Current molecular biologic techniques for characterizing environmental microbial community

Dawen GAO , Yu TAO

Front. Environ. Sci. Eng. ›› 2012, Vol. 6 ›› Issue (1) : 82 -97.

PDF (468KB)
Front. Environ. Sci. Eng. ›› 2012, Vol. 6 ›› Issue (1) : 82 -97. DOI: 10.1007/s11783-011-0306-6
REVIEW ARTICLE
REVIEW ARTICLE

Current molecular biologic techniques for characterizing environmental microbial community

Author information +
History +
PDF (468KB)

Abstract

Microbes are vital to the earth because of their enormous numbers and instinct function maintaining the natural balance. Since the microbiology was applied in environmental science and engineering more than a century ago, researchers desire for more and more information concerning the microbial spatio-temporal variations in almost every fields from contaminated soil to wastewater treatment plant (WWTP). For the past 30 years, molecular biologic techniques explored for environmental microbial community (EMC) have spanned a broad range of approaches to facilitate the researches with the assistance of computer science: faster, more accurate and more sensitive. In this feature article, we outlined several current and emerging molecular biologic techniques applied in detection of EMC, and presented and assessed in detail the application of three promising tools.

Keywords

molecular biological technique / microbial community / denaturing gradient gel electrophoresis (DGGE) / terminal restriction fragment length polymorphism (T-RFLP) / environmental applications

Cite this article

Download citation ▾
Dawen GAO, Yu TAO. Current molecular biologic techniques for characterizing environmental microbial community. Front. Environ. Sci. Eng., 2012, 6(1): 82-97 DOI:10.1007/s11783-011-0306-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tiedje J, Donohue T. Microbes in the energy grid. Science, 2008, 320(5879): 985

[2]

Lemaire R, Webb R I, Yuan Z G. Micro-scale observations of the structure of aerobic microbial granules used for the treatment of nutrient-rich industrial wastewater. ISME J, 2008, 2(5): 528–541

[3]

Kartal B, Kuenen J G, van Loosdrecht M C M. Sewage treatment with anammox. Science, 2010, 328(5979): 702–703

[4]

Xu M Y, Wu W M, Wu L Y, He Z L, van Nostrand J D, Deng Y, Luo J A, Carley J, Ginder-Vogel M, Gentry T J, Gu B H, Watson D, Jardine P M, Marsh T L, Tiedje J M, Hazen T, Criddle C S, Zhou J Z. Responses of microbial community functional structures to pilot-scale uranium in situ bioremediation. ISME J, 2010, 4(8): 1060–1070

[5]

Fuhrman J A. Microbial community structure and its functional implications. Nature, 2009, 459(7244): 193–199

[6]

Hori T, Haruta S, Ueno Y, Ishii M, Igarashi Y. Dynamic transition of a methanogenic population in response to the concentration of volatile fatty acids in a thermophilic anaerobic digester. Applied and Environmental Microbiology, 2006, 72(2): 1623–1630

[7]

Ikeda S, Rallos L E E, Okubo T, Eda S, Inaba S, Mitsui H, Minamisawa K. Microbial community analysis of field-grown soybeans with different nodulation phenotypes. Applied and Environmental Microbiology, 2008, 74(18): 5704–5709

[8]

Wood S A, Rueckert A, Cowan D A, Cary S C. Sources of edaphic cyanobacterial diversity in the Dry Valleys of Eastern Antarctica. ISME J, 2008, 2(3): 308–320

[9]

Kvennefors E C E, Sampayo E, Ridgway T, Barnes A C, Hoegh-Guldberg O. Bacterial communities of two ubiquitous Great Barrier Reef corals reveals both site- and species-specificity of common bacterial associates. PLOS ONE, 2010, 5(4):1–14

[10]

Mikkelsen D, Kappler U, McEwan A G, Sly L I. Probing the archaeal diversity of a mixed thermophilic bioleaching culture by TGGE and FISH. Systematic and Applied Microbiology, 2009, 32(7): 501–513

[11]

Xue D W, Feng S G, Zhao H Y, Jiang H, Shen B, Shi N N, Lu J J, Liu J J, Wang H Z. The linkage maps of Dendrobium species based on RAPD and SRAP markers. Journal of Genetics and Genomics = Yi Chuan Xue Bao, 2010, 37(3): 197–204

[12]

Rodas A M, Ferrer S, Pardo I. 16S-ARDRA, a tool for identification of lactic acid bacteria isolated from grape must and wine. Systematic and Applied Microbiology, 2003, 26(3): 412–422

[13]

Deiglmayr K, Philippot L, Tscherko D, Kandeler E. Microbial succession of nitrate-reducing bacteria in the rhizosphere of Poa alpina across a glacier foreland in the Central Alps. Environmental Microbiology, 2006, 8(9): 1600–1612

[14]

Alvarado P, Manjón J L. Selection of enzymes for terminal restriction fragment length polymorphism analysis of fungal internally transcribed spacer sequences. Applied and Environmental Microbiology, 2009, 75(14): 4747–4752

[15]

Talbot G, Roy C S, Topp E, Beaulieu C, Palin M F, Massé D I. Multivariate statistical analyses of rDNA and rRNA fingerprint data to differentiate microbial communities in swine manure. FEMS Microbiology Ecology, 2009, 70(3): 540–552

[16]

Chandler D P, Kukhtin A, Mokhiber R, Knickerbocker C, Ogles D, Rudy G, Golova J, Long P, Peacock A. Monitoring microbial community structure and dynamics during in situ U(VI) bioremediation with a field-portable microarray analysis system. Environmental Science & Technology, 2010, 44(14): 5516–5522

[17]

Brulc J M, Antonopoulos D A, Berg Miller M E, Wilson M K, Yannarell A C, Dinsdale E A, Edwards R E, Frank E D, Emerson J B, Wacklin P, Coutinho P M, Henrissat B, Nelson K E, White B A. Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(6): 1948–1953

[18]

Mou X Z, Sun S L, Edwards R A, Hodson R E, Moran M A. Bacterial carbon processing by generalist species in the coastal ocean. Nature, 2008, 451(7179): 708–711

[19]

Poitelon J B, Joyeux M, Welté B, Duguet J P, Prestel E, Lespinet O, DuBow M S. Assessment of phylogenetic diversity of bacterial microflora in drinking water using serial analysis of ribosomal sequence tags. Water Research, 2009, 43(17): 4197–4206

[20]

Sahl J W, Schmidt R H, Swanner E D, Mandernack K W, Templeton A S, Kieft T L, Smith R L, Sanford W E, Callaghan R L, Mitton J B, Spear J R. Subsurface microbial diversity in deep-granitic-fracture water in Colorado. Applied and Environmental Microbiology, 2008, 74(1): 143–152

[21]

Burkhardt E M, Akob D M, Bischoff S, Sitte J, Kostka J E, Banerjee D, Scheinost A C, Küsel K. Impact of biostimulated redox processes on metal dynamics in an iron-rich creek soil of a former uranium mining area. Environmental Science & Technology, 2010, 44(1): 177–183

[22]

Foley M E, Sigler V, Gruden C L. A multiphasic characterization of the impact of the herbicide acetochlor on freshwater bacterial communities. ISME J, 2008, 2(1): 56–66

[23]

Kim J M, Lee H J, Kim S Y, Song J J, Park W, Jeon C O. Analysis of the fine-scale population structure of “Candidatus accumulibacter phosphatis” in enhanced biological phosphorus removal sludge, using fluorescence in situ hybridization and flow cytometric sorting. Applied and Environmental Microbiology, 2010, 76(12): 3825–3835

[24]

Hesselsoe M, Füreder S, Schloter M, Bodrossy L, Iversen N, Roslev P, Nielsen P H, Wagner M, Loy A. Isotope array analysis of Rhodocyclales uncovers functional redundancy and versatility in an activated sludge. ISME J, 2009, 3(12): 1349–1364

[25]

White D C, Davis W M, Nickels J S, King J D, Bobbie R J. Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia, 1979, 40(1): 51–62

[26]

Yergeau E, Bezemer T M, Hedlund K, Mortimer S R, Kowalchuk G A, van der Putten W H, Influences of space, soil, nematodes and plants on microbial community composition of chalk grassland soils. Environmental Microbiology, 2010, 12(8): 2096–2106

[27]

Yao H Y, Wu F Z. Soil microbial community structure in cucumber rhizosphere of different resistance cultivars to fusarium wilt. FEMS Microbiology Ecology, 2010, 72(3): 456–463

[28]

Schütz K, Nagel P, Vetter W, Kandeler E, Ruess L. Flooding forested groundwater recharge areas modifies microbial communities from top soil to groundwater table. FEMS Microbiology Ecology, 2009, 67(1): 171–182

[29]

Björk R G, Ernfors M, Sikström U, Nilsson M B, Andersson M X, Rütting T, Klemedtsson L. Contrasting effects of wood ash application on microbial community structure, biomass and processes in drained forested peatlands. FEMS Microbiology Ecology, 2010, 73(3): 550–562

[30]

Wang M C, Liu Y H, Wang Q, Gong M, Hua X M, Pang Y J, Hu S, Yang Y H. Impacts of methamidophos on the biochemical, catabolic, and genetic characteristics of soil microbial communities. Soil Biology & Biochemistry, 2008, 40(3): 778–788

[31]

Muyzer G, de Waal E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 1993, 59(3): 695–700

[32]

Fromin N, Hamelin J, Tarnawski S, Roesti D, Jourdain-Miserez K, Forestier N, Teyssier-Cuvelle S, Gillet F, Aragno M, Rossi P. Statistical analysis of denaturing gel electrophoresis (DGE) fingerprinting patterns. Environmental Microbiology, 2002, 4(11): 634–643

[33]

Hjort K, Bergström M, Adesina M F, Jansson J K, Smalla K, Sjöling S. Chitinase genes revealed and compared in bacterial isolates, DNA extracts and a metagenomic library from a phytopathogen-suppressive soil. FEMS Microbiology Ecology, 2010, 71(2): 197–207

[34]

Parkes R J, Cragg B A, Banning N, Brock F, Webster G, Fry J C, Hornibrook E, Pancost R D, Kelly S, Knab N, Jørgensen B B, Rinna J, Weightman A J. Biogeochemistry and biodiversity of methane cycling in subsurface marine sediments (Skagerrak, Denmark). Environmental Microbiology, 2007, 9(5): 1146–1161

[35]

Wang X H, Wen X H, Criddle C, Wells G, Zhang J, Zhao Y. Community analysis of ammonia-oxidizing bacteria in activated sludge of eight wastewater treatment systems. Journal of Environmental Sciences (China), 2010, 22(4): 627–634

[36]

Suzuki M, Rappe M S, Giovannoni S J. Kinetic bias in estimates of coastal picoplankton community structure obtained by measurements of small-subunit rRNA gene PCR amplicon length heterogeneity. Applied and Environmental Microbiology, 1998, 64(11): 4522–4529

[37]

Bulgari D, Casati P, Brusetti L, Quaglino F, Brasca M, Daffonchio D, Bianco P A. Endophytic bacterial diversity in grapevine (Vitis vinifera L.) leaves described by 16S rRNA gene sequence analysis and length heterogeneity-PCR. Journal of Microbiology (Seoul, Korea), 2009, 47(4): 393–401

[38]

Ahn C, Peralta R M. Soil bacterial community structure and physicochemical properties in mitigation wetlands created in the Piedmont region of Virginia (USA). Ecological Engineering, 2009, 35(7): 1036–1042

[39]

Taipale S, Jones R I, Tiirola M. Vertical diversity of bacteria in an oxygen-stratified humic lake, evaluated using DNA and phospholipid analyses. Aquatic Microbial Ecology, 2009, 55(1): 1–16

[40]

Mills D K, Fitzgerald K, Litchfield C D, Gillevet P M. A comparison of DNA profiling techniques for monitoring nutrient impact on microbial community composition during bioremediation of petroleum-contaminated soils. Journal of Microbiological Methods, 2003, 54(1): 57–74

[41]

Ritchie N J, Schutter M E, Dick R P, Myrold D D. Use of length heterogeneity PCR and fatty acid methyl ester profiles to characterize microbial communities in soil. Applied and Environmental Microbiology, 2000, 66(4): 1668–1675

[42]

Tiirola M A, Suvilampi J E, Kulomaa M S, Rintala J A. Microbial diversity in a thermophilic aerobic biofilm process: analysis by length heterogeneity PCR (LH-PCR). Water Research, 2003, 37(10): 2259–2268

[43]

Suzuki M T. Effect of protistan bacterivory on coastal bacterioplankton diversity. Aquatic Microbial Ecology, 1999, 20(3): 261–272

[44]

Dorigo U, Volatier L, Humbert J F. Molecular approaches to the assessment of biodiversity in aquatic microbial communities. Water Research, 2005, 39(11): 2207–2218

[45]

Fisher M M, Triplett E W. Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Applied and Environmental Microbiology, 1999, 65(10): 4630–4636

[46]

Manter D K, Delgado J A, Holm D G, Stong R A. Pyrosequencing reveals a highly diverse and cultivar-specific bacterial endophyte community in potato roots. Microbial Ecology, 2010, 60(1): 157–166

[47]

Knief C, Ramette A, Frances L, Alonso-Blanco C, Vorholt J A. Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere. ISME J, 2010, 4(6): 719–728

[48]

Ranjard L, Poly F, Lata J C, Mougel C, Thioulouse J, Nazaret S. Characterization of bacterial and fungal soil communities by automated ribosomal intergenic spacer analysis fingerprints: biological and methodological variability. Applied and Environmental Microbiology, 2001, 67(10): 4479–4487

[49]

Sanz J L, Kochling T. Molecular biology techniques used in wastewater treatment: an overview. Process Biochemistry, 2007, 42(2): 119–133

[50]

Brinkmeyer R, Knittel K, Jürgens J, Weyland H, Amann R, Helmke E. Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice. Applied and Environmental Microbiology, 2003, 69(11): 6610–6619

[51]

Glöckner F O, Fuchs B M, Amann R. Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Applied and Environmental Microbiology, 1999, 65(8): 3721–3726

[52]

Knittel K, Lösekann T, Boetius A, Kort R, Amann R. Diversity and distribution of methanotrophic archaea at cold seeps. Applied and Environmental Microbiology, 2005, 71(1): 467–479

[53]

Eilers H, Pernthaler J, Glöckner F O, Amann R. Culturability and In situ abundance of pelagic bacteria from the North Sea. Applied and Environmental Microbiology, 2000, 66(7): 3044–3051

[54]

Schramm A, de Beer D, van den Heuvel J C, Ottengraf S, Amann R. Microscale distribution of populations and activities of Nitrosospira and Nitrospira spp. along a macroscale gradient in a nitrifying bioreactor: quantification by in situ hybridization and the use of microsensors. Applied and Environmental Microbiology, 1999, 65(8): 3690–3696

[55]

Gieseke A, Purkhold U, Wagner M, Amann R, Schramm A. Community structure and activity dynamics of nitrifying bacteria in a phosphate-removing biofilm. Applied and Environmental Microbiology, 2001, 67(3): 1351–1362

[56]

Altmann D, Stief P, Amann R, de Beer D. Distribution and activity of nitrifying bacteria in natural stream sediment versus laboratory sediment microcosms. Aquatic Microbial Ecology, 2004, 36(1): 73–81

[57]

Ravenschlag K, Sahm K, Knoblauch C, Jørgensen B B, Amann R. Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine arctic sediments. Applied and Environmental Microbiology, 2000, 66(8): 3592–3602

[58]

Llobet-Brossa E, Rabus R, Bottcher M E, Konneke M, Finke N, Schramm A, Meyer R L, Grotzschel S, Rossello-Mora R, Amann R. Community structure and activity of sulfate-reducing bacteria in an intertidal surface sediment: a multi-method approach. Aquatic Microbial Ecology, 2002, 29(3): 211–226

[59]

Christensson M, Blackall L L, Welander T. Metabolic transformations and characterisation of the sludge community in an enhanced biological phosphorus removal system. Applied Microbiology and Biotechnology, 1998, 49(2): 226–234

[60]

Strous M, Kuenen J G, Jetten M S M. Key physiology of anaerobic ammonium oxidation. Applied and Environmental Microbiology, 1999, 65(7): 3248–3250

[61]

Tran H T, Park Y J, Cho M K, Kim D J, Ahn D H. Anaerobic ammonium oxidation process in an upflow anaerobic sludge blanket reactor with granular sludge selected from an anaerobic digestor. Biotechnology and Bioprocess Engineering, 2006, 11(3): 199–204

[62]

Miura Y, Watanabe Y, Okabe S. Significance of Chloroflexi in performance of submerged membrane bioreactors (MBR) treating municipal wastewater. Environmental Science & Technology, 2007, 41(22): 7787–7794

[63]

Webster G, Blazejak A, Cragg B A, Schippers A, Sass H, Rinna J, Tang X H, Mathes F, Ferdelman T G, Fry J C, Weightman A J, Parkes R J. Subsurface microbiology and biogeochemistry of a deep, cold-water carbonate mound from the Porcupine Seabight (IODP Expedition 307). Environmental Microbiology, 2009, 11(1): 239–257

[64]

Lee N, Nielsen P H, Andreasen K H, Juretschko S, Nielsen J L, Schleifer K H, Wagner M. Combination of fluorescent in situ hybridization and microautoradiography–a new tool for structure-function analyses in microbial ecology. Applied and Environmental Microbiology, 1999, 65(3): 1289–1297

[65]

Ouverney C C, Fuhrman J A. Combined microautoradiography-16S rRNA probe technique for determination of radioisotope uptake by specific microbial cell types in situ. Applied and Environmental Microbiology, 1999, 65(4): 1746–1752

[66]

Wagner M, Nielsen P H, Loy A, Nielsen J L, Daims H. Linking microbial community structure with function: fluorescence in situ hybridization-microautoradiography and isotope arrays. Current Opinion in Biotechnology, 2006, 17(1): 83–91

[67]

Nielsen J L, Christensen D, Kloppenborg M, Nielsen P H. Quantification of cell-specific substrate uptake by probe-defined bacteria under in situ conditions by microautoradiography and fluorescence in situ hybridization. Environmental Microbiology, 2003, 5(3): 202–211

[68]

Neufeld J D, Wagner M, Murrell J C. Who eats what, where and when? Isotope-labelling experiments are coming of age. ISME J, 2007, 1(2): 103–110

[69]

Boschker H T S, Nold S C, Wellsbury P, Bos D, de Graaf W, Pel R, Parkes R J, Cappenberg T E. Direct linking of microbial populations to specific biogeochemical processes by 13C-labelling of biomarkers. Nature, 1998, 392(6678): 801–805

[70]

Radajewski S, Ineson P, Parekh N R, Murrell J C. Stable-isotope probing as a tool in microbial ecology. Nature, 2000, 403(6770): 646–649

[71]

Manefield M, Whiteley A S, Griffiths R I, Bailey M J. RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Applied and Environmental Microbiology, 2002, 68(11): 5367–5373

[72]

Friedrich M W. Stable-isotope probing of DNA: insights into the function of uncultivated microorganisms from isotopically labeled metagenomes. Current Opinion in Biotechnology, 2006, 17(1): 59–66

[73]

Whiteley A S, Manefield M, Lueders T. Unlocking the ‘microbial black box’ using RNA-based stable isotope probing technologies. Current Opinion in Biotechnology, 2006, 17(1): 67–71

[74]

Schena M, Shalon D, Davis R W, Brown P O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 1995, 270(5235): 467–470

[75]

Roh S W, Abell G C J, Kim K H, Nam Y D, Bae J W. Comparing microarrays and next-generation sequencing technologies for microbial ecology research. Trends in Biotechnology, 2010, 28(6): 291–299

[76]

Gentry T J, Wickham G S, Schadt C W, He Z, Zhou J. Microarray applications in microbial ecology research. Microbial Ecology, 2006, 52(2): 159–175

[77]

Duc L, Neuenschwander S, Rehrauer H, Wagner U, Sobek J, Schlapbach R, Zeyer J. Development and experimental validation of a nifH oligonucleotide microarray to study diazotrophic communities in a glacier forefield. Environmental Microbiology, 2009, 11(8): 2179–2189

[78]

He Z L, Gentry T J, Schadt C W, Wu L Y, Liebich J, Chong S C, Huang Z J, Wu W M, Gu B H, Jardine P, Criddle C, Zhou J. GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME J, 2007, 1(1): 67–77

[79]

Zhou J H. Microarrays for bacterial detection and microbial community analysis. Current Opinion in Microbiology, 2003, 6(3): 288–294

[80]

Rivas L A, García-Villadangos M, Moreno-Paz M, Cruz-Gil P, Gómez-Elvira J, Parro V. A 200-antibody microarray biochip for environmental monitoring: searching for universal microbial biomarkers through immunoprofiling. Analytical Chemistry, 2008, 80(21): 7970–7979

[81]

Rich V I, Konstantinidis K, DeLong E F. Design and testing of ‘genome-proxy’ microarrays to profile marine microbial communities. Environmental Microbiology, 2008, 10(2): 506–521

[82]

Raes J, Bork P. Molecular eco-systems biology: towards an understanding of community function. Nature Reviews Microbiology, 2008, 6(9): 693–699

[83]

Hultman J, Ritari J, Romantschuk M, Paulin L, Auvinen P. Universal ligation-detection-reaction microarray applied for compost microbes. BMC Microbiology, 2008, 8:237–251.

[84]

Nyberg L, Turco R F, Nies L. Assessing the impact of nanomaterials on anaerobic microbial communities. Environmental Science & Technology, 2008, 42(6): 1938–1943

[85]

Drees K P, Neilson J W, Betancourt J L, Quade J, Henderson D A, Pryor B M, Maier R M. Bacterial community structure in the hyperarid core of the Atacama Desert, Chile. Applied and Environmental Microbiology, 2006, 72(12): 7902–7908

[86]

Duineveld B M, Rosado A S, van Elsas J D, van Veen J A. Analysis of the dynamics of bacterial communities in the rhizosphere of the chrysanthemum via denaturing gradient gel electrophoresis and substrate utilization patterns. Applied and Environmental Microbiology, 1998, 64(12): 4950–4957

[87]

Weidler G W, Gerbl F W, Stan-Lotter H. Crenarchaeota and their role in the nitrogen cycle in a subsurface radioactive thermal spring in the Austrian Central Alps. Applied and Environmental Microbiology, 2008, 74(19): 5934–5942

[88]

Otawa K, Asano R, Ohba Y, Sasaki T, Kawamura E, Koyama F, Nakamura S, Nakai Y. Molecular analysis of ammonia-oxidizing bacteria community in intermittent aeration sequencing batch reactors used for animal wastewater treatment. Environmental Microbiology, 2006, 8(11): 1985–1996

[89]

Chen X P, Zhu Y G, Xia Y, Shen J P, He J Z. Ammonia-oxidizing archaea: important players in paddy rhizosphere soil? Environmental Microbiology, 2008, 10(8): 1978–1987

[90]

Weinert N, Meincke R, Gottwald C, Heuer H, Gomes N C M, Schloter M, Berg G, Smalla K. Rhizosphere communities of genetically modified zeaxanthin-accumulating potato plants and their parent cultivar differ less than those of different potato cultivars. Applied and Environmental Microbiology, 2009, 75(12): 3859–3865

[91]

Kowalchuk G A, Stienstra A W, Heilig G H J, Stephen J R, Woldendorp J W. Changes in the community structure of ammonia-oxidizing bacteria during secondary succession of calcareous grasslands. Environmental Microbiology, 2000, 2(1): 99–110

[92]

Henckel T, Friedrich M, Conrad R. Molecular analyses of the methane-oxidizing microbial community in rice field soil by targeting the genes of the 16S rRNA, particulate methane monooxygenase, and methanol dehydrogenase. Applied and Environmental Microbiology, 1999, 65(5): 1980–1990

[93]

Wertz S, Dandie C E, Goyer C, Trevors J T, Patten C L. Diversity of nirK denitrifying genes and transcripts in an agricultural soil. Applied and Environmental Microbiology, 2009, 75(23): 7365–7377

[94]

Glausiusz J. Extreme culture. Nature, 2007, 447(7147): 905–906

[95]

Meroth C B, Hammes W P, Hertel C. Identification and population dynamics of yeasts in sourdough fermentation processes by PCR-denaturing gradient gel electrophoresis. Applied and Environmental Microbiology, 2003, 69(12): 7453–7461

[96]

Crump B C, Koch E W. Attached bacterial populations shared by four species of aquatic angiosperms. Applied and Environmental Microbiology, 2008, 74(19): 5948–5957

[97]

Cébron A, Coci M, Garnier J, Laanbroek H J. Denaturing gradient gel electrophoretic analysis of ammonia-oxidizing bacterial community structure in the lower Seine River: impact of Paris wastewater effluents. Applied and Environmental Microbiology, 2004, 70(11): 6726–6737

[98]

Hallin S, Lydmark P, Kokalj S, Hermansson M, Sörensson F, Jarvis A, Lindgren P E. Community survey of ammonia-oxidizing bacteria in full-scale activated sludge processes with different solids retention time. Journal of Applied Microbiology, 2005, 99(3): 629–640

[99]

Cardenas E, Wu W M, Leigh M B, Carley J, Carroll S, Gentry T, Luo J, Watson D, Gu B, Ginder-Vogel M, Kitanidis P K, Jardine P M, Zhou J, Criddle C S, Marsh T L, Tiedje J M. Microbial communities in contaminated sediments, associated with bioremediation of uranium to submicromolar levels. Applied and Environmental Microbiology, 2008, 74(12): 3718–3729

[100]

Wu W M, Carley J, Luo J, Ginder-Vogel M A, Cardenas E, Leigh M B, Hwang C, Kelly S D, Ruan C, Wu L, van Nostrand J, Gentry T, Lowe K, Mehlhorn T, Carroll S, Luo W, Fields M W, Gu B, Watson D, Kemner K M, Marsh T, Tiedje J, Zhou J, Fendorf S, Kitanidis P K, Jardine P M, Criddle C S. In situ bioreduction of uranium (VI) to submicromolar levels and reoxidation by dissolved oxygen. Environmental Science & Technology, 2007, 41(16): 5716–5723

[101]

Gao D W, Fu Y, Tao Y, Li X, Xing M, Gao X H, Ren N Q, Linking microbial community structure to membrane biofouling associated with varying dissolved oxygen. Bioresource Technology, 2010 DOI: 10.1016/j.biortech. 2011.02.039

[102]

White H K, Reimers C E, Cordes E E, Dilly G F, Girguis P R. Quantitative population dynamics of microbial communities in plankton-fed microbial fuel cells. ISME J, 2009, 3(6): 635–646

[103]

Jong B C, Kim B H, Chang I S, Liew P W Y, Choo Y F, Kang G S. Enrichment, performance, and microbial diversity of a thermophilic mediatorless microbial fuel cell. Environmental Science & Technology, 2006, 40(20): 6449–6454

[104]

Cytryn E, Minz D, Gelfand I, Neori A, Gieseke A, de Beer D, van Rijn J. Sulfide-oxidizing activity and bacterial community structure in a fluidized bed reactor from a zero-discharge mariculture system. Environmental Science & Technology, 2005, 39(6): 1802–1810

[105]

Martineau C, Whyte L G, Greer C W. Stable isotope probing analysis of the diversity and activity of methanotrophic bacteria in soils from the Canadian high Arctic. Applied and Environmental Microbiology, 2010, 76(17): 5773–5784

[106]

Lukow T 1, Dunfield P F, Liesack W. Use of the T-RFLP technique to assess spatial and temporal changes in the bacterial community structure within an agricultural soil planted with transgenic and non-transgenic potato plants. FEMS Microbiology Ecology, 2000, 32(3): 241–247

[107]

Dunbar J, Ticknor L O, Kuske C R. Assessment of microbial diversity in four southwestern United States soils by 16S rRNA gene terminal restriction fragment analysis. Applied and Environmental Microbiology, 2000, 66(7): 2943–2950

[108]

Tom-Petersen A, Leser T D, Marsh T L, Nybroe O. Effects of copper amendment on the bacterial community in agricultural soil analyzed by the T-RFLP technique. FEMS Microbiology Ecology, 2003, 46(1): 53–62

[109]

Morales S E, Mouser P J, Ward N, Hudman S P, Gotelli N J, Ross D S, Lewis T A. Comparison of bacterial communities in New England Sphagnum bogs using terminal restriction fragment length polymorphism (T-RFLP). Microbial Ecology, 2006, 52(1): 34–44

[110]

Lepère C, Boucher D, Jardillier L, Domaizon I, Debroas D. Succession and regulation factors of small eukaryote community composition in a lacustrine ecosystem (Lake Pavin). Applied and Environmental Microbiology, 2006, 72(4): 2971–2981

[111]

Mills H J, Hunter E, Humphrys M, Kerkhof L, McGuinness L, Huettel M, Kostka J E. Characterization of nitrifying, denitrifying, and overall bacterial communities in permeable marine sediments of the northeastern Gulf of Mexico. Applied and Environmental Microbiology, 2008, 74(14): 4440–4453

[112]

Swan B K, Ehrhardt C J, Reifel K M, Moreno L I, Valentine D L. Archaeal and bacterial communities respond differently to environmental gradients in anoxic sediments of a California hypersaline lake, the Salton Sea. Applied and Environmental Microbiology, 2010, 76(3): 757–768

[113]

Whang L M, Chien I C, Yuan S L, Wu Y J. Nitrifying community structures and nitrification performance of full-scale municipal and swine wastewater treatment plants. Chemosphere, 2009, 75(2): 234–242

[114]

Collins G, Woods A, McHugh S, Carton M W, O’Flaherty V. Microbial community structure and methanogenic activity during start-up of psychrophilic anaerobic digesters treating synthetic industrial wastewaters. FEMS Microbiology Ecology, 2003, 46(2): 159–170

[115]

Gao D, Zhang T, Tang C Y, Wu W M, Wong C Y, Lee Y H, Yeh D H, Criddle C S. Membrane fouling in an anaerobic membrane bioreactor: differences in relative abundance of bacterial species in the membrane foulant layer and insuspension. Journal ofMembrane Science, 2010

[116]

Pang C M, Liu W T. Community structure analysis of reverse osmosis membrane biofilms and the significance of Rhizobiales bacteria in biofouling. Environmental Science & Technology, 2007, 41(13): 4728–4734

[117]

Saikaly P E, Stroot P G, Oerther D B. Use of 16S rRNA gene terminal restriction fragment analysis to assess the impact of solids retention time on the bacterial diversity of activated sludge. Applied and Environmental Microbiology, 2005, 71(10): 5814–5822

[118]

Madden A S, Smith A C, Balkwill D L, Fagan L A, Phelps T J. Microbial uranium immobilization independent of nitrate reduction. Environmental Microbiology, 2007, 9(9): 2321–2330

[119]

Kennedy N, Edwards S, Clipson N. Soil bacterial and fungal community structure across a range of unimproved and semi-improved upland grasslands. Microbial Ecology, 2005, 50(3): 463–473

[120]

Hidri Y, Bouziri L, Maron P A, Anane M, Jedidi N, Hassan A, Ranjard L. Soil DNA evidence for altered microbial diversity after long-term application of municipal wastewater. Agronomy for Sustainable Development, 2010, 30(2): 423–431

[121]

Kent A D, Jones S E, Yannarell A C, Graham J M, Lauster G H, Kratz T K, Triplett E W. Annual patterns in bacterioplankton community variability in a humic lake. Microbial Ecology, 2004, 48(4): 550–560

[122]

Graham J M, Kent A D, Lauster G H, Yannarell A C, Graham L E, Triplett E W. Seasonal dynamics of phytoplankton and planktonic protozoan communities in a northern temperate humic lake: diversity in a dinoflagellate dominated system. Microbial Ecology, 2004, 48(4): 528–540

[123]

Wood S A, Jentzsch K, Rueckert A, Hamilton D P, Cary S C. Hindcasting cyanobacterial communities in Lake Okaro with germination experiments and genetic analyses. FEMS Microbiology Ecology, 2009, 67(2): 252–260

[124]

Nold S C, Pangborn J B, Zajack H A, Kendall S T, Rediske R R, Biddanda B A. Benthic bacterial diversity in submerged sinkhole ecosystems. Applied and Environmental Microbiology, 2010, 76(1): 347–351

[125]

Borin S, Marzorati M, Cavalca L, Sorlini C, Daffonchio D, Zilli M, Converti A, Cherif H, Hassen A. Diversity of the microflora of a compost-packed biofilter treating benzene-contaminated air. European Symposium on Environmental Biotechnology, Eseb 2004, 2004: 75–79

[126]

Steele J A, Ozis F, Fuhrman J A, Devinny J S. Structure of microbial communities in ethanol biofilters. Chemical Engineering Journal, 2005, 113(2–3): 135–143

[127]

Vanysacker L, Declerck S A J, Hellemans B, de Meester L, Vankelecom I, Declerck P. Bacterial community analysis of activated sludge: an evaluation of four commonly used DNA extraction methods. Applied Microbiology and Biotechnology, 2010, 88(1): 299–307

[128]

Zhang X, Brussee K, Coutinho C T, Rooney-Varga J N. Chemical stress induced by copper: examination of a biofilm system. Water Science and Technology, 2006, 54(9): 191–199

[129]

Hewson I, Fuhrman J A. Richness and diversity of bacterioplankton species along an estuarine gradient in Moreton Bay, Australia. Applied and Environmental Microbiology, 2004, 70(6): 3425–3433

[130]

Popa R, Popa R, Mashall M J, Nguyen H, Tebo B M, Brauer S. Limitations and benefits of ARISA intra-genomic diversity fingerprinting. Journal of Microbiological Methods, 2009, 78(2): 111–118

[131]

Kovacs A, Yacoby K, Gophna U. A systematic assessment of automated ribosomal intergenic spacer analysis (ARISA) as a tool for estimating bacterial richness. Research in Microbiology, 2010, 161(3): 192–197

[132]

de Vero L, Gala E, Gullo M, Solieri L, Landi S, Giudici P. Application of denaturing gradient gel electrophoresis (DGGE) analysis to evaluate acetic acid bacteria in traditional balsamic vinegar. Food Microbiology, 2006, 23(8): 809–813

[133]

Meays C L, Broersma K, Nordin R, Mazumder A. Source tracking fecal bacteria in water: a critical review of current methods. Journal of Environmental Management, 2004, 73(1): 71–79

[134]

Middleton S A, Anzenberger G, Knapp L A. Denaturing gradient gel electrophoresis (DGGE) screening of clones prior to sequencing. Molecular Ecology Notes, 2004, 4(4): 776–778

[135]

Talbot G, Topp E, Palin M F, Massé D I. Evaluation of molecular methods used for establishing the interactions and functions of microorganisms in anaerobic bioreactors. Water Research, 2008, 42(3): 513–537

[136]

Gilbride K A, Lee D Y, Beaudette L A. Molecular techniques in wastewater: understanding microbial communities, detecting pathogens, and real-time process control. Journal of Microbiological Methods, 2006, 66(1): 1–20

[137]

Bernhard A E, Colbert D, McManus J, Field K G. Microbial community dynamics based on 16S rRNA gene profiles in a Pacific Northwest estuary and its tributaries. FEMS Microbiology Ecology, 2005, 52(1): 115–128

[138]

Kan J, Suzuki M T, Wang K, Evans S E, Chen F. High temporal but low spatial heterogeneity of bacterioplankton in the Chesapeake Bay. Applied and Environmental Microbiology, 2007, 73(21): 6776–6789

[139]

Cardinale M, Brusetti L, Quatrini P, Borin S, Puglia A M, Rizzi A, Zanardini E, Sorlini C, Corselli C, Daffonchio D. Comparison of different primer sets for use in automated ribosomal intergenic spacer analysis of complex bacterial communities. Applied and Environmental Microbiology, 2004, 70(10): 6147–6156

[140]

Tiirola M, Lahtinen T, Vuento M, Oker-Blom C. Early succession of bacterial biofilms in paper machines. Journal of Industrial Microbiology & Biotechnology, 2009, 36(7): 929–937

[141]

Okubo A, Sugiyama S. Comparison of molecular fingerprinting methods for analysis of soil microbial community structure. Ecological Research, 2009, 24(6): 1399–1405

[142]

Danovaro R, Luna G M, Dell’anno A, Pietrangeli B. Comparison of two fingerprinting techniques, terminal restriction fragment length polymorphism and automated ribosomal intergenic spacer analysis, for determination of bacterial diversity in aquatic environments. Applied and Environmental Microbiology, 2006, 72(9): 5982–5989

[143]

Ramette A. Quantitative community fingerprinting methods for estimating the abundance of operational taxonomic units in natural microbial communities. Applied and Environmental Microbiology, 2009, 75(8): 2495–2505

[144]

Yannarell A C, Triplett E W. Within- and between-lake variability in the composition of bacterioplankton communities: investigations using multiple spatial scales. Applied and Environmental Microbiology, 2004, 70(1): 214–223

[145]

Wilderer P A, Bungartz H J, Lemmer H, Wagner M, Keller J, Wuertz S. Modern scientific methods and their potential in wastewater science and technology. Water Research, 2002, 36(2): 370–393

[146]

Sekar R, Pernthaler A, Pernthaler J, Warnecke F, Posch T, Amann R. An improved protocol for quantification of freshwater Actinobacteria by fluorescence in situ hybridization. Applied and Environmental Microbiology, 2003, 69(5): 2928–2935

[147]

Miura Y, Okabe S. Quantification of cell specific uptake activity of microbial products by uncultured Chloroflexi by microautoradiography combined with fluorescence in situ hybridization. Environmental Science & Technology, 2008, 42(19): 7380–7386

[148]

Nielsen J L, Christensen D, Kloppenborg M, Nielsen P H. Quantification of cell-specific substrate uptake by probe-defined bacteria under in situ conditions by microautoradiography and fluorescence in situ hybridization. Environmental Microbiology, 2003, 5(3): 202–211

[149]

Nielsen J L, Nielsen P H. Advances in microscopy: microautoradiography of single cells. Methods in Enzymology, 2005, 397: 237–256

[150]

Yin H Q, Cao L H, Qiu G Z, Wang D Z, Kellogg L, Zhou J Z, Dai Z M, Liu X D. Development and evaluation of 50-mer oligonucleotide arrays for detecting microbial populations in Acid Mine Drainages and bioleaching systems. Journal of Microbiological Methods, 2007, 70(1): 165–178

[151]

Wilson K H, Wilson W J, Radosevich J L, DeSantis T Z, Viswanathan V S, Kuczmarski T A, Andersen G L. High-density microarray of small-subunit ribosomal DNA probes. Applied and Environmental Microbiology, 2002, 68(5): 2535–2541

[152]

Wu L Y, Thompson D K, Liu X D, Fields M W, Bagwell C E, Tiedje J M, Zhou J Z. Development and evaluation of microarray-based whole-genome hybridization for detection of microorganisms within the context of environmental applications. Environmental Science & Technology, 2004, 38(24): 6775–6782

[153]

Wu L Y, Thompson D K, Li G S, Hurt R A, Tiedje J M, Zhou J Z. Development and evaluation of functional gene arrays for detection of selected genes in the environment. Applied and Environmental Microbiology, 2001, 67(12): 5780–5790

[154]

Shalon D, Smith S J, Brown P O. A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Research, 1996, 6(7): 639–645

[155]

Bent S J, Forney L J. The tragedy of the uncommon: understanding limitations in the analysis of microbial diversity. ISME J, 2008, 2(7): 689–695

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (468KB)

4106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/