PDF
(535KB)
Abstract
Based on the anoxic/oxic (A/O) step feed process, a modified University of Cape Town (UCT) step feed process was developed by adding an anaerobic zone and adjusting sludge return pipeline. Performance evaluation of these two types of processes was investigated by optimizing operational parameters, such as the anaerobic/anoxic/oxic volumes, internal recycle ratios, and sludge retention times, for removal of chemical oxygen demanding (COD), nitrogen, and phosphorus. Results showed high removal efficiencies of COD of (85.0±1.7)%, ammonium of (99.7±0.2)%, total nitrogen (TN) of (85.5±1.7)%, phosphorus of (95.1±3.3)%, as well as excellent sludge settleability with average sludge volume index of (83.7±9.5) L·mg-1 in the modified UCT process. Moreover, (61.5±6.0)% of influent COD was efficiently involved in denitrification or phosphorus release process. As much as 35.3% of TN was eliminated through simultaneous nitrification and denitrification process in aerobic zones. In addition, the presence of denitrifying phosphorus accumulating organisms (DNPAOs), accounting for approximately 39.2% of PAOs, was also greatly beneficial to the nitrogen and phosphorus removal. Consequently, the modified UCT step feed process was more attractive for the wastewater treatment plant, because it had extremely competitive advantages such as higher nutrient removal efficiencies, lower energy and dosages consumption, excellent settling sludge and operational assurance.
Keywords
step feed
/
anoxic/oxic (A/O)
/
University of Cape Town (UCT)
/
simultaneous nitrification and denitrification (SND)
/
denitrifying phosphorus removal
/
biological nutrient removal (BNR)
Cite this article
Download citation ▾
Shijian GE, Yongzhen PENG, Congcong LU, Shuying WANG.
Practical consideration for design and optimization of the step feed process.
Front. Environ. Sci. Eng., 2013, 7(1): 135-142 DOI:10.1007/s11783-012-0454-3
| [1] |
Su J L, Quyang C F. Nutrient removal using a combined process with activated sludge and fixed biofilm. Water Science and Technology, 1996, 34(1-2): 477–486
|
| [2] |
Ma Y, Peng Y Z, Wang X L. Improving nutrient removal of the AAO process by an influent bypass flow by denitrifying phosphorus removal. Desalination, 2009, 246(1-3): 534–544
|
| [3] |
Zhu G B, Peng Y Z. Theoretical evaluation on nitrogen removal of step feed anoxic/oxic activated sludge process. Journal of Harbin Institute of Technology, 2006, 13(3): 263–266
|
| [4] |
Zhu G B, Peng Y Z, Wang S Y, Wu S Y, Ma B. Effect of influent flow rate distribution on the performance of step-feed biological nitrogen removal process. Chemical Engineering Journal, 2007, 131(1-3): 319–328
|
| [5] |
Zhu G B, Peng Y Z, Wu S Y, Wang S Y, Xu S W. Simultaneous nitrification and denitrification in step feeding biological nitrogen removal process. Journal of Environmental Sciences-China, 2007, 19(9): 1043–1048
|
| [6] |
Chang H Y, Quyang C F. Improvement of nitrogen and phosphorus removal in the anaerobic-oxic-anoxic-oxic (AOAO) process by stepwise feeding. Water Science and Technology, 2000, 42(3/4): 89–94
|
| [7] |
Larrea L, Larrea A, Ayesa E, Rodrigo J C, Lopez-Carrasco M D, Cortacans J A. Development and verification of design and operation criteria for the step feed process with nitrogen removal. Water Science and Technology, 2001, 43(1): 261–268
|
| [8] |
Zhu G B, Peng Y Z, Wang S Y, Ma B.Comparative study of two biological nitrogen removal processes: A /O process and step feeding process. Journal of Southeast University, 2008, 24(4): 528–531
|
| [9] |
Zhu G B, Peng Y Z, Ma B, Wang Y, Yin C Q. Optimization of anoxic/oxic step feeding activated sludge process with fuzzy control model for improving nitrogen removal. Chemical Engineering Journal, 2009, 151(1-3): 195–201
|
| [10] |
Zhu G B, Peng Y Z, Zhai L M, Wang Y, Wang S Y. Performance and optimization of biological nitrogen removal process enhanced by anoxic/oxic step feeding. Biochemical Engineering Journal, 2009, 43(3): 280–287
|
| [11] |
Ge S J, Peng Y Z, Wang S Y, Guo J H, Ma B, Zhang L, Cao X. Enhanced nutrient removal in a modified step feed process treating municipal wastewater with different inflow distribution ratios and nutrient ratios. Bioresource Technology, 2010, 101(23): 9012–9019
|
| [12] |
Ge S J, Peng Y Z, Zhang L, Wang X M, Wang S Y. Performance and material balance of modified UCT step feed enhanced biological nitrogen and phosphate removal process. CIESC Journal, 2010, 61(4): 1009–1017 (in Chinese)
|
| [13] |
Wachtmeister A, Kuba T, Van Loosdrecht M C M, Heijnen J J. A sludge characterization assay for aerobic and denitrifying phosphorus removing sludge. Water Research, 1997, 31(3): 471–478
|
| [14] |
APHA. Standard Methods for the Examination of Water and Wastewater. 20th ed. Washington, DC: Americans Public Health Association, American Water Works Association, Water Environment Federation, 1998
|
| [15] |
Kim D, Kim T S, Ryu H D, Lee S I. Treatment of low carbon-to-nitrogen wastewater using two-stage sequencing batch reactor with independent nitrification. Process Biochemistry, 2008, 43(4): 406–413
|
| [16] |
Vaiopoulou E, Aivasidis A. A modified UCT method for biological nutrient removal: configuration and performance. Chemosphere, 2008, 72(7): 1062–1068
|
| [17] |
Barker P S, Dold P L. COD and nitrogen mass balances in activated sludge systems. Water Research, 1995, 29(2): 633–643
|
| [18] |
Monclús H, Sipma J, Ferrero G, Rodriguez-Roda I, Comas J. Biological nutrient removal in an MBR treating municipal wastewater with special focus on biological phosphorus removal. Bioresource Technology, 2010, 101(11): 3984–3991
|
| [19] |
Zhang H M, Wang X L, Xiao J N, Yang F L, Zhang J. Enhanced biological nutrient removal using MUCT-MBR system. Bioresource Technology, 2009, 100(3): 1048–1054
|
| [20] |
Kuba T, Wachtmeister A, van Loosdrecht M C M, Heijnen J J. Effect of nitrate on phosphorus release in biological phosphorus removal systems. Water Science and Technology, 1994, 30(6): 263–269
|
| [21] |
Thomas M, Wright P, Blackall L, Urbain V, Keller J. Optimisation of Noosa BNR plant to improve performance and reduce operating costs. Water Science and Technology, 2003, 47(12): 141–148
|
| [22] |
Oehmen A, Lemos P C, Carvalho G, Yuan Z, Keller J, Blackall L L, Reis M A M. Advances in enhanced biological phosphorus removal: from micro to macro scale. Water Research, 2007, 41(11): 2271–2300
|
RIGHTS & PERMISSIONS
Higher Education Press and Springer-Verlag Berlin Heidelberg