Preparation and characterization of poly (vinylidene fluoride)/TiO2 hybrid membranes
Weiying LI, Xiuli SUN, Chen WEN, Hui LU, Zhiwei WANG
Preparation and characterization of poly (vinylidene fluoride)/TiO2 hybrid membranes
Poly(vinylidene fluoride) (PVDF)/titanium dioxide (TiO2) hybrid membranes were prepared using nano-TiO2 as the modifier, and characterized by Transmission Electron Microscope (TEM), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), atomic force microscope (AFM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The characterization results demonstrated that nano-sized TiO2 particles dispersed homogeneously within the PVDF matrix, contributing to more hydroxyls and smoother surfaces. Moreover, permeate flux, retention factor, porosity, contact angle and anti-fouling tests were carried out to evaluate the effect of TiO2 concentration on the performance of PVDF membranes. Among all the prepared membranes, PVDF/TiO2 membrane containing 10 vol.% TiO2 exhibited the best hydrophilicity with an average pure water flux up to 237 L·m-2·h-1, higher than that of unmodified PVDF membranes (155 L·m-2·h-1). Besides, the bovine serum albumin rejection of the hybrid membrane was improved evidently from 52.3% to 70.6%, and the contact angle was significantly lowered from 83° to 60°, while the average pore size and its distribution became smaller and narrower.
poly(vinylidene fluoride) (PVDF) membrane / nano-TiO2 / anti-fouling performance / water treatment
[1] |
Wu L, Sun J, Wang Q. Poly(vinylidene fluoride)/polyethersulfone blend membranes: effects of solvent sort, polyethersulfone and polyvinylpyrrolidone concentration on their properties and morphology. Journal of Membrane Science, 2006, 285(1-2): 290-298
|
[2] |
Wu L S, Sun J F, Wang Q R. Study progress of poly(vinylidene fluoride) membrane. Chinese Journal of Membrane Science and Technology, 2004, 24(5): 63-68 (in Chinese)
|
[3] |
Du J R, Peldszus S, Huck P M, Feng X. Modification of poly(vinylidene fluoride) ultrafiltration membranes with poly(vinyl alcohol) for fouling control in drinking water treatment. Water Research, 2009, 43(18): 4559-4568
CrossRef
Pubmed
Google scholar
|
[4] |
Du Q Y. Study on the preparation and application of PVDF hollow fiber membrane. Chinese Journal of Membrane Science and Technology, 2003, 23(4): 80-85 (in Chinese)
|
[5] |
Zuo D Y, Xu Y Y, Zou H T. Research on two-steps formation mechanism of PVDF membrane by immersion precipitation. Chinese Journal of Membrane Science and Technology, 2009, 29(1): 29-35 (in Chinese)
|
[6] |
Cao X, Ma J, Shi X, Ren Z. Effect of TiO2 nanoparticle size on the performance of PVDF membrane. Applied Surface Science, 2006, 253(4): 2003-2010
CrossRef
Google scholar
|
[7] |
Zhang Y Q, Zhang H L, Qu Y. Effects of addition of nano-SiO2 particles on polyvinylidene fluoride (PVDF) based membrane performance. Chinese Journal of Membrane Science and Technology, 2007, 27(6): 47-51 (in Chinese)
|
[8] |
Zhao Y H, Qian Y L, Zhu B K, Xu Y Y. Modification of porous poly(vinylidene fluoride) membrane using amphiphilic polymers with different structures in phase inversion process. Journal of Membrane Science, 2008, 310(1-2): 567-576
CrossRef
Google scholar
|
[9] |
Yu H Y, He X C, Liu L Q, Gu J S, Wei X W. Surface modification of polypropylene microporous membrane to improve its antifouling characteristics in an SMBR: N2 plasma treatment. Water Research, 2007, 41(20): 4703-4709
CrossRef
Pubmed
Google scholar
|
[10] |
Di Vona M L, Marani D, D'Epifanio A, Traversa E, Trombetta M, Licoccia S. A covalent organic/inorganic hybrid proton exchange polymeric membrane: synthesis and characterization. Polymer, 2005, 46(6): 1754-1758
CrossRef
Google scholar
|
[11] |
Xue S, Yin G. Proton exchange membranes based on poly(vinylidene fluoride) and sulfonated poly(ether ether ketone). Polymer, 2006, 47(14): 5044-5049
CrossRef
Google scholar
|
[12] |
Lu Y, Yu S L, Chai B X. Preparation of poly(vinylidene fluoride)(PVDF) ultrafiltration membrane modified by nano-sized alumina (Al2O3) and its antifouling research. Polymer, 2005, 46(18): 7701-7706
CrossRef
Google scholar
|
[13] |
Yu S L, Zuo X T, Bao R L, Xu X, Wang J, Xu J. Effect of SiO2 nanoparticle addition on the characteristics of a new organic–inorganic hybrid membrane. Polymer, 2009, 50(2): 553-559
CrossRef
Google scholar
|
[14] |
Zhao P, Fan J. Electrospun nylon 6 fibrous membrane coated with rice-like TiO2 nanoparticles by an ultrasonic-assistance method. Journal of Membrane Science, 2010, 355(1-2): 91-97.x003b2;
CrossRef
Google scholar
|
[15] |
He P, Zhao A C. Nanometer composite technology and application in polymer modification. Polymer Bulletin, 2001, 2(1): 74-82 (in Chinese)
|
[16] |
Khayet M, Villaluenga J P G, Valentin J L, Lepez-Manchado M A, Mengual J I, Seoane B. Filled poly(2,6-dimethyl-1,4-phenylene oxide) dense membranes by silica and silane modified silica nanoparticles: characterization and application in pervaporation. Polymer, 2005, 46(23): 9881-9891
CrossRef
Google scholar
|
[17] |
Bottino A, Capannelli G, Comite A. Preparation and characterization of novel porous PVDF-ZrO2 composite membranes. Desalination, 2002, 146(1-3): 35-40
CrossRef
Google scholar
|
[18] |
Zhou H, Chen Y, Fan H, Shi H, Luo Z, Shi B. Water vapor permeability of the polyurethane/TiO2 nanohybrid membrane with temperature sensitivity. Journal of Applied Polymer Science, 2008, 109(5): 3002-3007
CrossRef
Google scholar
|
[19] |
Vona M L D, Ahmed Z, Bellitto S, Lenci A, Traversa E, Licoccia S. SPEEK-TiO2 nanocomposite hybrid proton conductive membranes via in situ mixed sol–gel process. Journal of Membrane Science, 2007, 296(1-2): 156-161 x003b2;
CrossRef
Google scholar
|
[20] |
Yang Y, Wang P. Preparation and characterizations of a new PS/TiO2 hybrid membrane by sol–gel process. Polymer, 2006, 47(8): 2683-2688
CrossRef
Google scholar
|
[21] |
Zuo D Y, Xu Y Y, Zhang Z. Preparation and performance researches on PVDF microporous flat membrane with the large pore diameter. Technology of Water Treatment, 2008, 34(6): 8-11 (in Chinese)
|
[22] |
Fu X, Matsuyama H, Nagai H. Structure control of a symmetricpoly(vinyl butyral)-TiO2 composite membrane prepared by nonsolvent induced phase separation. Journal of Applied Polymer Science, 2008, 108(2): 713-723
CrossRef
Google scholar
|
[23] |
Amjadi M, Rowshanzamir S, Peighambardoust S J, Hosseini M G, Eikani M H. Investigation of physical properties and cell performance of Nafion/TiO2 nanocomposite membranes for high temperature PEM fuel cells. International Journal of Hydrogen Energy, 2010, 35(17): 9252-9260
CrossRef
Google scholar
|
[24] |
Bae T H M, Tak T M. Effect of TiO2 nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration. Journal of Membrane Science, 2005, 249(1-2): 1-8
CrossRef
Google scholar
|
[25] |
Ju X S, Huang P, Xu N P, Shi J. Study of factors influencing pore size of zirconia ultrafiltration membrane. Chinese Journal of Chemical Engineering, 2000, 14(2): 103-108 (in Chinese)
|
[26] |
Yang D, Li J, Jiang Z, Lu L, Chen X. Chitosan/TiO2 nanocomposite pervaporation membranes for ethanol dehydration. Chemical Engineering Science, 2009, 64(13): 3130-3137
CrossRef
Google scholar
|
[27] |
Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D'Alessio M, Zambonin P G, Traversa E. Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chemistry of Materials, 2005, 17(21): 5255-5262
CrossRef
Google scholar
|
[28] |
Jiang H F, Ma Y X, Wang D, Gao C J. Preparation and characterization of polymer/TiO2 hybrid membrane. Functional Materials, 2008, 40(4): 591-594
|
[29] |
Hu Q, Marand E, Dhingra S, Poly(amide-imide)/TiO2 nano-composite gas separation membranes: fabrication and characterization. Journal of Membrane Science, 1997, 135(1): 65-79
|
[30] |
Ren P, Zhang H, Zhang G F. Study on Crystal Phase in PVDF Melt Spun Fibre. Journal of Tianjin Polytechnic Univerisity, 2003, 22(4): 8-13 (in Chinese)
|
/
〈 | 〉 |