrochemical properties of semicrystalline gyroidal mesoporous MnO2. Chinese Journal of Chemistry, 2006, 24(7): 835–839
CrossRef Google scholar
[59]
Luo J Y, Xia Y Y. Effect of pore structure on the electrochemical capacitive performance of MnO2. Journal of the Electrochemical Society, 2007, 154(11): A987–A992
CrossRef Google scholar
[60]
Jiao F, Bruce P G. Mesoporous crystalline β-MnO2: a reversible positive electrode for rechargeable lithium batteries. Advanced Materials (Deerfield Beach, Fla.), 2007, 19(5): 657–660
CrossRef Google scholar
[61]
Chandru R A, Patra S, Oommen C, Munichandraiah N, Raghunandan B N. Exceptional activity of mesoporous β-MnO2 in the catalytic thermal sensitization of ammonium perchlorate. Journal of Materials Chemistry, 2012, 22(14): 6536–6538
CrossRef Google scholar
[62]
Du Y C, Meng Q, Wang J S, Yan J, Fan H G, Liu Y X, Dai H X. Three-dimensional mesoporous manganese oxides and cobalt oxides: highly-efficiency catalysts for the removal of toluene and carbon monoxide. Microporous and Mesoporous Materials, 2012, 162: 199–206
CrossRef Google scholar
[63]
Jiao F, Harrison A, Hill A H, Bruce P G. Mesoporous Mn2O3 and Mn3O4 with crystalline walls. Advanced Materials (Deerfield Beach, Fla.), 2007, 19(22): 4063–4066
CrossRef Google scholar
[64]
Jin M, Kim J W, Kim J M, Jurng J, Bae G N, Jeon J K, Park Y K. Effect of calcination temperature on the oxidation of benzene with ozone at low temperature over mesoporous α-Mn2O3. Powder Technology, 2011, 214(3): 458–462
CrossRef Google scholar
[65]
Dickinson C, Zhou W Z, Hodgkins R, Shi Y F, Zhao D Y, He H Y. Formation mechanism of porous single-crystal Cr2O3 and Co3O4 templated by mesoporous silica. Chemistry of Materials, 2006, 18(13): 3088–3095
CrossRef Google scholar
[66]
Wang Y G, Yuan X H, Liu X H, Ren J W, Tong W Y, Wang Y Q, Lu G Z. Mesoporous single-crystal Cr2O3: Synthesis, characterization, and its activity in toluene removal. Solid State Sciences, 2008, 10(9): 1117–1123
CrossRef Google scholar
[67]
Wang Y M, Wu Z Y, Wang H J, Zhu J H. Fabrication of metal oxides occluded in ordered mesoporous hosts via a solid-state grinding route: the influence of host-guest interactions. Advanced Functional Materials, 2006, 16(18): 2374–2386
CrossRef Google scholar
[68]
Wang G X, Liu H, Horvat J, Wang B, Qiao S Z, Park J, Ahn H. Highly ordered mesoporous cobalt oxide nanostructures: synthesis, characterisation, magnetic properties, and applications for electrochemical energy devices. Chemistry-A European Journal, 2010, 16(36): 11020–11027
CrossRef Pubmed Google scholar
[69]
Sun S J, Gao Q M, Wang H L, Zhu J K, Guo H L. Influence of textural parameters on the catalytic behavior for CO oxidation over ordered mesoporous Co3O4. Applied Catalysis B: Environmental, 2010, 97(1-2): 284–291
CrossRef Google scholar
[70]
Garcia T, Agouram S, Sánchez-Royo J, Murillo R, Mastral A M, Aranda A A, Vázquez I, Dejoz A, Solsona B. Deep oxidation of volatile organic compounds using ordered cobalt oxides prepared by a nanocasting route. Applied Catalysis A, General, 2010, 386(1-2): 16–27
CrossRef Google scholar
[71]
Zhang Y H, Wang A Q, Huang Y Q, Xu Q Q, Yin J Z, Zhang T. Nanocasting synthesis of mesostructured Co3O4 via a supercritical CO2 deposition method and the catalytic performance for CO oxidation. Catalysis Letters, 2012, 142(2): 275–281
CrossRef Google scholar
[72]
Zhou L, Ren Q J, Zhou X F, Tang J W, Chen Z H, Yu C Z. Comprehensive understanding on the formation of highly ordered mesoporous tungsten oxides by X-ray diffraction and Raman spectroscopy. Microporous and Mesoporous Materials, 2008, 109(1-3): 248–257
CrossRef Google scholar
[73]
Cui X Z, Zhang H, Dong X P, Chen H R, Zhang L X, Guo L M, Shi J L. Electrochemical catalytic activity for the hydrogen oxidation of mesoporous WO3 and WO3/C composites. Journal of Materials Chemistry, 2008, 18(30): 3575–3580
CrossRef Google scholar
[74]
Yue W B, Xu X X, Irvine J T, Attidekou P S, Liu C, He H Y, Zhao D Y, Zhou W Z. Mesoporous monocrystalline TiO2 and its solid-state electrochemical properties and its solid-state electrochemical properties. Chemistry of Materials, 2009, 21(12): 2540–2546
CrossRef Google scholar
[75]
Yue W B, Randorn C, Attidekou P S, Su Z X, Irvine J T S, Zhou W Z. Synthesis, Li insertion, and photocatalytic of mesoporous crystalline TiO2. Advanced Functional Materials, 2009, 19(17): 2826–2833
CrossRef Google scholar
[76]
Ren Y, Hardwick L J, Bruce P G. Lithium intercalation into mesoporous anatase with an ordered 3D pore structure. Angewandte Chemie International Edition, 2010, 49(14): 2570–2574
CrossRef Pubmed Google scholar
[77]
Ren Y, Armstrong A R, Jiao F, Bruce P G. Influence of size on the rate of mesoporous electrodes for lithium batteries. Journal of the American Chemical Society, 2010, 132(3): 996–1004
CrossRef Pubmed Google scholar
[78]
Waitz T, Wagner T, Sauerwald T, Kohl C D, Tiemann M. Ordered mesoporous In2O3: synthesis by structure replication and application as a methane gas sensor. Advanced Functional Materials, 2009, 19(4): 653–661
CrossRef Google scholar
[79]
Shu P, Ruan J F, Gao C B, Li H C, Che S A. Formation of mesoporous Co3O4 replicas of different mesostructures with different pore sizes. Microporous and Mesoporous Materials, 2009, 123(1-3): 314–323
CrossRef Google scholar
[80]
Zheng M B, Cao J, Liao S T, Liu J S, Chen H Q, Zhao Y, Dai W J, Ji G B, Cao J M, Tao J. Preparation of mesoporous Co3O4 nanoparticles via solid-liquid route and effects of calcination temperature and textural parameters on their electrochemical capacitive behaviors. Journal of Physical Chemistry C, 2009, 113(9): 3887–3894
CrossRef Google scholar
[81]
Jin H X, Gu X J, Hong B, Lin L S, Wang C Y, Jin D F, Peng X L, Wang X Q, Ge H L. Fabrication of mesoporous Co3O4 from LP-FDU-12 via nanocasting poute and effect of wall/pore size on their magnetic properties. Journal of Physical Chemistry C, 2012, 116(24): 13374–13381
CrossRef Google scholar
[82]
Ren Y, Jiao F, Bruce P G. Tailoring the pore size/wall thickness of mesoporous transition metal oxides. Microporous and Mesoporous Materials, 2009, 121(1-3): 90–94
CrossRef Google scholar
[83]
Wang Y G, Wang Y Q, Ren J W, Mi Y, Zhang F Y, Li C L, Liu X H, Guo Y, Guo Y L, Lu G Z. Synthesis of morphology-controllable mesoporous Co3O4 and CeO2. Journal of Solid State Chemistry, 2010, 183(2): 277–284
CrossRef Google scholar
[84]
Haffer S, Waitz T, Tiemann M. Mesoporous In2O3 with regular morphology by nanocasting: A simple relation between defined particle shape and growth mechanism. Journal of Physical Chemistry C, 2010, 114(5): 2075–2081
CrossRef Google scholar
[85]
Ma Z, Ren Y, Bruce P G. Co3O4-KIT-6 composite catalysts: Synthesis, characterization, and application in catalytic decomposition of N2O. Journal of Nanoparticle Research, 2012, 14(8): 874
CrossRef Google scholar
[86]
Ren Y, Ma Z, Bruce P G. Ordered mesoporous NiMn2Ox with hematite or spinel structure: synthesis and application in electrochemical storage and catalytic conversion of N2O. CrystEngComm, 2011, 13(23): 6955–6959
CrossRef Google scholar
[87]
Ren Y, Ma Z, Bruce P G. Ordered mesoporous NiCoMnO4: synthesis and application in energy storage and catalytic decomposition of N2O. Journal of Materials Chemistry, 2012, 22(30): 15121–15127
CrossRef Google scholar
[88]
Jiao F, Bao J L, Hill A H, Bruce P G. Synthesis of ordered mesoporous Li-Mn-O spinel as a positive electrode for rechargeable lithium batteries. Angewandte Chemie International Edition, 2008, 47(50): 9711–9716
CrossRef Pubmed Google scholar
[89]
Jiao F, Jumas J C, Womes M, Chadwick A V, Harrison A, Bruce P G. Synthesis of ordered mesoporous Fe3O4 and γ-Fe2O3 with crystalline walls using post-template reduction/oxidation. Journal of the American Chemical Society, 2006, 128(39): 12905–12909
CrossRef Pubmed Google scholar
[90]
Ren Y, Bruce P G, Ma Z. Solid-solid conversion of ordered crystalline mesoporous metal oxides under reducing atmosphere. Journal of Materials Chemistry, 2011, 21(25): 9312–9318
CrossRef Google scholar
[91]
Tüysüz H, Liu Y, Weidenthaler C, Schüth F. Pseudomorphic transformation of highly ordered mesoporous Co3O4 to CoO via reduction with glycerol. Journal of the American Chemical Society, 2008, 130(43): 14108–14110
CrossRef Pubmed Google scholar
[92]
Tüysüz H, Weidenthaler C, Schüth F. A strategy for the synthesis of mesostructured metal oxides with lower oxidation states. Chemistry-A European Journal, 2012, 18(16): 5080–5086
CrossRef Pubmed Google scholar
[93]
Ren Y, Ma Z, Bruce P G. Transformation of mesoporous Cu/Cu2O into porous Cu2O nanowires in ethanol. CrystEngComm, 2012, 14(8): 2617–2620
CrossRef Google scholar
[94]
Tüysüz H, Salabaş E L, Bill E, Bongard H, Spliethoff B, Lehmann C W, Schüth F. Synthesis of hard magnetic ordered mesoporous Co3O4/CoFe2O4 nanocomposites. Chemistry of Materials, 2012, 24(13): 2493–2500
CrossRef Google scholar
[95]
Shi Y F, Wan Y, Zhang R Y, Zhao D Y. Synthesis of self-supported ordered mesoporous cobalt and chromium nitrides. Advanced Functional Materials, 2008, 18(16): 2436–2443
CrossRef Google scholar
[96]
Shi Y F, Guo B K, Corr S A, Shi Q H, Hu Y S, Heier K R, Chen L Q, Seshadri R, Stucky G D. Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity. Nano Letters, 2009, 9(12): 4215–4220
CrossRef Pubmed Google scholar
[97]
Kang E, An S, Yoon S, Kim J K, Lee J. Ordered mesoporous WO3-x possessing electronically conductive framework comparable to carbon framework toward long-term stable cathode supports for fuel cells. Journal of Materials Chemistry, 2010, 20(35): 7416–7421
CrossRef Google scholar
[98]
Yen H, Seo Y, Guillet-Nicolas R, Kaliaguine S, Kleitz F. One-step-impregnation hard templating synthesis of high-surface-area nanostructured mixed metal oxides (NiFe2O4, CuFe2O4 and Cu/CeO2). Chemical Communications, 2011, 47(37): 10473–10475
CrossRef Pubmed Google scholar
[99]
Wang Y G, Ren J W, Wang Y Q, Zhang F Y, Liu X H, Guo Y, Lu G Z. Nanocated synthesis of mesoporous LaCoO3 perovskite with extremely high surface area and excellent activity in methane combustion. Journal of Physical Chemistry C, 2008, 112(39): 15293–15298
CrossRef Google scholar
[100]
Wang Y G, Wang Y Q, Liu X H, Guo Y, Guo Y L, Lu G Z. Nanocasted synthesis of the mesostructured LaCoO3 perovskite and its catalytic activity in methane combustion. Journal of Nanoscience and Nanotechnology, 2009, 9(2): 933–936
CrossRef Pubmed Google scholar
[101]
Nair M M, Kleitz F, Kaliaguine S. Kinetics of methanol oxidation over mesoporous perovskite catalysts. ChemCatChem, 2012, 4(3): 387–394
CrossRef Google scholar
[102]
Zhu J K, Gao Q M. Mesoporous MCo2O4 (M= Cu, Mn and Ni) spinels: Structural replication, characterization and catalytic application in CO oxidation. Microporous and Mesoporous Materials, 2009, 124(1-3): 144–152
CrossRef Google scholar
[103]
Cabo M, Pellicer E, Rossinyol E, Castell O, Suriñach S, Baró M D. Mesoporous NiCo2O4 spinel: influence of calcination temperature over phase purity and thermal stability. Crystal Growth & Design, 2009, 9(11): 4814–4821
CrossRef Google scholar
[104]
Cabo M, Pellicer E, Rossinyol E, Solsona P, Castell O, Suriñach S, Baró M D. Influence of the preparation method on the morphology of templated NiCo2O4 spinel. Journal of Nanoparticle Research, 2011, 13(9): 3671–3681
CrossRef Google scholar
[105]
Ma C Y, Mu Z, He C, Li P, Li J J, Hao Z P. Catalytic oxidation of benzene over nanostructured porous Co3O4-CeO2 composite catalysts. Journal of Environmental Sciences (China), 2011, 23(12): 2078–2086
Pubmed
[106]
Cabo M, Pellicer E, Rossinyol E, Estrader M, López-Ortega A, Nogués J, Castell O, Suriñach S, Baró M D. Synthesis of compositionally graded nanocast NiO/NiCo2O4/Co3O4 mesoporous composites with tunable magnetic properties. Journal of Materials Chemistry, 2010, 20(33): 7021–7028
CrossRef Google scholar
[107]
Sun Y Y, Ji G B, Zheng M B, Chang X F, Li S D, Zhang Y. Synthesis and magnetic properties of crystalline mesoporous CoFe2O4 with large specific surface area. Journal of Materials Chemistry, 2010, 20(5): 945–952
CrossRef Google scholar
[108]
Gu X, Zhu W M, Jia C J, Zhao R, Schmidt W, Wang Y Q. Synthesis and microwave absorbing properties of highly ordered mesoporous crystalline NiFe2O4. Chemical Communications, 2011, 47(18): 5337–5339
CrossRef Pubmed Google scholar
[109]
Hill M R, Booth J, Bourgeois L, Whitfield H J. Periodic mesoporous Lix(Mn1/3Ni1/3Co1/3)O2 spinel. Dalton Transactions (Cambridge, England), 2010, 39(22): 5306–5309
CrossRef Google scholar
[110]
Haruta M. Catalysis of gold nanoparticles deposited on metal oxides. CATTECH, 2002, 6(3): 102–115
CrossRef Google scholar
[111]
Ma Z, Dai S. Development of novel supported gold catalysts: A materials perspective. Nano Research, 2011, 4(1): 3–32
CrossRef Google scholar
[112]
Ma Z, Dai S. Design of novel structured gold nanocatalysts. Acs Catalysis, 2011, 1(7): 805–818
CrossRef Google scholar
[113]
Zhu J K, Gao Q M, Chen Z. Preparation of mesoporous copper cerium bimetal oxides with high performance for catalytic oxidation of carbon monoxide. Applied Catalysis B: Environmental, 2008, 81(3-4): 236–243
CrossRef Google scholar
[114]
Ren Y, Ma Z, Qian L P, Dai S, He H Y, Bruce P G. Ordered crystalline mesoporous oxide as catalysts for CO oxidation. Catalysis Letters, 2009, 131(1-2): 146–154
CrossRef Google scholar
[115]
Wang H J, Teng Y H, Radhakrishnan L, Nemoto Y, Imura M, Shimakawa Y, Yamauchi Y. Mesoporous Co3O4 for low temperature CO oxidation: effect of calcination temperatures on their catalytic performance. Journal of Nanoscience and Nanotechnology, 2011, 11(5): 3843–3850
CrossRef Pubmed Google scholar
[116]
Tüysüz H, Lehmann C W, Bongard H, Tesche B, Schmidt R, Schüth F. Direct imaging of surface topology and pore system of ordered mesoporous silica (MCM-41, SBA-15, and KIT-6) and nanocast metal oxides by high resolution scanning electron microscopy. Journal of the American Chemical Society, 2008, 130(34): 11510–11517
CrossRef Pubmed Google scholar
[117]
Tüysüz H, Comotti M, Schüth F. Ordered mesoporous Co3O4 as highly active catalyst for low temperature CO-oxidation. Chemical Communications, 2008, (34): 4022–4024
CrossRef Pubmed Google scholar
[118]
Xie X W, Li Y, Liu Z Q, Haruta M, Shen W J. Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature, 2009, 458(7239): 746–749
CrossRef Pubmed Google scholar
[119]
Yu Y B, Takei T, Ohashi H, He H, Zhang X L, Haruta M. Pretreatments of Co3O4 at moderate temperature for CO oxidation at -80 °C. Journal of Catalysis, 2009, 267(2): 121–128
CrossRef Google scholar
[120]
Kapteijn F, Rodriguez-Mirasol J, Moulijn J A. Heterogeneous catalytic decomposition of nitrous oxide. Applied Catalysis B: Environmental, 1996, 9: 25–64
[121]
Kannan S. Catalytic applications of hydrotalcite-like materials and their derived forms. Catalysis Surveys from Asia, 2006, 10(3-4): 117–137
CrossRef Google scholar
[122]
Deng J G, Zhang L, Dai H X, Xia Y S, Jiang H Y, Zhang H, He H. Ultrasound-assisted nanocasting fabrication of ordered mesoporous MnO2 and Co3O4 with high surface areas and polycrystalline walls. Journal of Physical Chemistry C, 2010, 114(6): 2694–2700
CrossRef Google scholar
[123]
Xia Y S, Dai H X, Jiang H Y, Deng J G, He H, Au C T. Mesoporous chromia with ordered three-dimensional structures for the complete oxidation of toluene and ethyl acetate. Environmental Science & Technology, 2009, 43(21): 8355–8360
CrossRef Pubmed Google scholar
[124]
Xia Y S, Dai H X, Zhang L, Deng J G, He H, Au C T. Ultrasound-assisted nanocasting fabrication and excellent catalytic performance of three-dimensionally ordered mesoporous chromia for the combustion of formaldehyde, acetone, and methanol. Applied Catalysis B: Environmental, 2010, 100(1-2): 229–237
CrossRef Google scholar
[125]
Xia Y S, Dai H X, Jiang H Y, Zhang L, Deng J G, Liu Y. Three-dimensionally ordered and wormhole-like mesoporous iron oxide catalysts highly active for the oxidation of acetone and methanol. Journal of Hazardous Materials, 2011, 186(1): 84–91
CrossRef Pubmed Google scholar
[126]
Ma C Y, Mu Z, Li J J, Jin Y G, Cheng J, Lu G Q, Hao Z P, Qiao S Z. Mesoporous Co3O4 and Au/Co3O4 catalysts for low-temperature oxidation of trace ethylene. Journal of the American Chemical Society, 2010, 132(8): 2608–2613
CrossRef Pubmed Google scholar
[127]
Ma C Y, Wang D H, Xue W J, Dou B J, Wang H L, Hao Z P. Investigation of formaldehyde oxidation over Co3O4-Ce2 and Au/Co3O4-CeO2 catalysts at room temperature: effective removal and determination of reaction mechanism. Environmental Science & Technology, 2011, 45(8): 3628–3634
CrossRef Pubmed Google scholar
[128]
Aranda A, Puértolas B, Solsona B, Agouram S, Murillo R, Mastral A M, Taylor S H, Garcia T. Total oxidation of naphthalene using mesoporous CeO2 catalysts synthesized by nanocasting from two dimensional SBA-15 and three dimensional KIT-6 and MCM-48 silica templates. Catalysis Letters, 2010, 134(1-2): 110–117
CrossRef Google scholar
[129]
Sun S M, Wang W Z, Zeng S Z, Shang M, Zhang L. Preparation of ordered mesoporous Ag/WO3 and its highly efficient degradation of acetaldehyde under visible-light irradiation. Journal of Hazardous Materials, 2010, 178(1-3): 427–433
CrossRef Pubmed Google scholar
[130]
Solsona B, Aylón E, Murillo R, Mastral A M, Monzonís A, Agouram S, Davies T E, Taylor S H, Garcia T. Deep oxidation of pollutants using gold deposited on a high surface area cobalt oxide prepared by a nanocasting route. Journal of Hazardous Materials, 2011, 187(1-3): 544–552
CrossRef Pubmed Google scholar
[131]
Ying F, Wang S J, Au C T, Lai S Y. Highly active and stable mesoporous Au/CeO2 catalysts prepared from MCM-48 hard-template. Microporous and Mesoporous Materials, 2011, 142(1): 308–315
CrossRef Google scholar
[132]
Djinović P, Batista J, Pintar A. Efficient catalytic abatement of greenhouse gases: Methane reforming with CO2 using a novel and thermally stable Rh-CeO2 catalyst. International Journal of Hydrogen Energy, 2012, 37(3): 2699–2707
CrossRef Google scholar
[133]
Jin M, Park J N, Shon J K, Kim J H, Li Z H, Park Y K, Kim J M. Low temperature CO oxidation over Pd catalysts supported on highly ordered mesoporous metal oxides. Catalysis Today, 2012, 185(1): 183–190
CrossRef Google scholar
[134]
Armatas G, Katsoulidis A P, Petrakis D E, Pomonis P J, Kanatzidis M G. Nanocasting of ordered mesoporous Co3O4-based polyoxometalate composite frameworks. Chemistry of Materials, 2010, 22(20): 5739–5746
CrossRef Google scholar
[135]
Tamiolakis I, Lykakis I N, Katsoulidis A P, Stratakis M, Armatas G S. Mesoporous Cr2O3-phosphomolybdic acid solid solution frameworks with high catalytic activity. Chemistry of Materials, 2011, 23(18): 4204–4211
CrossRef Google scholar
[136]
Tamiolakis I, Lykakis I N, Katsoulidis A P, Malliakas C D, Armatas G S. Ordered mesoporous Cr2O3 frameworks incorporating Keggin-type 12-phosphotungstic acids as efficient catalysts for oxidation of benzyl alcohols. Journal of Materials Chemistry, 2012, 22(14): 6919–6927
CrossRef Google scholar
[137]
Djinović P, Batista J, Levec J, Pintar A. Comparison of water-gas shift reaction activity and long-term stability of nanostructured CuO-CeO2 catalysts prepared by hard template and co-precipitation methods. Applied Catalysis A, General, 2009, 364(1-2): 156–165
CrossRef Google scholar
[138]
Park J N, Shon J K, Jin M, Hwang S H, Park G O, Boo J H, Han T H, Kim J M. Highly ordered mesoporous α-MnO2 for catalytic decomposition of H2O2 at low temperatures. Chemistry Letters, 2010, 39(5): 493–494
CrossRef Google scholar
[139]
Cui X Z, Zhou J, Ye Z Q, Chen H R, Li L, Ruan M L, Shi J L. Selective catalytic oxidation of ammonia to nitrogen over mesoporous CuO/RuO2 synthesized by co-casting-replication method. Journal of Catalysis, 2010, 270(2): 310–317
CrossRef Google scholar
[140]
Gong L, Sun L B, Sun Y H, Li T T, Liu X Q. Exploring in situ functionalization strategy in a hard template process: Preparation of sodium-modified mesoporous trtragonal zirconia with superbasicity. Journal of Physical Chemistry C, 2011, 115(23): 11633–11640
CrossRef Google scholar
[141]
Liu T T, Sun L B, Gong L, Liu X Y, Liu X Q. In situ generation of superbasic sites on mesoporous ceria and their application in transesterification. Journal of Molecular Catalysis A: Chemical, 2012, 352(1): 38–44
CrossRef Google scholar

Acknowledgements

This work was financial supported by the National Natural Science Foundation of China (Grant Nos. 21007011 and 21177028) and Doctoral Fund of Ministry of Education in China (No. 20100071120012).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(654 KB)

Accesses

Citations

Detail

Sections
Recommended

/