Thermogravimetric coupled with Fourier transform infrared analysis study on thermal treatment of monopotassium phosphate residue

Yuheng FENG , Xuguang JIANG , Yong CHI , Xiaodong LI , Hongmei ZHU

Front. Environ. Sci. Eng. ›› 2011, Vol. 5 ›› Issue (2) : 186 -192.

PDF (247KB)
Front. Environ. Sci. Eng. ›› 2011, Vol. 5 ›› Issue (2) : 186 -192. DOI: 10.1007/s11783-011-0322-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Thermogravimetric coupled with Fourier transform infrared analysis study on thermal treatment of monopotassium phosphate residue

Author information +
History +
PDF (247KB)

Abstract

In China, safe disposal of hazardous waste is more and more a necessity, urged by rapid economic development. The pyrolysis and combustion characteristics of a residue from producing monopotassium phosphate (monopotassium phosphate residue), considered as a hazardous waste, were studied using a thermogravimetric, coupled with Fourier transform infrared analyzer (TG-FTIR). Both pyrolysis and combustion runs can be subdivided into three stages: drying, thermal decomposition, and final devolatilization. The average weight loss rate during fast thermal decomposition stage in pyrolysis is higher than combustion. Acetic acid, methane, pentane, (acetyl) cyclopropane, 2,4,6-trichlorophenol, CO, and CO2 were distinguished in the pyrolysis process, while CO2 was the dominant combustion product.

Keywords

hazardous waste / combustion / pyrolysis / thermogravimetric coupled with Fourier transform infrared analysis (TG-FTIR) / monopotassium phosphate residue

Cite this article

Download citation ▾
Yuheng FENG, Xuguang JIANG, Yong CHI, Xiaodong LI, Hongmei ZHU. Thermogravimetric coupled with Fourier transform infrared analysis study on thermal treatment of monopotassium phosphate residue. Front. Environ. Sci. Eng., 2011, 5(2): 186-192 DOI:10.1007/s11783-011-0322-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Orloff K, Falk H. An international perspective on hazardous waste practices. International Journal of Hygiene and Environmental Health, 2003, 206(4-5): 291–302

[2]

Karayildirim T, Yanik J, Yuksel M, Bockhorn H. Characterisation of products from pyrolysis of waste sludges. Fuel, 2006, 85(10-11): 1498–1508

[3]

Jiang X G, Li C Y, Chi Y, Yan J H. TG-FTIR study on urea-formaldehyde resin residue during pyrolysis and combustion. Journal of Hazardous Materials, 2010, 173(1-3): 205–210

[4]

Jiang X G, Li C Y, Chi Y, Yan J H. Thermal behavior characteristics of Adhesive residue. Waste Management (New York), 2009, 29(11): 2824–2829

[5]

Karayildirim T, Yanik J, Yuksel M, Bockhorn H. Characterisation of products from pyrolysis of waste sludge. Fuel, 2006, 85(10-11): 1498–1508

[6]

Méndez A, Fidalgo J M, Guerrero F, Gascób G. Characterization and pyrolysis behaviour of different paper mill waste materials. Journal of Analytical and Applied Pyrolysis, 2009, 86(1): 66–73

[7]

Phan A N, Ryu C, Sharifi V N, Swithenbank J. Characterisation of slow pyrolysis products from segregated wastes for energy production. Journal of Analytical and Applied Pyrolysis. Pyrolysis, 2008, 81(1): 65–71

[8]

Park E S, Kang B S, Kim J S. Recovery of oils with high caloric value and low contaminant content by pyrolysis of digested and dried sewage sludge containing polymer flocculants. Energy & Fuels, 2008, 22(2): 1335–1340

[9]

Solomon P R, Serio M A, Carangelo R M, Bassilakis R, Gravel D, Baillargeon M, Baudais F, Vail G. Analysis of the Argonne Premium coal samples by thermogravimetric Fourier transform infrared spectroscopy. Energy & Fuels, 1990, 4(3): 319–333

[10]

Bassilakis R, Carangelo R M, Wójtowicz M A. TG-FTIR analysis of biomass pyrolysis. Fuel, 2001, 80(12): 1765–1786

[11]

Wójtowicz M A, Bassilakis R, Smith W W, Chen Y G, Carangelo R M. Modeling the evolution of volatile species during tobacco pyrolysis. Journal of Analytical and Applied Pyrolysis, 2003, 66(1-2): 235–261

[12]

de Jong W, Pironea A, Wójtowicz M A. Pyrolysis of Miscanthus Giganteus and wood pellets: TG-FTIR analysis and reaction kinetics. Fuel, 2003, 82(9): 1139–1147

[13]

de Jong W, Nola G D, Venneker B C H, Spliethoff H, Wójtowicz M A. TG-FTIR pyrolysis of coal and secondary biomass fuels: Determination of pyrolysis kinetic parameters for main species and NOx precursors. Fuel, 2007, 86(15): 2367–2376

[14]

Nola G D, de Jong W, Spliethoff H. TG-FTIR characterization of coal and biomass single fuels and blends under slow heating rate conditions: Partitioning of the fuel-bound nitrogen. Fuel Processing Technology, 2010, 91(1): 103–115

[15]

Ren Q Q, Zhao C S, Wu X, Liang C, Chen X P, Shen J Z, Tang G Y, Wang Z. Wang . Effect of mineral matter on the formation of NOx precursors during biomass pyrolysis. Journal of Analytical and Applied Pyrolysis, 2009, 85(1-2): 447–453

[16]

Jiang X G, Li C Y, Wang T, Liu B C, Chi Y, Yan J H. TG-FTIR study of pyrolysis products evolving from dyestuff production waste. Journal of Analytical and Applied Pyrolysis, 2009, 84(1): 103–107

[17]

Zhu H M, Yan J H, Jiang X G, Lai Y E, Cen K F. Study on pyrolysis of typical medical waste materials by using TG-FTIR analysis. Journal of Hazardous Materials, 2008, 153(1-2): 670–676

[18]

Zhu H M, Jiang X G, Yan J H, Chi Y, Cen K F. TG-FTIR analysis of PVC thermal degradation and HCl removal. Journal of Analytical and Applied Pyrolysis, 2008, 82(1): 1–9

[19]

Tao L, Zhao G B, Qian J, Qin Y K. TG-FTIR characterization of pyrolysis of waste mixtures of paint and tar slag. Journal of Hazardous Materials, 2010, 175(1-3): 754–761

[20]

Marsnich K, Barontini F, Cozzani V, Petarca L. Advanced pulse calibration techniques for the quantitative analysis of TG-FTIR data. Thermochimica Acta, 2002, 390(1-2): 153–168

[21]

Capart R, Khezami L, Burnha A K. Assessment of various kinetic models for the pyrolysis of a microgranular cellulose. Thermochimica Acta, 2004, 417(1): 79–89

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (247KB)

3256

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/