Characterization of submicron aerosols in the urban outflow of the central Pearl River Delta region of China

Zhaoheng GONG, Zijuan LAN, Lian XUE, Liwu ZENG, Lingyan HE, Xiaofeng HUANG

PDF(716 KB)
PDF(716 KB)
Front. Environ. Sci. Eng. ›› 2012, Vol. 6 ›› Issue (5) : 725-733. DOI: 10.1007/s11783-012-0441-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Characterization of submicron aerosols in the urban outflow of the central Pearl River Delta region of China

Author information +
History +

Abstract

Submicron aerosol particles (with aerodynamic diameters less than 1 μm, PM1) were sampled and measured in Heshan, an urban outflow site of Guangzhou megacity in Pearl River Delta in South China, using an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) in November 2010 during 2010 Guangzhou Asian Games. The mean PM1 mass concentration measured was 47.9±17.0 μg·m-3 during the campaign, with organic aerosol (OA) and sulfate being the two dominant species, accounting for 36.3% and 20.9% of the total mass, respectively, followed by black carbon (17.1%, measured by an aethalometer), nitrate (12.9%), ammonium (9.6%) and chloride (3.1%). The average size distributions of the species (except black carbon) were dominated by an accumulation mode peaking at ~550 nm. Calculations based on high-resolution organic mass spectrum showed that, C, H, O and N on average contributed 58.1%, 7.3%, 30.7%, and 3.9% to the total organic mass, respectively. The average ratio of organic mass over organic carbon mass (OM/OC) was 1.73±0.08. Four components of OA were identified by the Positive Matrix Factorization (PMF) analysis, including a hydrocarbon-like (HOA), a biomass burning (BBOA) and two oxygenated (SV-OOA and LV-OOA) organic aerosol components, which on average accounted for 18.0%, 14.3%, 28.8% and 38.9% of the total organic mass, respectively.

Keywords

organic aerosol / high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) / positive matrix factorization

Cite this article

Download citation ▾
Zhaoheng GONG, Zijuan LAN, Lian XUE, Liwu ZENG, Lingyan HE, Xiaofeng HUANG. Characterization of submicron aerosols in the urban outflow of the central Pearl River Delta region of China. Front Envir Sci Eng, 2012, 6(5): 725‒733 https://doi.org/10.1007/s11783-012-0441-8

References

[1]
Zhang Y H, Hu M, Liu S C, Wiedensohler A. The special issue on PRIDE-PRD2004 campaign. Atmospheric Environment, 2008, 42(25): 6155–6156
CrossRef Google scholar
[2]
Xiao R, Takegawa N, Zheng M, Kondo Y, Miyazaki Y, Miyakawa T, Hu M, Shao M, Zeng L, Gong Y, Lu K, Deng Z, Zhao Y, Zhang Y H. Characterization and source apportionment of submicron aerosol with aerosol mass spectrometer during the PRIDE-PRD 2006 campaign. Atmospheric Chemistry and Physics, 2011, 11(14): 6911–6929
CrossRef Google scholar
[3]
Huang X F, He L Y, Hu M, Canagaratna M R, Kroll J H, Ng N L, Zhang Y H, Lin Y, Xue L, Sun T L, Liu X G, Shao M, Jayne J T, Worsnop D R. Characterization of submicron aerosols at a rural site in Pearl River Delta of China using an aerodyne high-resolution aerosol mass spectrometer. Atmospheric Chemistry and Physics, 2011, 11(5): 1865–1877
CrossRef Google scholar
[4]
He L Y, Huang X F, Xue L, Hu M, Lin Y, Zheng J, Zhang R Y, Zhang Y H. Submicron aerosol analysis and organic source apportionment in an urban atmosphere in Pearl River Delta of China using high-resolution aerosol mass spectrometry. Journal of Geophysical Research-Atmospheres, 2011, 116 (D12304),
CrossRef Google scholar
[5]
Canagaratna M R, Jayne J T, Jimenez J L, Allan J D, Alfarra M R, Zhang Q, Onasch T B, Drewnick F, Coe H, Middlebrook A, Delia A, Williams L R, Trimborn A M, Northway M J, DeCarlo P F, Kolb C E, Davidovits P, Worsnop D R. Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. Mass Spectrometry Reviews, 2007, 26(2): 185–222
CrossRef Pubmed Google scholar
[6]
DeCarlo P F, Kimmel J R, Trimborn A, Northway M J, Jayne J T, Aiken A C, Gonin M, Fuhrer K, Horvath T, Docherty K S, Worsnop D R, Jimenez J L. Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer. Analytical Chemistry, 2006, 78(24): 8281–8289
CrossRef Pubmed Google scholar
[7]
Drewnick F, Hings S S, DeCarlo P, Jayne J T, Gonin M, Fuhrer K, Weimer S, Jimenez J L, Demerjian K L, Borrmann S, Worsnop D R. A new time-of-flight aerosol mass spectrometer (TOF-AMS)–Instrument description and first field deployment. Aerosol Science and Technology, 2005, 39(7): 637–658
CrossRef Google scholar
[8]
Jayne J T, Leard D C, Zhang X, Davidovits P, Smith K A, Kolb C E, Worsnop D R. Development of an aerosol mass spectrometer for size and composition analysis of submicron particles. Aerosol Science and Technology, 2000, 33(1–2): 49–70
CrossRef Google scholar
[9]
Jimenez J L , Jayne J T, Shi Q, Kolb C E, Worsnop D R, Yourshaw I, Seinfeld J H, Flagan R C, Zhang X F, Smith K A, Morris J W, Davidovits P. Ambient aerosol sampling using the aerodyne aerosol mass spectrometer. Journal of Geophysical Research-Atmospheres, 2003, 108(D7),
CrossRef Google scholar
[10]
Paatero P, Tapper U. Postive Matrix Factorization–A nonnegative factor model with optimal utilization of error-estimates of data values. Environmetrics, 1994, 5(2): 111–126
CrossRef Google scholar
[11]
Aiken A C, Salcedo D, Cubison M J, Huffman J A, DeCarlo P F, Ulbrich I M, Docherty K S, Sueper D, Kimmel J R, Worsnop D R, Trimborn A, Northway M, Stone E A, Schauer J J, Volkamer R M, Fortner E, de Foy B, Wang J, Laskin A, Shutthanandan V, Zheng J, Zhang R, Gaffney J, Marley N A, Paredes-Miranda G, Arnott W P, Molina L T, Sosa G, Jimenez J L. Mexico City aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0)–Part 1: Fine particle composition and organic source apportionment. Atmospheric Chemistry and Physics, 2009, 9(17): 6633–6653
CrossRef Google scholar
[12]
DeCarlo P F, Ulbrich I M, Crounse J, de Foy B, Dunlea E J, Aiken A C, Knapp D, Weinheimer A J, Campos T, Wennberg P O, Jimenez J L. Investigation of the sources and processing of organic aerosol over the Central Mexican Plateau from aircraft measurements during MILAGRO. Atmospheric Chemistry and Physics, 2010, 10(12): 5257–5280
CrossRef Google scholar
[13]
Huang X F, He L Y, Hu M, Canagaratna M R, Sun Y, Zhang Q, Zhu T, Xue L, Zeng L W, Liu X G, Zhang Y H, Jayne J T, Ng N L, Worsnop D R. Highly time-resolved chemical characterization of atmospheric submicron particles during 2008 Beijing Olympic Games using an Aerodyne High-Resolution Aerosol Mass Spectrometer. Atmospheric Chemistry and Physics, 2010, 10(18): 8933–8945
CrossRef Google scholar
[14]
Allan J D, Jimenez J L, Williams P I, Alfarra M R, Bower K N, Jayne J T, Coe H, Worsnop D R. Quantitative sampling using an aerodyne aerosol mass spectrometer–1. Techniques of data interpretation and error analysis. Journal of Geophysical Research-Atmospheres, 2003, 108(D3)
CrossRef Google scholar
[15]
Ulbrich I M, Canagaratna M R, Zhang Q, Worsnop D R, Jimenez J L. Interpretation of organic components from Positive Matrix Factorization of aerosol mass spectrometric data. Atmospheric Chemistry and Physics, 2009, 9(9): 2891–2918
CrossRef Google scholar
[16]
Aiken A C, Decarlo P F, Kroll J H, Worsnop D R, Huffman J A, Docherty K S, Ulbrich I M, Mohr C, Kimmel J R, Sueper D, Sun Y, Zhang Q, Trimborn A, Northway M, Ziemann P J, Canagaratna M R, Onasch T B, Alfarra M R, Prevot A S, Dommen J, Duplissy J, Metzger A, Baltensperger U, Jimenez J L. O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry. Environmental Science & Technology, 2008, 42(12): 4478–4485
CrossRef Pubmed Google scholar
[17]
Aiken A C, DeCarlo P F, Jimenez J L. Elemental analysis of organic species with electron ionization high-resolution mass spectrometry. Analytical Chemistry, 2007, 79(21): 8350–8358
CrossRef Pubmed Google scholar
[18]
Alfarra M R, Coe H, Allan J D, Bower K N, Boudries H, Canagaratna M R, Jimenez J L, Jayne J T, Garforth A A, Li S M, Worsnop D R. Characterization of urban and rural organic particulate in the lower Fraser valley using two aerodyne aerosol mass spectrometers. Atmospheric Environment, 2004, 38(34): 5745–5758
CrossRef Google scholar
[19]
Zhang Q, Worsnop D R, Canagaratna M R, Jimenez J L. Hydrocarbon-like and oxygenated organic aerosols in Pittsburgh: insights into sources and processes of organic aerosols. Atmospheric Chemistry and Physics, 2005, 5(12): 3289–3311
CrossRef Google scholar
[20]
Jimenez J L, Canagaratna M R, Donahue N M, Prevot A S, Zhang Q, Kroll J H, DeCarlo P F, Allan J D, Coe H, Ng N L, Aiken A C, Docherty K S, Ulbrich I M, Grieshop A P, Robinson A L, Duplissy J, Smith J D, Wilson K R, Lanz V A, Hueglin C, Sun Y L, Tian J, Laaksonen A, Raatikainen T, Rautiainen J, Vaattovaara P, Ehn M, Kulmala M, Tomlinson J M, Collins D R, Cubison M J, Dunlea E J, Huffman J A, Onasch T B, Alfarra M R, Williams P I, Bower K, Kondo Y, Schneider J, Drewnick F, Borrmann S, Weimer S, Demerjian K, Salcedo D, Cottrell L, Griffin R, Takami A, Miyoshi T, Hatakeyama S, Shimono A, Sun J Y, Zhang Y M, Dzepina K, Kimmel J R, Sueper D, Jayne J T, Herndon S C, Trimborn A M, Williams L R, Wood E C, Middlebrook A M, Kolb C E, Baltensperger U, Worsnop D R. Evolution of organic aerosols in the atmosphere. Science, 2009, 326(5959): 1525–1529
CrossRef Pubmed Google scholar
[21]
Ng N L, Canagaratna M R, Zhang Q, Jimenez J L, Tian J, Ulbrich I M, Kroll J H, Docherty K S, Chhabra P S, Bahreini R, Murphy S M, Seinfeld J H, Hildebrandt L, Donahue N M, DeCarlo P F, Lanz V A, Prévôt A S H, Dinar E, Rudich Y, Worsnop D R. Organic aerosol components observed in northern hemispheric datasets from aerosol mass spectrometry. Atmospheric Chemistry and Physics, 2010, 10(10): 4625–4641
CrossRef Google scholar
[22]
Lanz V A, Alfarra M R, Baltensperger U, Buchmann B, Hueglin C, Prévôt A S H. Source apportionment of submicron organic aerosols at an urban site by factor analytical modelling of aerosol mass spectra. Atmospheric Chemistry and Physics, 2007, 7(6): 1503–1522
CrossRef Google scholar
[23]
Mohr C, Huffman A, Cubison M J, Aiken A C, Docherty K S, Kimmel J R, Ulbrich I M, Hannigan M, Jimenez J L. Characterization of primary organic aerosol emissions from meat cooking, trash burning, and motor vehicles with high-resolution aerosol mass spectrometry and comparison with ambient and chamber observations. Environmental Science & Technology, 2009, 43(7): 2443–2449
CrossRef Pubmed Google scholar
[24]
Canagaratna M R, Jayne J T, Ghertner D A, Herndon S, Shi Q, Jimenez J L, Silva P J, Williams P, Lanni T, Drewnick F, Demerjian K L, Kolb C E, Worsnop D R. Chase studies of particulate emissions from in-use New York City vehicles. Aerosol Science and Technology, 2004, 38(6): 555–573
CrossRef Google scholar
[25]
Alfarra M R, Prevot A S, Szidat S, Sandradewi J, Weimer S, Lanz V A, Schreiber D, Mohr M, Baltensperger U. Identification of the mass spectral signature of organic aerosols from wood burning emissions. Environmental Science and Technology, 2007, 41(16): 5770–5777
CrossRef Pubmed Google scholar
[26]
He L Y, Lin Y, Huang X F, Guo S, Xue L, Su Q, Hu M, Luan S J, Zhang Y H. Characterization of high-resolution aerosol mass spectra of primary organic aerosol emissions from Chinese cooking and biomass burning. Atmospheric Chemistry and Physics, 2010, 10(23): 11535–11543
CrossRef Google scholar
[27]
de Gouw J A, Warneke C, Parrish D D, Holloway J S, Trainer M, Fehsenfeld F C. Emission sources and ocean uptake of acetonitrile (CH3CN) in the atmosphere. Journal of Geophysical Research-Atmospheres, 2003, 108(D11)
CrossRef Google scholar
[28]
Docherty K S, Stone E A, Ulbrich I M, DeCarlo P F, Snyder D C, Schauer J J, Peltier R E, Weber R J, Murphy S M, Seinfeld J H, Grover B D, Eatough D J, Jimenez J L. Apportionment of primary and secondary organic aerosols in southern California during the 2005 study of organic aerosols in riverside (SOAR-1). Environmental Science & Technology, 2008, 42(20): 7655–7662
CrossRef Pubmed Google scholar
[29]
Huffman J A, Docherty K S, Aiken A C, Cubison M J, Ulbrich I M, DeCarlo P F, Sueper D, Jayne J T, Worsnop D R, Ziemann P J, Jimenez J L. Chemically-resolved aerosol volatility measurements from two megacity field studies. Atmospheric Chemistry and Physics, 2009, 9(18): 7161–7182
CrossRef Google scholar

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant No. 21177001), the Open Project from Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control of Nanjing University of Information Science and Technology (Grant No. KHK1104) and the Innovation Platform for Superiority Subject of Environmental Science and Engineering of Jiangsu Province.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(716 KB)

Accesses

Citations

Detail

Sections
Recommended

/