Current molecular biologic techniques for characterizing environmental microbial community

Dawen GAO, Yu TAO

PDF(468 KB)
PDF(468 KB)
Front. Environ. Sci. Eng. ›› 2012, Vol. 6 ›› Issue (1) : 82-97. DOI: 10.1007/s11783-011-0306-6
REVIEW ARTICLE
REVIEW ARTICLE

Current molecular biologic techniques for characterizing environmental microbial community

Author information +
History +

Abstract

Microbes are vital to the earth because of their enormous numbers and instinct function maintaining the natural balance. Since the microbiology was applied in environmental science and engineering more than a century ago, researchers desire for more and more information concerning the microbial spatio-temporal variations in almost every fields from contaminated soil to wastewater treatment plant (WWTP). For the past 30 years, molecular biologic techniques explored for environmental microbial community (EMC) have spanned a broad range of approaches to facilitate the researches with the assistance of computer science: faster, more accurate and more sensitive. In this feature article, we outlined several current and emerging molecular biologic techniques applied in detection of EMC, and presented and assessed in detail the application of three promising tools.

Keywords

molecular biological technique / microbial community / denaturing gradient gel electrophoresis (DGGE) / terminal restriction fragment length polymorphism (T-RFLP) / environmental applications

Cite this article

Download citation ▾
Dawen GAO, Yu TAO. Current molecular biologic techniques for characterizing environmental microbial community. Front Envir Sci Eng, 2012, 6(1): 82‒97 https://doi.org/10.1007/s11783-011-0306-6

References

[1]
Tiedje J, Donohue T. Microbes in the energy grid. Science, 2008, 320(5879): 985
CrossRef Pubmed Google scholar
[2]
Lemaire R, Webb R I, Yuan Z G. Micro-scale observations of the structure of aerobic microbial granules used for the treatment of nutrient-rich industrial wastewater. ISME J, 2008, 2(5): 528–541
CrossRef Pubmed Google scholar
[3]
Kartal B, Kuenen J G, van Loosdrecht M C M. Sewage treatment with anammox. Science, 2010, 328(5979): 702–703
CrossRef Pubmed Google scholar
[4]
Xu M Y, Wu W M, Wu L Y, He Z L, van Nostrand J D, Deng Y, Luo J A, Carley J, Ginder-Vogel M, Gentry T J, Gu B H, Watson D, Jardine P M, Marsh T L, Tiedje J M, Hazen T, Criddle C S, Zhou J Z. Responses of microbial community functional structures to pilot-scale uranium in situ bioremediation. ISME J, 2010, 4(8): 1060–1070
CrossRef Pubmed Google scholar
[5]
Fuhrman J A. Microbial community structure and its functional implications. Nature, 2009, 459(7244): 193–199
CrossRef Pubmed Google scholar
[6]
Hori T, Haruta S, Ueno Y, Ishii M, Igarashi Y. Dynamic transition of a methanogenic population in response to the concentration of volatile fatty acids in a thermophilic anaerobic digester. Applied and Environmental Microbiology, 2006, 72(2): 1623–1630
CrossRef Pubmed Google scholar
[7]
Ikeda S, Rallos L E E, Okubo T, Eda S, Inaba S, Mitsui H, Minamisawa K. Microbial community analysis of field-grown soybeans with different nodulation phenotypes. Applied and Environmental Microbiology, 2008, 74(18): 5704–5709
CrossRef Pubmed Google scholar
[8]
Wood S A, Rueckert A, Cowan D A, Cary S C. Sources of edaphic cyanobacterial diversity in the Dry Valleys of Eastern Antarctica. ISME J, 2008, 2(3): 308–320
CrossRef Pubmed Google scholar
[9]
Kvennefors E C E, Sampayo E, Ridgway T, Barnes A C, Hoegh-Guldberg O. Bacterial communities of two ubiquitous Great Barrier Reef corals reveals both site- and species-specificity of common bacterial associates. PLOS ONE, 2010, 5(4):1–14
CrossRef Pubmed Google scholar
[10]
Mikkelsen D, Kappler U, McEwan A G, Sly L I. Probing the archaeal diversity of a mixed thermophilic bioleaching culture by TGGE and FISH. Systematic and Applied Microbiology, 2009, 32(7): 501–513
CrossRef Pubmed Google scholar
[11]
Xue D W, Feng S G, Zhao H Y, Jiang H, Shen B, Shi N N, Lu J J, Liu J J, Wang H Z. The linkage maps of Dendrobium species based on RAPD and SRAP markers. Journal of Genetics and Genomics = Yi Chuan Xue Bao, 2010, 37(3): 197–204
CrossRef Pubmed Google scholar
[12]
Rodas A M, Ferrer S, Pardo I. 16S-ARDRA, a tool for identification of lactic acid bacteria isolated from grape must and wine. Systematic and Applied Microbiology, 2003, 26(3): 412–422
CrossRef Pubmed Google scholar
[13]
Deiglmayr K, Philippot L, Tscherko D, Kandeler E. Microbial succession of nitrate-reducing bacteria in the rhizosphere of Poa alpina across a glacier foreland in the Central Alps. Environmental Microbiology, 2006, 8(9): 1600–1612
CrossRef Pubmed Google scholar
[14]
Alvarado P, Manjón J L. Selection of enzymes for terminal restriction fragment length polymorphism analysis of fungal internally transcribed spacer sequences. Applied and Environmental Microbiology, 2009, 75(14): 4747–4752
CrossRef Pubmed Google scholar
[15]
Talbot G, Roy C S, Topp E, Beaulieu C, Palin M F, Massé D I. Multivariate statistical analyses of rDNA and rRNA fingerprint data to differentiate microbial communities in swine manure. FEMS Microbiology Ecology, 2009, 70(3): 540–552
CrossRef Pubmed Google scholar
[16]
Chandler D P, Kukhtin A, Mokhiber R, Knickerbocker C, Ogles D, Rudy G, Golova J, Long P, Peacock A. Monitoring microbial community structure and dynamics during in situ U(VI) bioremediation with a field-portable microarray analysis system. Environmental Science & Technology, 2010, 44(14): 5516–5522
CrossRef Pubmed Google scholar
[17]
Brulc J M, Antonopoulos D A, Berg Miller M E, Wilson M K, Yannarell A C, Dinsdale E A, Edwards R E, Frank E D, Emerson J B, Wacklin P, Coutinho P M, Henrissat B, Nelson K E, White B A. Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(6): 1948–1953
CrossRef Pubmed Google scholar
[18]
Mou X Z, Sun S L, Edwards R A, Hodson R E, Moran M A. Bacterial carbon processing by generalist species in the coastal ocean. Nature, 2008, 451(7179): 708–711
CrossRef Pubmed Google scholar
[19]
Poitelon J B, Joyeux M, Welté B, Duguet J P, Prestel E, Lespinet O, DuBow M S. Assessment of phylogenetic diversity of bacterial microflora in drinking water using serial analysis of ribosomal sequence tags. Water Research, 2009, 43(17): 4197–4206
CrossRef Pubmed Google scholar
[20]
Sahl J W, Schmidt R H, Swanner E D, Mandernack K W, Templeton A S, Kieft T L, Smith R L, Sanford W E, Callaghan R L, Mitton J B, Spear J R. Subsurface microbial diversity in deep-granitic-fracture water in Colorado. Applied and Environmental Microbiology, 2008, 74(1): 143–152
CrossRef Pubmed Google scholar
[21]
Burkhardt E M, Akob D M, Bischoff S, Sitte J, Kostka J E, Banerjee D, Scheinost A C, Küsel K. Impact of biostimulated redox processes on metal dynamics in an iron-rich creek soil of a former uranium mining area. Environmental Science & Technology, 2010, 44(1): 177–183
CrossRef Pubmed Google scholar
[22]
Foley M E, Sigler V, Gruden C L. A multiphasic characterization of the impact of the herbicide acetochlor on freshwater bacterial communities. ISME J, 2008, 2(1): 56–66
CrossRef Pubmed Google scholar
[23]
Kim J M, Lee H J, Kim S Y, Song J J, Park W, Jeon C O. Analysis of the fine-scale population structure of “Candidatus accumulibacter phosphatis” in enhanced biological phosphorus removal sludge, using fluorescence in situ hybridization and flow cytometric sorting. Applied and Environmental Microbiology, 2010, 76(12): 3825–3835
CrossRef Pubmed Google scholar
[24]
Hesselsoe M, Füreder S, Schloter M, Bodrossy L, Iversen N, Roslev P, Nielsen P H, Wagner M, Loy A. Isotope array analysis of Rhodocyclales uncovers functional redundancy and versatility in an activated sludge. ISME J, 2009, 3(12): 1349–1364
CrossRef Pubmed Google scholar
[25]
White D C, Davis W M, Nickels J S, King J D, Bobbie R J. Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia, 1979, 40(1): 51–62
CrossRef Google scholar
[26]
Yergeau E, Bezemer T M, Hedlund K, Mortimer S R, Kowalchuk G A, van der Putten W H, Influences of space, soil, nematodes and plants on microbial community composition of chalk grassland soils. Environmental Microbiology, 2010, 12(8): 2096–2106
[27]
Yao H Y, Wu F Z. Soil microbial community structure in cucumber rhizosphere of different resistance cultivars to fusarium wilt. FEMS Microbiology Ecology, 2010, 72(3): 456–463
CrossRef Pubmed Google scholar
[28]
Schütz K, Nagel P, Vetter W, Kandeler E, Ruess L. Flooding forested groundwater recharge areas modifies microbial communities from top soil to groundwater table. FEMS Microbiology Ecology, 2009, 67(1): 171–182
CrossRef Pubmed Google scholar
[29]
Björk R G, Ernfors M, Sikström U, Nilsson M B, Andersson M X, Rütting T, Klemedtsson L. Contrasting effects of wood ash application on microbial community structure, biomass and processes in drained forested peatlands. FEMS Microbiology Ecology, 2010, 73(3): 550–562
Pubmed
[30]
Wang M C, Liu Y H, Wang Q, Gong M, Hua X M, Pang Y J, Hu S, Yang Y H. Impacts of methamidophos on the biochemical, catabolic, and genetic characteristics of soil microbial communities. Soil Biology & Biochemistry, 2008, 40(3): 778–788
CrossRef Google scholar
[31]
Muyzer G, de Waal E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 1993, 59(3): 695–700
Pubmed
[32]
Fromin N, Hamelin J, Tarnawski S, Roesti D, Jourdain-Miserez K, Forestier N, Teyssier-Cuvelle S, Gillet F, Aragno M, Rossi P. Statistical analysis of denaturing gel electrophoresis (DGE) fingerprinting patterns. Environmental Microbiology, 2002, 4(11): 634–643
CrossRef Pubmed Google scholar
[33]
Hjort K, Bergström M, Adesina M F, Jansson J K, Smalla K, Sjöling S. Chitinase genes revealed and compared in bacterial isolates, DNA extracts and a metagenomic library from a phytopathogen-suppressive soil. FEMS Microbiology Ecology, 2010, 71(2): 197–207
CrossRef Pubmed Google scholar
[34]
Parkes R J, Cragg B A, Banning N, Brock F, Webster G, Fry J C, Hornibrook E, Pancost R D, Kelly S, Knab N, Jørgensen B B, Rinna J, Weightman A J. Biogeochemistry and biodiversity of methane cycling in subsurface marine sediments (Skagerrak, Denmark). Environmental Microbiology, 2007, 9(5): 1146–1161
CrossRef Pubmed Google scholar
[35]
Wang X H, Wen X H, Criddle C, Wells G, Zhang J, Zhao Y. Community analysis of ammonia-oxidizing bacteria in activated sludge of eight wastewater treatment systems. Journal of Environmental Sciences (China), 2010, 22(4): 627–634
CrossRef Pubmed Google scholar
[36]
Suzuki M, Rappe M S, Giovannoni S J. Kinetic bias in estimates of coastal picoplankton community structure obtained by measurements of small-subunit rRNA gene PCR amplicon length heterogeneity. Applied and Environmental Microbiology, 1998, 64(11): 4522–4529
Pubmed
[37]
Bulgari D, Casati P, Brusetti L, Quaglino F, Brasca M, Daffonchio D, Bianco P A. Endophytic bacterial diversity in grapevine (Vitis vinifera L.) leaves described by 16S rRNA gene sequence analysis and length heterogeneity-PCR. Journal of Microbiology (Seoul, Korea), 2009, 47(4): 393–401
CrossRef Pubmed Google scholar
[38]
Ahn C, Peralta R M. Soil bacterial community structure and physicochemical properties in mitigation wetlands created in the Piedmont region of Virginia (USA). Ecological Engineering, 2009, 35(7): 1036–1042
CrossRef Google scholar
[39]
Taipale S, Jones R I, Tiirola M. Vertical diversity of bacteria in an oxygen-stratified humic lake, evaluated using DNA and phospholipid analyses. Aquatic Microbial Ecology, 2009, 55(1): 1–16
CrossRef Google scholar
[40]
Mills D K, Fitzgerald K, Litchfield C D, Gillevet P M. A comparison of DNA profiling techniques for monitoring nutrient impact on microbial community composition during bioremediation of petroleum-contaminated soils. Journal of Microbiological Methods, 2003, 54(1): 57–74
CrossRef Pubmed Google scholar
[41]
Ritchie N J, Schutter M E, Dick R P, Myrold D D. Use of length heterogeneity PCR and fatty acid methyl ester profiles to characterize microbial communities in soil. Applied and Environmental Microbiology, 2000, 66(4): 1668–1675
CrossRef Pubmed Google scholar
[42]
Tiirola M A, Suvilampi J E, Kulomaa M S, Rintala J A. Microbial diversity in a thermophilic aerobic biofilm process: analysis by length heterogeneity PCR (LH-PCR). Water Research, 2003, 37(10): 2259–2268
CrossRef Pubmed Google scholar
[43]
Suzuki M T. Effect of protistan bacterivory on coastal bacterioplankton diversity. Aquatic Microbial Ecology, 1999, 20(3): 261–272
CrossRef Google scholar
[44]
Dorigo U, Volatier L, Humbert J F. Molecular approaches to the assessment of biodiversity in aquatic microbial communities. Water Research, 2005, 39(11): 2207–2218
CrossRef Pubmed Google scholar
[45]
Fisher M M, Triplett E W. Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Applied and Environmental Microbiology, 1999, 65(10): 4630–4636
Pubmed
[46]
Manter D K, Delgado J A, Holm D G, Stong R A. Pyrosequencing reveals a highly diverse and cultivar-specific bacterial endophyte community in potato roots. Microbial Ecology, 2010, 60(1): 157–166
CrossRef Pubmed Google scholar
[47]
Knief C, Ramette A, Frances L, Alonso-Blanco C, Vorholt J A. Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere. ISME J, 2010, 4(6): 719–728
CrossRef Pubmed Google scholar
[48]
Ranjard L, Poly F, Lata J C, Mougel C, Thioulouse J, Nazaret S. Characterization of bacterial and fungal soil communities by automated ribosomal intergenic spacer analysis fingerprints: biological and methodological variability. Applied and Environmental Microbiology, 2001, 67(10): 4479–4487
CrossRef Pubmed Google scholar
[49]
Sanz J L, Kochling T. Molecular biology techniques used in wastewater treatment: an overview. Process Biochemistry, 2007, 42(2): 119–133
CrossRef Google scholar
[50]
Brinkmeyer R, Knittel K, Jürgens J, Weyland H, Amann R, Helmke E. Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice. Applied and Environmental Microbiology, 2003, 69(11): 6610–6619
CrossRef Pubmed Google scholar
[51]
Glöckner F O, Fuchs B M, Amann R. Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Applied and Environmental Microbiology, 1999, 65(8): 3721–3726
Pubmed
[52]
Knittel K, Lösekann T, Boetius A, Kort R, Amann R. Diversity and distribution of methanotrophic archaea at cold seeps. Applied and Environmental Microbiology, 2005, 71(1): 467–479
CrossRef Pubmed Google scholar
[53]
Eilers H, Pernthaler J, Glöckner F O, Amann R. Culturability and In situ abundance of pelagic bacteria from the North Sea. Applied and Environmental Microbiology, 2000, 66(7): 3044–3051
CrossRef Pubmed Google scholar
[54]
Schramm A, de Beer D, van den Heuvel J C, Ottengraf S, Amann R. Microscale distribution of populations and activities of Nitrosospira and Nitrospira spp. along a macroscale gradient in a nitrifying bioreactor: quantification by in situ hybridization and the use of microsensors. Applied and Environmental Microbiology, 1999, 65(8): 3690–3696
Pubmed
[55]
Gieseke A, Purkhold U, Wagner M, Amann R, Schramm A. Community structure and activity dynamics of nitrifying bacteria in a phosphate-removing biofilm. Applied and Environmental Microbiology, 2001, 67(3): 1351–1362
CrossRef Pubmed Google scholar
[56]
Altmann D, Stief P, Amann R, de Beer D. Distribution and activity of nitrifying bacteria in natural stream sediment versus laboratory sediment microcosms. Aquatic Microbial Ecology, 2004, 36(1): 73–81
CrossRef Google scholar
[57]
Ravenschlag K, Sahm K, Knoblauch C, Jørgensen B B, Amann R. Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine arctic sediments. Applied and Environmental Microbiology, 2000, 66(8): 3592–3602
CrossRef Pubmed Google scholar
[58]
Llobet-Brossa E, Rabus R, Bottcher M E, Konneke M, Finke N, Schramm A, Meyer R L, Grotzschel S, Rossello-Mora R, Amann R. Community structure and activity of sulfate-reducing bacteria in an intertidal surface sediment: a multi-method approach. Aquatic Microbial Ecology, 2002, 29(3): 211–226
CrossRef Google scholar
[59]
Christensson M, Blackall L L, Welander T. Metabolic transformations and characterisation of the sludge community in an enhanced biological phosphorus removal system. Applied Microbiology and Biotechnology, 1998, 49(2): 226–234
CrossRef Google scholar
[60]
Strous M, Kuenen J G, Jetten M S M. Key physiology of anaerobic ammonium oxidation. Applied and Environmental Microbiology, 1999, 65(7): 3248–3250
Pubmed
[61]
Tran H T, Park Y J, Cho M K, Kim D J, Ahn D H. Anaerobic ammonium oxidation process in an upflow anaerobic sludge blanket reactor with granular sludge selected from an anaerobic digestor. Biotechnology and Bioprocess Engineering, 2006, 11(3): 199–204
CrossRef Google scholar
[62]
Miura Y, Watanabe Y, Okabe S. Significance of Chloroflexi in performance of submerged membrane bioreactors (MBR) treating municipal wastewater. Environmental Science & Technology, 2007, 41(22): 7787–7794
CrossRef Pubmed Google scholar
[63]
Webster G, Blazejak A, Cragg B A, Schippers A, Sass H, Rinna J, Tang X H, Mathes F, Ferdelman T G, Fry J C, Weightman A J, Parkes R J. Subsurface microbiology and biogeochemistry of a deep, cold-water carbonate mound from the Porcupine Seabight (IODP Expedition 307). Environmental Microbiology, 2009, 11(1): 239–257
CrossRef Pubmed Google scholar
[64]
Lee N, Nielsen P H, Andreasen K H, Juretschko S, Nielsen J L, Schleifer K H, Wagner M. Combination of fluorescent in situ hybridization and microautoradiography–a new tool for structure-function analyses in microbial ecology. Applied and Environmental Microbiology, 1999, 65(3): 1289–1297
Pubmed
[65]
Ouverney C C, Fuhrman J A. Combined microautoradiography-16S rRNA probe technique for determination of radioisotope uptake by specific microbial cell types in situ. Applied and Environmental Microbiology, 1999, 65(4): 1746–1752
Pubmed
[66]
Wagner M, Nielsen P H, Loy A, Nielsen J L, Daims H. Linking microbial community structure with function: fluorescence in situ hybridization-microautoradiography and isotope arrays. Current Opinion in Biotechnology, 2006, 17(1): 83–91
CrossRef Pubmed Google scholar
[67]
Nielsen J L, Christensen D, Kloppenborg M, Nielsen P H. Quantification of cell-specific substrate uptake by probe-defined bacteria under in situ conditions by microautoradiography and fluorescence in situ hybridization. Environmental Microbiology, 2003, 5(3): 202–211
CrossRef Pubmed Google scholar
[68]
Neufeld J D, Wagner M, Murrell J C. Who eats what, where and when? Isotope-labelling experiments are coming of age. ISME J, 2007, 1(2): 103–110
CrossRef Pubmed Google scholar
[69]
Boschker H T S, Nold S C, Wellsbury P, Bos D, de Graaf W, Pel R, Parkes R J, Cappenberg T E. Direct linking of microbial populations to specific biogeochemical processes by 13C-labelling of biomarkers. Nature, 1998, 392(6678): 801–805
CrossRef Google scholar
[70]
Radajewski S, Ineson P, Parekh N R, Murrell J C. Stable-isotope probing as a tool in microbial ecology. Nature, 2000, 403(6770): 646–649
CrossRef Pubmed Google scholar
[71]
Manefield M, Whiteley A S, Griffiths R I, Bailey M J. RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Applied and Environmental Microbiology, 2002, 68(11): 5367–5373
CrossRef Pubmed Google scholar
[72]
Friedrich M W. Stable-isotope probing of DNA: insights into the function of uncultivated microorganisms from isotopically labeled metagenomes. Current Opinion in Biotechnology, 2006, 17(1): 59–66
CrossRef Pubmed Google scholar
[73]
Whiteley A S, Manefield M, Lueders T. Unlocking the ‘microbial black box’ using RNA-based stable isotope probing technologies. Current Opinion in Biotechnology, 2006, 17(1): 67–71
CrossRef Pubmed Google scholar
[74]
Schena M, Shalon D, Davis R W, Brown P O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 1995, 270(5235): 467–470
CrossRef Pubmed Google scholar
[75]
Roh S W, Abell G C J, Kim K H, Nam Y D, Bae J W. Comparing microarrays and next-generation sequencing technologies for microbial ecology research. Trends in Biotechnology, 2010, 28(6): 291–299
CrossRef Pubmed Google scholar
[76]
Gentry T J, Wickham G S, Schadt C W, He Z, Zhou J. Microarray applications in microbial ecology research. Microbial Ecology, 2006, 52(2): 159–175
CrossRef Pubmed Google scholar
[77]
Duc L, Neuenschwander S, Rehrauer H, Wagner U, Sobek J, Schlapbach R, Zeyer J. Development and experimental validation of a nifH oligonucleotide microarray to study diazotrophic communities in a glacier forefield. Environmental Microbiology, 2009, 11(8): 2179–2189
CrossRef Pubmed Google scholar
[78]
He Z L, Gentry T J, Schadt C W, Wu L Y, Liebich J, Chong S C, Huang Z J, Wu W M, Gu B H, Jardine P, Criddle C, Zhou J. GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME J, 2007, 1(1): 67–77
CrossRef Pubmed Google scholar
[79]
Zhou J H. Microarrays for bacterial detection and microbial community analysis. Current Opinion in Microbiology, 2003, 6(3): 288–294
CrossRef Pubmed Google scholar
[80]
Rivas L A, García-Villadangos M, Moreno-Paz M, Cruz-Gil P, Gómez-Elvira J, Parro V. A 200-antibody microarray biochip for environmental monitoring: searching for universal microbial biomarkers through immunoprofiling. Analytical Chemistry, 2008, 80(21): 7970–7979
CrossRef Pubmed Google scholar
[81]
Rich V I, Konstantinidis K, DeLong E F. Design and testing of ‘genome-proxy’ microarrays to profile marine microbial communities. Environmental Microbiology, 2008, 10(2): 506–521
CrossRef Pubmed Google scholar
[82]
Raes J, Bork P. Molecular eco-systems biology: towards an understanding of community function. Nature Reviews Microbiology, 2008, 6(9): 693–699
CrossRef Pubmed Google scholar
[83]
Hultman J, Ritari J, Romantschuk M, Paulin L, Auvinen P. Universal ligation-detection-reaction microarray applied for compost microbes. BMC Microbiology, 2008, 8:237–251.
CrossRef Google scholar
[84]
Nyberg L, Turco R F, Nies L. Assessing the impact of nanomaterials on anaerobic microbial communities. Environmental Science & Technology, 2008, 42(6): 1938–1943
CrossRef Pubmed Google scholar
[85]
Drees K P, Neilson J W, Betancourt J L, Quade J, Henderson D A, Pryor B M, Maier R M. Bacterial community structure in the hyperarid core of the Atacama Desert, Chile. Applied and Environmental Microbiology, 2006, 72(12): 7902–7908
CrossRef Pubmed Google scholar
[86]
Duineveld B M, Rosado A S, van Elsas J D, van Veen J A. Analysis of the dynamics of bacterial communities in the rhizosphere of the chrysanthemum via denaturing gradient gel electrophoresis and substrate utilization patterns. Applied and Environmental Microbiology, 1998, 64(12): 4950–4957
Pubmed
[87]
Weidler G W, Gerbl F W, Stan-Lotter H. Crenarchaeota and their role in the nitrogen cycle in a subsurface radioactive thermal spring in the Austrian Central Alps. Applied and Environmental Microbiology, 2008, 74(19): 5934–5942
CrossRef Pubmed Google scholar
[88]
Otawa K, Asano R, Ohba Y, Sasaki T, Kawamura E, Koyama F, Nakamura S, Nakai Y. Molecular analysis of ammonia-oxidizing bacteria community in intermittent aeration sequencing batch reactors used for animal wastewater treatment. Environmental Microbiology, 2006, 8(11): 1985–1996
CrossRef Pubmed Google scholar
[89]
Chen X P, Zhu Y G, Xia Y, Shen J P, He J Z. Ammonia-oxidizing archaea: important players in paddy rhizosphere soil? Environmental Microbiology, 2008, 10(8): 1978–1987
CrossRef Pubmed Google scholar
[90]
Weinert N, Meincke R, Gottwald C, Heuer H, Gomes N C M, Schloter M, Berg G, Smalla K. Rhizosphere communities of genetically modified zeaxanthin-accumulating potato plants and their parent cultivar differ less than those of different potato cultivars. Applied and Environmental Microbiology, 2009, 75(12): 3859–3865
CrossRef Pubmed Google scholar
[91]
Kowalchuk G A, Stienstra A W, Heilig G H J, Stephen J R, Woldendorp J W. Changes in the community structure of ammonia-oxidizing bacteria during secondary succession of calcareous grasslands. Environmental Microbiology, 2000, 2(1): 99–110
CrossRef Pubmed Google scholar
[92]
Henckel T, Friedrich M, Conrad R. Molecular analyses of the methane-oxidizing microbial community in rice field soil by targeting the genes of the 16S rRNA, particulate methane monooxygenase, and methanol dehydrogenase. Applied and Environmental Microbiology, 1999, 65(5): 1980–1990
Pubmed
[93]
Wertz S, Dandie C E, Goyer C, Trevors J T, Patten C L. Diversity of nirK denitrifying genes and transcripts in an agricultural soil. Applied and Environmental Microbiology, 2009, 75(23): 7365–7377
CrossRef Pubmed Google scholar
[94]
Glausiusz J. Extreme culture. Nature, 2007, 447(7147): 905–906
CrossRef Pubmed Google scholar
[95]
Meroth C B, Hammes W P, Hertel C. Identification and population dynamics of yeasts in sourdough fermentation processes by PCR-denaturing gradient gel electrophoresis. Applied and Environmental Microbiology, 2003, 69(12): 7453–7461
CrossRef Pubmed Google scholar
[96]
Crump B C, Koch E W. Attached bacterial populations shared by four species of aquatic angiosperms. Applied and Environmental Microbiology, 2008, 74(19): 5948–5957
CrossRef Pubmed Google scholar
[97]
Cébron A, Coci M, Garnier J, Laanbroek H J. Denaturing gradient gel electrophoretic analysis of ammonia-oxidizing bacterial community structure in the lower Seine River: impact of Paris wastewater effluents. Applied and Environmental Microbiology, 2004, 70(11): 6726–6737
CrossRef Pubmed Google scholar
[98]
Hallin S, Lydmark P, Kokalj S, Hermansson M, Sörensson F, Jarvis A, Lindgren P E. Community survey of ammonia-oxidizing bacteria in full-scale activated sludge processes with different solids retention time. Journal of Applied Microbiology, 2005, 99(3): 629–640
CrossRef Pubmed Google scholar
[99]
Cardenas E, Wu W M, Leigh M B, Carley J, Carroll S, Gentry T, Luo J, Watson D, Gu B, Ginder-Vogel M, Kitanidis P K, Jardine P M, Zhou J, Criddle C S, Marsh T L, Tiedje J M. Microbial communities in contaminated sediments, associated with bioremediation of uranium to submicromolar levels. Applied and Environmental Microbiology, 2008, 74(12): 3718–3729
CrossRef Pubmed Google scholar
[100]
Wu W M, Carley J, Luo J, Ginder-Vogel M A, Cardenas E, Leigh M B, Hwang C, Kelly S D, Ruan C, Wu L, van Nostrand J, Gentry T, Lowe K, Mehlhorn T, Carroll S, Luo W, Fields M W, Gu B, Watson D, Kemner K M, Marsh T, Tiedje J, Zhou J, Fendorf S, Kitanidis P K, Jardine P M, Criddle C S. In situ bioreduction of uranium (VI) to submicromolar levels and reoxidation by dissolved oxygen. Environmental Science & Technology, 2007, 41(16): 5716–5723
CrossRef Pubmed Google scholar
[101]
Gao D W, Fu Y, Tao Y, Li X, Xing M, Gao X H, Ren N Q, Linking microbial community structure to membrane biofouling associated with varying dissolved oxygen. Bioresource Technology, 2010 DOI: 10.1016/j.biortech. 2011.02.039
[102]
White H K, Reimers C E, Cordes E E, Dilly G F, Girguis P R. Quantitative population dynamics of microbial communities in plankton-fed microbial fuel cells. ISME J, 2009, 3(6): 635–646
CrossRef Pubmed Google scholar
[103]
Jong B C, Kim B H, Chang I S, Liew P W Y, Choo Y F, Kang G S. Enrichment, performance, and microbial diversity of a thermophilic mediatorless microbial fuel cell. Environmental Science & Technology, 2006, 40(20): 6449–6454
CrossRef Pubmed Google scholar
[104]
Cytryn E, Minz D, Gelfand I, Neori A, Gieseke A, de Beer D, van Rijn J. Sulfide-oxidizing activity and bacterial community structure in a fluidized bed reactor from a zero-discharge mariculture system. Environmental Science & Technology, 2005, 39(6): 1802–1810
CrossRef Pubmed Google scholar
[105]
Martineau C, Whyte L G, Greer C W. Stable isotope probing analysis of the diversity and activity of methanotrophic bacteria in soils from the Canadian high Arctic. Applied and Environmental Microbiology, 2010, 76(17): 5773–5784
CrossRef Pubmed Google scholar
[106]
Lukow T 1, Dunfield P F, Liesack W. Use of the T-RFLP technique to assess spatial and temporal changes in the bacterial community structure within an agricultural soil planted with transgenic and non-transgenic potato plants. FEMS Microbiology Ecology, 2000, 32(3): 241–247
CrossRef Pubmed Google scholar
[107]
Dunbar J, Ticknor L O, Kuske C R. Assessment of microbial diversity in four southwestern United States soils by 16S rRNA gene terminal restriction fragment analysis. Applied and Environmental Microbiology, 2000, 66(7): 2943–2950
CrossRef Pubmed Google scholar
[108]
Tom-Petersen A, Leser T D, Marsh T L, Nybroe O. Effects of copper amendment on the bacterial community in agricultural soil analyzed by the T-RFLP technique. FEMS Microbiology Ecology, 2003, 46(1): 53–62
CrossRef Pubmed Google scholar
[109]
Morales S E, Mouser P J, Ward N, Hudman S P, Gotelli N J, Ross D S, Lewis T A. Comparison of bacterial communities in New England Sphagnum bogs using terminal restriction fragment length polymorphism (T-RFLP). Microbial Ecology, 2006, 52(1): 34–44
CrossRef Pubmed Google scholar
[110]
Lepère C, Boucher D, Jardillier L, Domaizon I, Debroas D. Succession and regulation factors of small eukaryote community composition in a lacustrine ecosystem (Lake Pavin). Applied and Environmental Microbiology, 2006, 72(4): 2971–2981
CrossRef Pubmed Google scholar
[111]
Mills H J, Hunter E, Humphrys M, Kerkhof L, McGuinness L, Huettel M, Kostka J E. Characterization of nitrifying, denitrifying, and overall bacterial communities in permeable marine sediments of the northeastern Gulf of Mexico. Applied and Environmental Microbiology, 2008, 74(14): 4440–4453
CrossRef Pubmed Google scholar
[112]
Swan B K, Ehrhardt C J, Reifel K M, Moreno L I, Valentine D L. Archaeal and bacterial communities respond differently to environmental gradients in anoxic sediments of a California hypersaline lake, the Salton Sea. Applied and Environmental Microbiology, 2010, 76(3): 757–768
CrossRef Pubmed Google scholar
[113]
Whang L M, Chien I C, Yuan S L, Wu Y J. Nitrifying community structures and nitrification performance of full-scale municipal and swine wastewater treatment plants. Chemosphere, 2009, 75(2): 234–242
CrossRef Pubmed Google scholar
[114]
Collins G, Woods A, McHugh S, Carton M W, O’Flaherty V. Microbial community structure and methanogenic activity during start-up of psychrophilic anaerobic digesters treating synthetic industrial wastewaters. FEMS Microbiology Ecology, 2003, 46(2): 159–170
CrossRef Pubmed Google scholar
[115]
Gao D, Zhang T, Tang C Y, Wu W M, Wong C Y, Lee Y H, Yeh D H, Criddle C S. Membrane fouling in an anaerobic membrane bioreactor: differences in relative abundance of bacterial species in the membrane foulant layer and insuspension. Journal ofMembrane Science, 2010
[116]
Pang C M, Liu W T. Community structure analysis of reverse osmosis membrane biofilms and the significance of Rhizobiales bacteria in biofouling. Environmental Science & Technology, 2007, 41(13): 4728–4734
CrossRef Pubmed Google scholar
[117]
Saikaly P E, Stroot P G, Oerther D B. Use of 16S rRNA gene terminal restriction fragment analysis to assess the impact of solids retention time on the bacterial diversity of activated sludge. Applied and Environmental Microbiology, 2005, 71(10): 5814–5822
CrossRef Pubmed Google scholar
[118]
Madden A S, Smith A C, Balkwill D L, Fagan L A, Phelps T J. Microbial uranium immobilization independent of nitrate reduction. Environmental Microbiology, 2007, 9(9): 2321–2330
CrossRef Pubmed Google scholar
[119]
Kennedy N, Edwards S, Clipson N. Soil bacterial and fungal community structure across a range of unimproved and semi-improved upland grasslands. Microbial Ecology, 2005, 50(3): 463–473
CrossRef Pubmed Google scholar
[120]
Hidri Y, Bouziri L, Maron P A, Anane M, Jedidi N, Hassan A, Ranjard L. Soil DNA evidence for altered microbial diversity after long-term application of municipal wastewater. Agronomy for Sustainable Development, 2010, 30(2): 423–431
CrossRef Google scholar
[121]
Kent A D, Jones S E, Yannarell A C, Graham J M, Lauster G H, Kratz T K, Triplett E W. Annual patterns in bacterioplankton community variability in a humic lake. Microbial Ecology, 2004, 48(4): 550–560
CrossRef Pubmed Google scholar
[122]
Graham J M, Kent A D, Lauster G H, Yannarell A C, Graham L E, Triplett E W. Seasonal dynamics of phytoplankton and planktonic protozoan communities in a northern temperate humic lake: diversity in a dinoflagellate dominated system. Microbial Ecology, 2004, 48(4): 528–540
CrossRef Pubmed Google scholar
[123]
Wood S A, Jentzsch K, Rueckert A, Hamilton D P, Cary S C. Hindcasting cyanobacterial communities in Lake Okaro with germination experiments and genetic analyses. FEMS Microbiology Ecology, 2009, 67(2): 252–260
CrossRef Pubmed Google scholar
[124]
Nold S C, Pangborn J B, Zajack H A, Kendall S T, Rediske R R, Biddanda B A. Benthic bacterial diversity in submerged sinkhole ecosystems. Applied and Environmental Microbiology, 2010, 76(1): 347–351
CrossRef Pubmed Google scholar
[125]
Borin S, Marzorati M, Cavalca L, Sorlini C, Daffonchio D, Zilli M, Converti A, Cherif H, Hassen A. Diversity of the microflora of a compost-packed biofilter treating benzene-contaminated air. European Symposium on Environmental Biotechnology, Eseb 2004, 2004: 75–79
[126]
Steele J A, Ozis F, Fuhrman J A, Devinny J S. Structure of microbial communities in ethanol biofilters. Chemical Engineering Journal, 2005, 113(2–3): 135–143
CrossRef Google scholar
[127]
Vanysacker L, Declerck S A J, Hellemans B, de Meester L, Vankelecom I, Declerck P. Bacterial community analysis of activated sludge: an evaluation of four commonly used DNA extraction methods. Applied Microbiology and Biotechnology, 2010, 88(1): 299–307
CrossRef Pubmed Google scholar
[128]
Zhang X, Brussee K, Coutinho C T, Rooney-Varga J N. Chemical stress induced by copper: examination of a biofilm system. Water Science and Technology, 2006, 54(9): 191–199
CrossRef Pubmed Google scholar
[129]
Hewson I, Fuhrman J A. Richness and diversity of bacterioplankton species along an estuarine gradient in Moreton Bay, Australia. Applied and Environmental Microbiology, 2004, 70(6): 3425–3433
CrossRef Pubmed Google scholar
[130]
Popa R, Popa R, Mashall M J, Nguyen H, Tebo B M, Brauer S. Limitations and benefits of ARISA intra-genomic diversity fingerprinting. Journal of Microbiological Methods, 2009, 78(2): 111–118
CrossRef Pubmed Google scholar
[131]
Kovacs A, Yacoby K, Gophna U. A systematic assessment of automated ribosomal intergenic spacer analysis (ARISA) as a tool for estimating bacterial richness. Research in Microbiology, 2010, 161(3): 192–197
CrossRef Pubmed Google scholar
[132]
de Vero L, Gala E, Gullo M, Solieri L, Landi S, Giudici P. Application of denaturing gradient gel electrophoresis (DGGE) analysis to evaluate acetic acid bacteria in traditional balsamic vinegar. Food Microbiology, 2006, 23(8): 809–813
CrossRef Pubmed Google scholar
[133]
Meays C L, Broersma K, Nordin R, Mazumder A. Source tracking fecal bacteria in water: a critical review of current methods. Journal of Environmental Management, 2004, 73(1): 71–79
CrossRef Pubmed Google scholar
[134]
Middleton S A, Anzenberger G, Knapp L A. Denaturing gradient gel electrophoresis (DGGE) screening of clones prior to sequencing. Molecular Ecology Notes, 2004, 4(4): 776–778
CrossRef Google scholar
[135]
Talbot G, Topp E, Palin M F, Massé D I. Evaluation of molecular methods used for establishing the interactions and functions of microorganisms in anaerobic bioreactors. Water Research, 2008, 42(3): 513–537
CrossRef Pubmed Google scholar
[136]
Gilbride K A, Lee D Y, Beaudette L A. Molecular techniques in wastewater: understanding microbial communities, detecting pathogens, and real-time process control. Journal of Microbiological Methods, 2006, 66(1): 1–20
CrossRef Pubmed Google scholar
[137]
Bernhard A E, Colbert D, McManus J, Field K G. Microbial community dynamics based on 16S rRNA gene profiles in a Pacific Northwest estuary and its tributaries. FEMS Microbiology Ecology, 2005, 52(1): 115–128
CrossRef Pubmed Google scholar
[138]
Kan J, Suzuki M T, Wang K, Evans S E, Chen F. High temporal but low spatial heterogeneity of bacterioplankton in the Chesapeake Bay. Applied and Environmental Microbiology, 2007, 73(21): 6776–6789
CrossRef Pubmed Google scholar
[139]
Cardinale M, Brusetti L, Quatrini P, Borin S, Puglia A M, Rizzi A, Zanardini E, Sorlini C, Corselli C, Daffonchio D. Comparison of different primer sets for use in automated ribosomal intergenic spacer analysis of complex bacterial communities. Applied and Environmental Microbiology, 2004, 70(10): 6147–6156
CrossRef Pubmed Google scholar
[140]
Tiirola M, Lahtinen T, Vuento M, Oker-Blom C. Early succession of bacterial biofilms in paper machines. Journal of Industrial Microbiology & Biotechnology, 2009, 36(7): 929–937
CrossRef Pubmed Google scholar
[141]
Okubo A, Sugiyama S. Comparison of molecular fingerprinting methods for analysis of soil microbial community structure. Ecological Research, 2009, 24(6): 1399–1405
CrossRef Google scholar
[142]
Danovaro R, Luna G M, Dell’anno A, Pietrangeli B. Comparison of two fingerprinting techniques, terminal restriction fragment length polymorphism and automated ribosomal intergenic spacer analysis, for determination of bacterial diversity in aquatic environments. Applied and Environmental Microbiology, 2006, 72(9): 5982–5989
CrossRef Pubmed Google scholar
[143]
Ramette A. Quantitative community fingerprinting methods for estimating the abundance of operational taxonomic units in natural microbial communities. Applied and Environmental Microbiology, 2009, 75(8): 2495–2505
CrossRef Pubmed Google scholar
[144]
Yannarell A C, Triplett E W. Within- and between-lake variability in the composition of bacterioplankton communities: investigations using multiple spatial scales. Applied and Environmental Microbiology, 2004, 70(1): 214–223
CrossRef Pubmed Google scholar
[145]
Wilderer P A, Bungartz H J, Lemmer H, Wagner M, Keller J, Wuertz S. Modern scientific methods and their potential in wastewater science and technology. Water Research, 2002, 36(2): 370–393
CrossRef Pubmed Google scholar
[146]
Sekar R, Pernthaler A, Pernthaler J, Warnecke F, Posch T, Amann R. An improved protocol for quantification of freshwater Actinobacteria by fluorescence in situ hybridization. Applied and Environmental Microbiology, 2003, 69(5): 2928–2935
CrossRef Pubmed Google scholar
[147]
Miura Y, Okabe S. Quantification of cell specific uptake activity of microbial products by uncultured Chloroflexi by microautoradiography combined with fluorescence in situ hybridization. Environmental Science & Technology, 2008, 42(19): 7380–7386
CrossRef Pubmed Google scholar
[148]
Nielsen J L, Christensen D, Kloppenborg M, Nielsen P H. Quantification of cell-specific substrate uptake by probe-defined bacteria under in situ conditions by microautoradiography and fluorescence in situ hybridization. Environmental Microbiology, 2003, 5(3): 202–211
CrossRef Pubmed Google scholar
[149]
Nielsen J L, Nielsen P H. Advances in microscopy: microautoradiography of single cells. Methods in Enzymology, 2005, 397: 237–256
CrossRef Pubmed Google scholar
[150]
Yin H Q, Cao L H, Qiu G Z, Wang D Z, Kellogg L, Zhou J Z, Dai Z M, Liu X D. Development and evaluation of 50-mer oligonucleotide arrays for detecting microbial populations in Acid Mine Drainages and bioleaching systems. Journal of Microbiological Methods, 2007, 70(1): 165–178
CrossRef Pubmed Google scholar
[151]
Wilson K H, Wilson W J, Radosevich J L, DeSantis T Z, Viswanathan V S, Kuczmarski T A, Andersen G L. High-density microarray of small-subunit ribosomal DNA probes. Applied and Environmental Microbiology, 2002, 68(5): 2535–2541
CrossRef Pubmed Google scholar
[152]
Wu L Y, Thompson D K, Liu X D, Fields M W, Bagwell C E, Tiedje J M, Zhou J Z. Development and evaluation of microarray-based whole-genome hybridization for detection of microorganisms within the context of environmental applications. Environmental Science & Technology, 2004, 38(24): 6775–6782
CrossRef Pubmed Google scholar
[153]
Wu L Y, Thompson D K, Li G S, Hurt R A, Tiedje J M, Zhou J Z. Development and evaluation of functional gene arrays for detection of selected genes in the environment. Applied and Environmental Microbiology, 2001, 67(12): 5780–5790
CrossRef Pubmed Google scholar
[154]
Shalon D, Smith S J, Brown P O. A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Research, 1996, 6(7): 639–645
CrossRef Pubmed Google scholar
[155]
Bent S J, Forney L J. The tragedy of the uncommon: understanding limitations in the analysis of microbial diversity. ISME J, 2008, 2(7): 689–695
CrossRef Pubmed Google scholar

Acknowledgements

This research was supported by the Research Fund for the Doctoral Program of Higher Education, Ministry of Education of China (No. 20092302110059), and Heilongjiang Natural Science Fund for Distinguished Young Scientists (No. JC200909), and State Key Laboratory of Urban Water Resource and Environment (Harbin Institute of Technology) (Nos. 2010DX04, QAK201016). We also thank some students (Yuan Fu, Zhidan WEN, Xiaoli HUANG, Chunhong CHEN, Zhe LI, Qi ZHANG) for the materials collection.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(468 KB)

Accesses

Citations

Detail

Sections
Recommended

/