Using pyrosequencing and quantitative PCR to analyze microbial communities

Husen ZHANG

Front. Environ. Sci. Eng. ›› 2011, Vol. 5 ›› Issue (1) : 21 -27.

PDF (1615KB)
Front. Environ. Sci. Eng. ›› 2011, Vol. 5 ›› Issue (1) : 21 -27. DOI: 10.1007/s11783-011-0303-9
REVIEW ARTICLE
REVIEW ARTICLE

Using pyrosequencing and quantitative PCR to analyze microbial communities

Author information +
History +
PDF (1615KB)

Abstract

New high-throughput technologies continue to emerge for studying complex microbial communities. In particular, massively parallel pyrosequencing enables very high numbers of sequences, providing a more complete view of community structures and a more accurate inference of the functions than has been possible just a few years ago. In parallel, quantitative real-time polymerase chain reaction (QPCR) allows quantitative monitoring of specific community members over time, space, or different environmental conditions. In this review, the principles of these two methods and their complementary applications in studying microbial ecology in bioenvironmental systems are discussed. The parallel sequencing of amplicon libraries and using barcodes to differentiate multiple samples in a pyrosequencing run are explained. The best procedures and chemistries for QPCR amplifications are also described and advantages of applying automation to increase accuracy are addressed. Three examples in which pyrosequencing and QPCR were used together to define and quantify members of microbial communities are provided: in the human large intestine, in a methanogenic digester whose sludge was made more bioavailable by a high-voltage pretreatment, and on the biofilm anode of a microbial electrolytic cell. The key findings in these systems and how both methods were used in concert to achieve those findings are highlighted.

Keywords

polymerase chain reaction (PCR) / microbial communities / pyrosequencing / gut / microbial fuel cell / sludge

Cite this article

Download citation ▾
Husen ZHANG. Using pyrosequencing and quantitative PCR to analyze microbial communities. Front. Environ. Sci. Eng., 2011, 5(1): 21-27 DOI:10.1007/s11783-011-0303-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rittmann B E, Hausner M, Loffler F, Love N G, Muyzer G, Okabe S, Oerther D B, Peccia J, Raskin L, Wagner M. A vista for microbial ecology and environmental biotechnology. Environmental Science & Technology, 2006, 40(4): 1096–1103

[2]

Rittmann B E, Krajmalnik-Brown R, Halden R U. Pre-genomic, genomic and post-genomic study of microbial communities involved in bioenergy. Nature Reviews Microbiology, 2008, 6(8): 604–612

[3]

Coates J D, Michaelidou U, Bruce R A, O'Connor S M, Crespi J N, Achenbach L A. Ubiquity and diversity of dissimilatory (per)chlorate-reducing bacteria. Applied and Environmental Microbiology, 1999, 65: 5234–5241

[4]

Wu J, Unz R F, Zhang H, Logan B E. Persistence of perchlorate and the relative numbers of perchlorate- and chlorate-respiring microorganisms in natural waters, soils, and wastewater. Bioremediation Journal, 2001, 5(2): 119–130

[5]

Hugenholtz P, Goebel B M, Pace N R. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. Journal of Bacteriology, 1998, 180: 4765–4774

[6]

Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in-situ detection of individual microbial cells without cultivation. Microbiological Reviews, 1995, 59: 143–169

[7]

Zhang H, DiBaise J K, Zuccolo A, Kudrna D, Braidotti M, Yu Y, Parameswaran P, Crowell M D, Wing R, Rittmann B E, Krajmalnik-Brown R. Human gut microbiota in obesity and after gastric-bypass. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(7): 2365–2370

[8]

Eckburg P B, Bik E M, Bernstein C N, Purdom E, Dethlefsen L, Sargent M, Gill S R, Nelson K E, Relman D A. Diversity of the human intestinal microbial flora. Science, 2005, 308(5728): 1635–1638

[9]

Hugenholtz P, Tyson G W. Microbiology- Metagenomics. Nature, 2008, 455(7212): 481–483

[10]

Jones R T, Robeson M S, Lauber C L, Hamady M, Knight R, Fierer N. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME Journal, 2009, 3(4): 442–453

[11]

Hamady M, Walker J J, Harris J K, Gold N J, Knight R. Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nature Methods, 2008, 5(3): 235–237

[12]

Suzuki M T, Taylor L T, DeLong E F. Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5 '-nuclease assays. Applied and Environmental Microbiology, 2000, 66(11): 4605–4614

[13]

Yu Y, Lee C, Kim J, Hwang S. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnology and Bioengineering, 2005, 89(6): 670–679

[14]

Ritalahti K M, Amos B K, Sung Y, Wu Q, Koenigsberg S S, Loffler F E. Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains. Applied and Environmental Microbiology, 2006, 72(4): 2765–2774

[15]

Margulies M, Egholm M, Altman, W E, Attiya S, Bader J S, Bemben L A, Berka J, Braverman M S, Chen Y J, Chen Z T, Dewell S B, Du L, Fierro J M, Gomes X V, Godwin B C, He W, Helgesen S, Ho C H, Irzyk G P, Jando S C, Alenquer M L I, Jarvie T P, Jirage K B, Kim J B, Knight J R, Lanza J R, Leamon J H, Lefkowitz S M, Lei M, Li J, Lohman K L, Lu H, Makhijani V B, McDade K E, McKenna M P, Myers E W, Nickerson E, Nobile J R, Plant R, Puc B P, Ronan M T, Roth G T, Sarkis G J, Simons J F, Simpson J W, Srinivasan M, Tartaro K R, Tomasz A, Vogt K A, Volkmer G A, Wang S H, Wang Y, Weiner M P, Yu P G, Begley R F, Rothberg J M. Genome sequencing in microfabricated high-density picolitre reactors. Nature, 2005, 437: 376–380

[16]

Gharizadeh B, Kalantari M, Garcia C A, Johansson B, Nyren P. Typing of human papillomavirus by pyrosequencing. Laboratory Investigation, 2001, 81(5): 673–679

[17]

Zhang T, Fang H H. Applications of real-time polymerase chain reaction for quantification of microorganisms in environmental samples. Applied Microbiology and Biotechnology, 2006, 70(3): 281–289

[18]

Talbot G, Topp E, Palin M F, Masse D I. Evaluation of molecular methods used for establishing the interactions and functions of microorganisms in anaerobic bioreactors. Water Research, 2008, 42(3): 513–537

[19]

Sogin M L, Morrison H G, Huber J A, Mark Welch D, Huse S M, Neal P R, Arrieta J M, Herndl G J. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(32): 12115–12120

[20]

Rittmann B E, Lee H, Zhang H, Alder J, Banazak J E, Lopez R. Full-scale application of Focused-Pulsed pre-treatment for improving biosolids digestion and conversion to methane. Water Science and Technology, 2008, 58(10): 1895–1901

[21]

Zhang H, Banaszak J E, Parameswaran P, Alder J, Krajmalnik-Brown R, Rittmann B E. Focused-Pulsed sludge pre-treatment increases the bacterial diversity and relative abundance of acetoclastic methanogens in a full-scale anaerobic digester. Water Research, 2009, 43(18): 4517–4526

[22]

Parameswaran P, Zhang H, Torres C I, Rittmann B E, Krajmalnik-Brown R. Microbial community structure in a biofilm anode fed with a fermentable substrate: The significance of hydrogen scavengers. Biotechnology and Bioengineering, 20 10, 105(1): 69–78

[23]

Parameswaran P, Torres C I, Lee H S, Krajmalnik-Brown R, Rittmann B E. Syntrophic interactions among anode respiring bacteria (ARB) and non-ARB in a biofilm anode: electron balances. Biotechnology and Bioengineering, 2009, 103(3): 513–523

[24]

Liu H, Cheng S, Logan B E. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environmental Science & Technology, 2005, 39(2): 658–662

[25]

Jung S, Regan J M. Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors. Applied Microbiology and Biotechnology, 2007, 77(2): 393–402

[26]

Torres C I, Marcus A K, Parameswaran P, Rittmann B E. Kinetic experiments for evaluating the Nernst-Monod model for anode-respiring bacteria (ARB) in a biofilm anode. Environmental Science & Technology, 2008, 42(17): 6593–6597

[27]

Lee H S, Parameswaran P, Kato-Marcus A, Torres C I, Rittmann B E. Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates. Water Research, 2008, 42(6-7): 1501–1510

[28]

Logan B E. Exoelectrogenic bacteria that power microbial fuel cells. Nature Reviews Microbiology, 2009, 7(5): 375–381

[29]

Kunin V, Engelbrektson A, Ochman H, Hugenholtz P. Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environmental Microbiology, 2010, 12(1): 118–123

[30]

Quince C, Lanzen A, Curtis T P, Davenport R J, Hall N, Head I M, Read L F, Sloan W T. Accurate determination of microbial diversity from 454 pyrosequencing data. Nature Methods, 2009, 6(9): 639–641

[31]

Engelbrektson A, Kunin V, Wrighton K C, Zvenigorodsky N, Chen F, Ochman H, Hugenholtz P. Experimental factors affecting PCR-based estimates of microbial species richness and evenness. ISME Journal, 2010, 4(5): 642–647

[32]

Zhou J, Kang S, Schadt C W, Garten C T. Spatial scaling of functional gene diversity across various microbial taxa. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(22): 7768–7773

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1615KB)

2892

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/