Preparation and characterization of poly (vinylidene fluoride)/TiO2 hybrid membranes

Weiying LI, Xiuli SUN, Chen WEN, Hui LU, Zhiwei WANG

PDF(544 KB)
PDF(544 KB)
Front. Environ. Sci. Eng. ›› 2013, Vol. 7 ›› Issue (4) : 492-502. DOI: 10.1007/s11783-012-0407-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Preparation and characterization of poly (vinylidene fluoride)/TiO2 hybrid membranes

Author information +
History +

Abstract

Poly(vinylidene fluoride) (PVDF)/titanium dioxide (TiO2) hybrid membranes were prepared using nano-TiO2 as the modifier, and characterized by Transmission Electron Microscope (TEM), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), atomic force microscope (AFM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The characterization results demonstrated that nano-sized TiO2 particles dispersed homogeneously within the PVDF matrix, contributing to more hydroxyls and smoother surfaces. Moreover, permeate flux, retention factor, porosity, contact angle and anti-fouling tests were carried out to evaluate the effect of TiO2 concentration on the performance of PVDF membranes. Among all the prepared membranes, PVDF/TiO2 membrane containing 10 vol.% TiO2 exhibited the best hydrophilicity with an average pure water flux up to 237 L·m-2·h-1, higher than that of unmodified PVDF membranes (155 L·m-2·h-1). Besides, the bovine serum albumin rejection of the hybrid membrane was improved evidently from 52.3% to 70.6%, and the contact angle was significantly lowered from 83° to 60°, while the average pore size and its distribution became smaller and narrower.

Keywords

poly(vinylidene fluoride) (PVDF) membrane / nano-TiO2 / anti-fouling performance / water treatment

Cite this article

Download citation ▾
Weiying LI, Xiuli SUN, Chen WEN, Hui LU, Zhiwei WANG. Preparation and characterization of poly (vinylidene fluoride)/TiO2 hybrid membranes. Front Envir Sci Eng, 2013, 7(4): 492‒502 https://doi.org/10.1007/s11783-012-0407-x

References

[1]
Wu L, Sun J, Wang Q. Poly(vinylidene fluoride)/polyethersulfone blend membranes: effects of solvent sort, polyethersulfone and polyvinylpyrrolidone concentration on their properties and morphology. Journal of Membrane Science, 2006, 285(1-2): 290-298
[2]
Wu L S, Sun J F, Wang Q R. Study progress of poly(vinylidene fluoride) membrane. Chinese Journal of Membrane Science and Technology, 2004, 24(5): 63-68 (in Chinese)
[3]
Du J R, Peldszus S, Huck P M, Feng X. Modification of poly(vinylidene fluoride) ultrafiltration membranes with poly(vinyl alcohol) for fouling control in drinking water treatment. Water Research, 2009, 43(18): 4559-4568
CrossRef Pubmed Google scholar
[4]
Du Q Y. Study on the preparation and application of PVDF hollow fiber membrane. Chinese Journal of Membrane Science and Technology, 2003, 23(4): 80-85 (in Chinese)
[5]
Zuo D Y, Xu Y Y, Zou H T. Research on two-steps formation mechanism of PVDF membrane by immersion precipitation. Chinese Journal of Membrane Science and Technology, 2009, 29(1): 29-35 (in Chinese)
[6]
Cao X, Ma J, Shi X, Ren Z. Effect of TiO2 nanoparticle size on the performance of PVDF membrane. Applied Surface Science, 2006, 253(4): 2003-2010
CrossRef Google scholar
[7]
Zhang Y Q, Zhang H L, Qu Y. Effects of addition of nano-SiO2 particles on polyvinylidene fluoride (PVDF) based membrane performance. Chinese Journal of Membrane Science and Technology, 2007, 27(6): 47-51 (in Chinese)
[8]
Zhao Y H, Qian Y L, Zhu B K, Xu Y Y. Modification of porous poly(vinylidene fluoride) membrane using amphiphilic polymers with different structures in phase inversion process. Journal of Membrane Science, 2008, 310(1-2): 567-576
CrossRef Google scholar
[9]
Yu H Y, He X C, Liu L Q, Gu J S, Wei X W. Surface modification of polypropylene microporous membrane to improve its antifouling characteristics in an SMBR: N2 plasma treatment. Water Research, 2007, 41(20): 4703-4709
CrossRef Pubmed Google scholar
[10]
Di Vona M L, Marani D, D'Epifanio A, Traversa E, Trombetta M, Licoccia S. A covalent organic/inorganic hybrid proton exchange polymeric membrane: synthesis and characterization. Polymer, 2005, 46(6): 1754-1758
CrossRef Google scholar
[11]
Xue S, Yin G. Proton exchange membranes based on poly(vinylidene fluoride) and sulfonated poly(ether ether ketone). Polymer, 2006, 47(14): 5044-5049
CrossRef Google scholar
[12]
Lu Y, Yu S L, Chai B X. Preparation of poly(vinylidene fluoride)(PVDF) ultrafiltration membrane modified by nano-sized alumina (Al2O3) and its antifouling research. Polymer, 2005, 46(18): 7701-7706
CrossRef Google scholar
[13]
Yu S L, Zuo X T, Bao R L, Xu X, Wang J, Xu J. Effect of SiO2 nanoparticle addition on the characteristics of a new organic–inorganic hybrid membrane. Polymer, 2009, 50(2): 553-559
CrossRef Google scholar
[14]
Zhao P, Fan J. Electrospun nylon 6 fibrous membrane coated with rice-like TiO2 nanoparticles by an ultrasonic-assistance method. Journal of Membrane Science, 2010, 355(1-2): 91-97.x003b2;
CrossRef Google scholar
[15]
He P, Zhao A C. Nanometer composite technology and application in polymer modification. Polymer Bulletin, 2001, 2(1): 74-82 (in Chinese)
[16]
Khayet M, Villaluenga J P G, Valentin J L, Lepez-Manchado M A, Mengual J I, Seoane B. Filled poly(2,6-dimethyl-1,4-phenylene oxide) dense membranes by silica and silane modified silica nanoparticles: characterization and application in pervaporation. Polymer, 2005, 46(23): 9881-9891
CrossRef Google scholar
[17]
Bottino A, Capannelli G, Comite A. Preparation and characterization of novel porous PVDF-ZrO2 composite membranes. Desalination, 2002, 146(1-3): 35-40
CrossRef Google scholar
[18]
Zhou H, Chen Y, Fan H, Shi H, Luo Z, Shi B. Water vapor permeability of the polyurethane/TiO2 nanohybrid membrane with temperature sensitivity. Journal of Applied Polymer Science, 2008, 109(5): 3002-3007
CrossRef Google scholar
[19]
Vona M L D, Ahmed Z, Bellitto S, Lenci A, Traversa E, Licoccia S. SPEEK-TiO2 nanocomposite hybrid proton conductive membranes via in situ mixed sol–gel process. Journal of Membrane Science, 2007, 296(1-2): 156-161 x003b2;
CrossRef Google scholar
[20]
Yang Y, Wang P. Preparation and characterizations of a new PS/TiO2 hybrid membrane by sol–gel process. Polymer, 2006, 47(8): 2683-2688
CrossRef Google scholar
[21]
Zuo D Y, Xu Y Y, Zhang Z. Preparation and performance researches on PVDF microporous flat membrane with the large pore diameter. Technology of Water Treatment, 2008, 34(6): 8-11 (in Chinese)
[22]
Fu X, Matsuyama H, Nagai H. Structure control of a symmetricpoly(vinyl butyral)-TiO2 composite membrane prepared by nonsolvent induced phase separation. Journal of Applied Polymer Science, 2008, 108(2): 713-723
CrossRef Google scholar
[23]
Amjadi M, Rowshanzamir S, Peighambardoust S J, Hosseini M G, Eikani M H. Investigation of physical properties and cell performance of Nafion/TiO2 nanocomposite membranes for high temperature PEM fuel cells. International Journal of Hydrogen Energy, 2010, 35(17): 9252-9260
CrossRef Google scholar
[24]
Bae T H M, Tak T M. Effect of TiO2 nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration. Journal of Membrane Science, 2005, 249(1-2): 1-8
CrossRef Google scholar
[25]
Ju X S, Huang P, Xu N P, Shi J. Study of factors influencing pore size of zirconia ultrafiltration membrane. Chinese Journal of Chemical Engineering, 2000, 14(2): 103-108 (in Chinese)
[26]
Yang D, Li J, Jiang Z, Lu L, Chen X. Chitosan/TiO2 nanocomposite pervaporation membranes for ethanol dehydration. Chemical Engineering Science, 2009, 64(13): 3130-3137
CrossRef Google scholar
[27]
Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D'Alessio M, Zambonin P G, Traversa E. Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chemistry of Materials, 2005, 17(21): 5255-5262
CrossRef Google scholar
[28]
Jiang H F, Ma Y X, Wang D, Gao C J. Preparation and characterization of polymer/TiO2 hybrid membrane. Functional Materials, 2008, 40(4): 591-594
[29]
Hu Q, Marand E, Dhingra S, Poly(amide-imide)/TiO2 nano-composite gas separation membranes: fabrication and characterization. Journal of Membrane Science, 1997, 135(1): 65-79
[30]
Ren P, Zhang H, Zhang G F. Study on Crystal Phase in PVDF Melt Spun Fibre. Journal of Tianjin Polytechnic Univerisity, 2003, 22(4): 8-13 (in Chinese)

Acknowledgements

This research was supported by the State Key Laboratory Foundation of Ministry of Science and Technology of China (Nos. PCRRY09004 and PCRRF08009), the Key Special Program on Science and Technology for Water Pollution Control and Governance (No. 2008ZX07421-006), International Science & Technology Cooperation Program of China (S2011ZR0434) and Study on Campus Drinking Water Project of Shuitian, Tongji University, China (No. STSJ2011100).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(544 KB)

Accesses

Citations

Detail

Sections
Recommended

/