Gold modified microelectrode for direct tetracycline detection

Hongtao WANG , Huimin ZHAO , Xie QUAN

Front. Environ. Sci. Eng. ›› 2012, Vol. 6 ›› Issue (3) : 313 -319.

PDF (499KB)
Front. Environ. Sci. Eng. ›› 2012, Vol. 6 ›› Issue (3) : 313 -319. DOI: 10.1007/s11783-011-0323-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Gold modified microelectrode for direct tetracycline detection

Author information +
History +
PDF (499KB)

Abstract

The residues of tetracycline antibiotics in water have attracted many concerns due to their harmful impact to human health. This paper reports an electrochemical sensor for the determination of tetracycline (TC) by the microelectrode, which was fabricated by electrodeposited gold colloids on tungsten tip. Cyclic voltammerty was used to study the electrochemical behavior of TC on the microelectrode. Well anodic wave was obtained at about 1.5 V in acidic solutions. Electrochemical determination of tetracycline was investigated using microelectrode by cyclic voltammetry. Under optimized conditions, the calibration curves for TC were obtained. The oxidation peak currents were linearly related to TC concentrations in the range of 1–10 mg·L-1 and 10–100 mg·L-1, respectively. The detection limit was 0.09 mg·L-1 (S/N = 3).

Keywords

microelectrode / tungsten tip / gold colloids / tetracycline

Cite this article

Download citation ▾
Hongtao WANG, Huimin ZHAO, Xie QUAN. Gold modified microelectrode for direct tetracycline detection. Front. Environ. Sci. Eng., 2012, 6(3): 313-319 DOI:10.1007/s11783-011-0323-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wittstock G, Gründig B, Strehlitz B, Zimmer K. Evaluation of microelectrode arrays for amperometric detection by scanning electrochemical microscopy. Electroanalysis, 1998, 10(8): 526–531

[2]

Dong H, Wang S H, Liu A H, Galligan J J, Swain G M. Drug effects on the electrochemical detection of norepinephrine with carbon fiber and diamond microelectrodes. Journal of Electroanalytical Chemistry, 2009, 632(1-2): 20–29

[3]

Wang R H, Dong W, Ruan C, Kanayeva D, Tian R, Lassiter K, Li Y. TiO2 nanowire bundle microelectrode based impedance immunosensor for rapid and sensitive detection of Listeria monocytogenes. Nano Letters, 2008, 8(9): 2625–2631

[4]

Liu S Y, Liu G, Tian Y C, Chen Y P, Yu H Q, Fang F. An innovative microelectrode fabricated using photolithography for measuring dissolved oxygen distributions in aerobic granules. Environmental Science & Technology, 2007, 41(15): 5447–5452

[5]

Lee M T B, Seliskar C J, Heineman W R, McGoron A J. Microelectrode sensors for in vivo detection of radiopharmaceuticals. Journal of the American Chemical Society, 1997, 119(27): 6434–6435

[6]

Lin Z, Takahashi Y, Kitagawa Y, Umemura T, Shiku H, Matsue T. An addressable microelectrode array for electrochemical detection. Analytical Chemistry, 2008, 80(17): 6830–6833

[7]

Suzuki A, Ivandini T A, Yoshimi K, Fujishima A, Oyama G, Nakazato T, Hattori N, Kitazawa S, Einaga Y. Fabrication, characterization, and application of boron-doped diamond microelectrodes for in vivo dopamine detection. Analytical Chemistry, 2007, 79(22): 8608–8615

[8]

Orozco J, Jiménez-Jorquera C, Fernández-Sánchez C. Gold nanoparticle-modified ultramicroelectrode arrays for biosensing: a comparative assessment. Bioelectrochemistry (Amsterdam, Netherlands), 2009, 75(2): 176–181

[9]

Woo D H, Kang H, Park S M. Fabrication of nanoscale gold disk electrodes using ultrashort pulse etching. Analytical Chemistry, 2003, 75(23): 6732–6736

[10]

Matos R C, Augelli M A, Lago C L, Angnes L. Flow injection analysis-amperometric determination of ascorbic and uric acids in urine using arrays of gold microelectrodes modified by electrodeposition of palladium. Analytica Chimica Acta, 2000, 404(1): 151–157

[11]

Hernández-Santos D, Gonzalez-Garcia M B, Garcia A C. Metal-nanoparticles based electroanalysis. Electroanalysis, 2002, 14(18): 1225–1235

[12]

Katz E, Willner I, Wang J. Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. Electroanalysis, 2004, 16(12): 19–44

[13]

Zhang G X, Liu X T, Sun K, Zhao Y, Lin C Y. Sorption of tetracycline to sediments and soils: assessing the roles of pH, the presence of cadmium and properties of sediments and soils. Frontiers of Environmental Science & Engineering in China, 2010, 4(4): 421–429

[14]

Baguer A J, Jensen J, Krogh P H. Effects of the antibiotics oxytetracycline and tylosin on soil fauna. Chemosphere, 2000, 40(7): 751–757

[15]

Richardson B J, Lam P K, Martin M. Emerging chemicals of concern: pharmaceuticals and personal care products (PPCPs) in Asia, with particular reference to Southern China. Marine Pollution Bulletin, 2005, 50(9): 913–920

[16]

Pellinen T, Bylund G, Virta M, Niemi A, Karp M. Detection of traces of tetracyclines from fish with a bioluminescent sensor strain incorporating bacterial luciferase reporter genes. Journal of Agricultural and Food Chemistry, 2002, 50(17): 4812–4815

[17]

Oka H, Ito Y, Matsumoto H. Chromatographic analysis of tetracycline antibiotics in foods. Journal of Chromatography. A, 2000, 882(1-2): 109–133

[18]

Masawat P, Slater J M. The determination of tetracycline residues in food using a disposable screen-printed gold electrode (SPGE). Sensors and Actuators. B, Chemical, 2007, 124(1): 127–132

[19]

Loetanantawong B, Suracheep C, Somasundrum M, Surareungchai W. Electrocatalytic tetracycline oxidation at a mixed-valent ruthenium oxide—ruthenium cyanide-modified glassy carbon electrode and determination of tetracyclines by liquid chromatography with electrochemical detection. Analytical Chemistry, 2004, 76(8): 2266–2272

[20]

Casella I G, Picerno F. Determination of tetracycline residues by liquid chromatography coupled with electrochemical detection and solid phase extraction. Journal of Agricultural and Food Chemistry, 2009, 57(19): 8735–8741

[21]

Boo H, Jeong R A, Park S, Kim K S, An K H, Lee Y H, Han J H, Kim H C, Chung T D. Electrochemical nanoneedle biosensor based on multiwall carbon nanotube. Analytical Chemistry, 2006, 78(2): 617–620

[22]

Xiong H, Kim J Y, Kim E K, Amemiya S. Scanning electrochemical microscopy of one-dimensional nanostructure: effects of nanostructure dimensions on the tip feedback current under unbiased conditions. Journal of Electroanalytical Chemistry, 2009, 629(1-2): 78–86

[23]

Küpper M, Schultze J W. SLCP-The scanning diffusion limited current probe: a new method for spatially resolved analysis. Electrochimica Acta, 1997, 42(20-22): 3085–3094

[24]

Shulga O, Kirchhoff J R. An acetylcholinesterase enzyme electrode stabilized by an electrodeposited gold nanoparticle layer. Electrochemistry Communications, 2007, 9(5): 935–940

[25]

Ding X J, Mou S F. Ion chromatographic analysis of tetracyclines using polymeric column and acidic eluent. Journal of Chromatography. A, 2000, 897(1-2): 205–214

[26]

Wangfuengkanagul N, Siangproh W, Chailapakul O. A flow injection method for the analysis of tetracycline antibiotics in pharmaceutical formulations using electrochemical detection at anodized boron-doped diamond thin film electrode. Talanta, 2004, 64(5): 1183–1188

[27]

Vega D, Agüí L, González-Cortés A, Yáñez-Sedeño P, Pingarrón J M. Voltammetry and amperometric detection of tetracyclines at multi-wall carbon nanotube modified electrodes. Analytical and Bioanalytical Chemistry, 2007, 389(3): 951–958

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (499KB)

2527

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/