Development and applications of functional gene microarrays in the analysis of the functional diversity, composition, and structure of microbial communities

Zhili HE, Joy D. VAN NOSTRAND, Ye DENG, Jizhong ZHOU

PDF(351 KB)
PDF(351 KB)
Front. Environ. Sci. Eng. ›› 2011, Vol. 5 ›› Issue (1) : 1-20. DOI: 10.1007/s11783-011-0301-y
FEATURE ARTICLE
FEATURE ARTICLE

Development and applications of functional gene microarrays in the analysis of the functional diversity, composition, and structure of microbial communities

Author information +
History +

Abstract

Functional gene arrays (FGAs) are a special type of microarrays containing probes for key genes involved in microbial functional processes, such as biogeochemical cycling of carbon, nitrogen, sulfur, phosphorus, and metals, biodegradation of environmental contaminants, energy processing, and stress responses. GeoChips are considered as the most comprehensive FGAs. Experimentally established probe design criteria and a computational pipeline integrating sequence retrieval, probe design and verification, array construction, data analysis, and automatic update are used to develop the GeoChip technology. GeoChip has been systematically evaluated and demonstrated to be a powerful tool for rapid, specific, sensitive, and quantitative analysis of microbial communities in a high-throughput manner. Several generations of GeoChip have been developed and applied to investigate the functional diversity, composition, structure, function, and dynamics of a variety of microbial communities from different habitats, such as water, soil, marine, bioreactor, human microbiome, and extreme ecosystems. GeoChip is able to address fundamental questions related to global change, bioenergy, bioremediation, agricultural operation, land use, human health, environmental restoration, and ecological theories and to link the microbial community structure to environmental factors and ecosystem functioning.

Keywords

functional gene arrays (FGAs) / GeoChip / microbial communities / functional diversity/composition/structure / environmental factor / ecosystem functioning

Cite this article

Download citation ▾
Zhili HE, Joy D. VAN NOSTRAND, Ye DENG, Jizhong ZHOU. Development and applications of functional gene microarrays in the analysis of the functional diversity, composition, and structure of microbial communities. Front Envir Sci Eng Chin, 2011, 5(1): 1‒20 https://doi.org/10.1007/s11783-011-0301-y

References

[1]
Torsvik V, Øvreås L, Thingstad T F. Prokaryotic diversity—magnitude, dynamics, and controlling factors. Science, 2002, 296(5570): 1064–1066
CrossRef Pubmed Google scholar
[2]
Roesch L F, Fulthorpe R R, Riva A, Casella G, Hadwin A K, Kent A D, Daroub S H, Camargo F A, Farmerie W G, Triplett E W. Pyrosequencing enumerates and contrasts soil microbial diversity.The ISME Journal, 2007, 1(4): 283–290
Pubmed
[3]
Schloss P D, Handelsman J. Toward a census of bacteria in soil. PLoS Computational Biology, 2006, 2(7): e92
CrossRef Pubmed Google scholar
[4]
Hong S H, Bunge J, Jeon S O, Epstein S S. Predicting microbial species richness. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(1): 117–122
CrossRef Pubmed Google scholar
[5]
Curtis T P, Sloan W T, Scannell J W. Estimating prokaryotic diversity and its limits. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(16): 10494–10499
CrossRef Pubmed Google scholar
[6]
Gans J, Wolinsky M, Dunbar J. Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science, 2005, 309(5739): 1387–1390
CrossRef Pubmed Google scholar
[7]
Whitman W B, Coleman D C, Wiebe W J. Prokaryotes: the unseen majority. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(12): 6578–6583
CrossRef Pubmed Google scholar
[8]
Dunbar J, Barns S M, Ticknor L O, Kuske C R. Empirical and theoretical bacterial diversity in four Arizona soils. Applied and Environmental Microbiology, 2002, 68(6): 3035–3045
CrossRef Pubmed Google scholar
[9]
Steward G F, Jenkins B D, Ward B B, Zehr J P. Development and testing of a DNA macroarray to assess nitrogenase (nifH) gene diversity. Applied and Environmental Microbiology, 2004, 70(3): 1455–1465
CrossRef Pubmed Google scholar
[10]
Jenkins B D, Steward G F, Short S M, Ward B B, Zehr J P. Fingerprinting diazotroph communities in the Chesapeake Bay by using a DNA macroarray. Applied and Environmental Microbiology, 2004, 70(3): 1767–1776
CrossRef Pubmed Google scholar
[11]
Warnecke P M, Stirzaker C, Melki J R, Millar D S, Paul C L, Clark S J. Detection and measurement of PCR bias in quantitative methylation analysis of bisulphite-treated DNA. Nucleic Acids Research, 1997, 25(21): 4422–4426
CrossRef Pubmed Google scholar
[12]
Lueders T, Friedrich M W. Evaluation of PCR amplification bias by terminal restriction fragment length polymorphism analysis of small-subunit rRNA and mcrA genes by using defined template mixtures of methanogenic pure cultures and soil DNA extracts. Applied and Environmental Microbiology, 2003, 69(1): 320–326
CrossRef Pubmed Google scholar
[13]
Suzuki M T, Giovannoni S J. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Applied and Environmental Microbiology, 1996, 62(2): 625–630
Pubmed
[14]
Schena M, Shalon D, Davis R W, Brown P O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 1995, 270(5235): 467–470
CrossRef Pubmed Google scholar
[15]
Guschin D Y, Mobarry B K, Proudnikov D, Stahl D A, Rittmann B E, Mirzabekov A D. Oligonucleotide microchips as genosensors for determinative and environmental studies in microbiology. Applied and Environmental Microbiology, 1997, 63(6): 2397–2402
Pubmed
[16]
Zhou J, Kang S, Schadt C W, Garten C T Jr. Spatial scaling of functional gene diversity across various microbial taxa. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(22): 7768–7773
CrossRef Pubmed Google scholar
[17]
He Z, Deng Y, Van Nostrand J D, Tu Q, Xu M, Hemme C L, Li X, Wu L, Gentry T J, Yin Y, Liebich J, Hazen T C, Zhou J. GeoChip 3.0 as a high-throughput tool for analyzing microbial community composition, structure and functional activity.The ISME Journal, 2010, 4(9): 1167–1179
CrossRef Pubmed Google scholar
[18]
Wu L, Thompson D K, Li G, Hurt R A, Tiedje J M, Zhou J. Development and evaluation of functional gene arrays for detection of selected genes in the environment. Applied and Environmental Microbiology, 2001, 67(12): 5780–5790
CrossRef Pubmed Google scholar
[19]
Rhee S K, Liu X, Wu L, Chong S C, Wan X, Zhou J. Detection of genes involved in biodegradation and biotransformation in microbial communities by using 50-mer oligonucleotide microarrays. Applied and Environmental Microbiology, 2004, 70(7): 4303–4317
CrossRef Pubmed Google scholar
[20]
Gentry T J, Wickham G S, Schadt C W, He Z, Zhou J. Microarray applications in microbial ecology research. Microbial Ecology, 2006, 52(2): 159–175
CrossRef Pubmed Google scholar
[21]
He Z, Gentry T J, Schadt C W, Wu L, Liebich J, Chong S C, Huang Z, Wu W, Gu B, Jardine P, Criddle C, Zhou J. GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes.The ISME Journal, 2007, 1(1): 67–77
CrossRef Pubmed Google scholar
[22]
Taroncher-Oldenburg G, Griner E M, Francis C A, Ward B B. Oligonucleotide microarray for the study of functional gene diversity in the nitrogen cycle in the environment. Applied and Environmental Microbiology, 2003, 69(2): 1159–1171
CrossRef Pubmed Google scholar
[23]
Zhang L, Hurek T, Reinhold-Hurek B. A nifH-based oligonucleotide microarray for functional diagnostics of nitrogen-fixing microorganisms. Microbial Ecology, 2007, 53(3): 456–470
CrossRef Pubmed Google scholar
[24]
Bontemps C, Golfier G, Gris-Liebe C, Carrere S, Talini L, Boivin-Masson C. Microarray-based detection and typing of the Rhizobium nodulation gene nodC: potential of DNA arrays to diagnose biological functions of interest. Applied and Environmental Microbiology, 2005, 71(12): 8042–8048
CrossRef Pubmed Google scholar
[25]
Bodrossy L, Stralis-Pavese N, Murrell J C, Radajewski S, Weilharter A, Sessitsch A. Development and validation of a diagnostic microbial microarray for methanotrophs. Environmental Microbiology, 2003, 5(7): 566–582
CrossRef Pubmed Google scholar
[26]
Stralis-Pavese N, Sessitsch A, Weilharter A, Reichenauer T, Riesing J, Csontos J, Murrell J C, Bodrossy L. Optimization of diagnostic microarray for application in analysing landfill methanotroph communities under different plant covers. Environmental Microbiology, 2004, 6(4): 347–363
CrossRef Pubmed Google scholar
[27]
Bodrossy L, Stralis-Pavese N, Konrad-Köszler M, Weilharter A, Reichenauer T G, Schöfer D, Sessitsch A. mRNA-based parallel detection of active methanotroph populations by use of a diagnostic microarray. Applied and Environmental Microbiology, 2006, 72(2): 1672–1676
CrossRef Pubmed Google scholar
[28]
Miller S M, Tourlousse D M, Stedtfeld R D, Baushke S W, Herzog A B, Wick L M, Rouillard J M, Gulari E, Tiedje J M, Hashsham S A. In situ-synthesized virulence and marker gene biochip for detection of bacterial pathogens in water. Applied and Environmental Microbiology, 2008, 74(7): 2200–2209
CrossRef Pubmed Google scholar
[29]
Call D R, Bakko M K, Krug M J, Roberts M C. Identifying antimicrobial resistance genes with DNA microarrays. Antimicrobial Agents and Chemotherapy, 2003, 47(10): 3290–3295
CrossRef Pubmed Google scholar
[30]
Kostić T, Weilharter A, Sessitsch A, Bodrossy L. High-sensitivity, polymerase chain reaction-free detection of microorganisms and their functional genes using 70-mer oligonucleotide diagnostic microarray. Analytical Biochemistry, 2005, 346(2): 333–335
CrossRef Pubmed Google scholar
[31]
Cleven B E E, Palka-Santini M, Gielen J, Meembor S, Krönke M, Krut O. Identification and characterization of bacterial pathogens causing bloodstream infections by DNA microarray. Journal of Clinical Microbiology, 2006, 44(7): 2389–2397
CrossRef Pubmed Google scholar
[32]
Palka-Santini M, Cleven B E, Eichinger L, Krönke M, Krut O. Large scale multiplex PCR improves pathogen detection by DNA microarrays. BMC Microbiology, 2009, 9(1): 1
CrossRef Pubmed Google scholar
[33]
Yin H, Cao L, Qiu G, Wang D, Kellogg L, Zhou J, Dai Z, Liu X. Development and evaluation of 50-mer oligonucleotide arrays for detecting microbial populations in Acid Mine Drainages and bioleaching systems. Journal of Microbiological Methods, 2007, 70(1): 165–178
CrossRef Pubmed Google scholar
[34]
Tiquia S M, Wu L, Chong S C, Passovets S, Xu D, Xu Y, Zhou J. Evaluation of 50-mer oligonucleotide arrays for detecting microbial populations in environmental samples. BioTechniques, 2004, 36(4): 664–670, 672, 674-675
Pubmed
[35]
Liang Y, He Z, Wu L, Deng Y, Li G, Zhou J. Development of a common oligonucleotide reference standard for microarray data normalization and comparison across different microbial communities. Applied and Environmental Microbiology, 2010, 76(4): 1088–1094
CrossRef Pubmed Google scholar
[36]
Zhou J, He Z, Van Nostrand J D, Wu L, Deng Y. Applying GeoChip analysis to disparate microbial communities. Microbe, 2010, 5: 60–65
[37]
Wilson K H, Blitchington R B, Greene R C. Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction. Journal of Clinical Microbiology, 1990, 28(9): 1942–1946
Pubmed
[38]
Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews, 1995, 59(1): 143–169
Pubmed
[39]
Yamamoto S, Harayama S. PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Applied and Environmental Microbiology, 1995, 61(3): 1104–1109
Pubmed
[40]
Hugenholtz P, Goebel B M, Pace N R. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. Journal of Bacteriology, 1998, 180(18): 4765–4774
Pubmed
[41]
Brodie E L, Desantis T Z, Joyner D C, Baek S M, Larsen J T, Andersen G L, Hazen T C, Richardson P M, Herman D J, Tokunaga T K, Wan J M, Firestone M K. Application of a high-density oligonucleotide microarray approach to study bacterial population dynamics during uranium reduction and reoxidation. Applied and Environmental Microbiology, 2006, 72(9): 6288–6298
CrossRef Pubmed Google scholar
[42]
Liesegang H, Lemke K, Siddiqui R A, Schlegel H G. Characterization of the inducible nickel and cobalt resistance determinant cnr from pMOL28 of Alcaligenes eutrophus CH34. Journal of Bacteriology, 1993, 175(3): 767–778
Pubmed
[43]
Grass G, Grosse C, Nies D H. Regulation of the cnr cobalt and nickel resistance determinant from Ralstonia sp. strain CH34. Journal of Bacteriology, 2000, 182(5): 1390–1398
CrossRef Pubmed Google scholar
[44]
Tibazarwa C, Wuertz S, Mergeay M, Wyns L, van Der Lelie D. Regulation of the cnr cobalt and nickel resistance determinant of Ralstonia eutropha (Alcaligenes eutrophus) CH34. Journal of Bacteriology, 2000, 182(5): 1399–1409
CrossRef Pubmed Google scholar
[45]
Nies D H. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiology Reviews, 2003, 27(2-3): 313–339
CrossRef Pubmed Google scholar
[46]
Saier M H Jr, Tam R, Reizer A, Reizer J. Two novel families of bacterial membrane proteins concerned with nodulation, cell division and transport. Molecular Microbiology, 1994, 11(5): 841–847
CrossRef Pubmed Google scholar
[47]
Paulsen I T, Park J H, Choi P S, Saier M H Jr. A family of gram-negative bacterial outer membrane factors that function in the export of proteins, carbohydrates, drugs and heavy metals from gram-negative bacteria. FEMS Microbiology Letters, 1997, 156(1): 1–8
CrossRef Pubmed Google scholar
[48]
Eddy S R. Profile hidden Markov models. Bioinformatics (Oxford, England), 1998, 14(9): 755–763
CrossRef Pubmed Google scholar
[49]
Thompson J D, Higgins D G, Gibson T J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 1994, 22(22): 4673–4680
CrossRef Pubmed Google scholar
[50]
Li X, He Z, Zhou J. Selection of optimal oligonucleotide probes for microarrays using multiple criteria, global alignment and parameter estimation. Nucleic Acids Research, 2005, 33(19): 6114–6123
CrossRef Pubmed Google scholar
[51]
Liebich J, Schadt C W, Chong S C, He Z, Rhee S K, Zhou J. Improvement of oligonucleotide probe design criteria for functional gene microarrays in environmental applications. Applied and Environmental Microbiology, 2006, 72(2): 1688–1691
CrossRef Pubmed Google scholar
[52]
He Z, Wu L, Li X, Fields M W, Zhou J. Empirical establishment of oligonucleotide probe design criteria. Applied and Environmental Microbiology, 2005, 71(7): 3753–3760
CrossRef Pubmed Google scholar
[53]
Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA sequences. Journal of Computational Biology, 2000, 7(1-2): 203–214
CrossRef Pubmed Google scholar
[54]
Zhou J, Bruns M A, Tiedje J M. DNA recovery from soils of diverse composition. Applied and Environmental Microbiology, 1996, 62(2): 316–322
Pubmed
[55]
Hurt R A, Qiu X, Wu L, Roh Y, Palumbo A V, Tiedje J M, Zhou J. Simultaneous recovery of RNA and DNA from soils and sediments. Applied and Environmental Microbiology, 2001, 67(10): 4495–4503
CrossRef Pubmed Google scholar
[56]
Liang Y, Li G, Van Nostrand J D, He Z, Wu L, Deng Y, Zhang X, Zhou J. Microarray-based analysis of microbial functional diversity along an oil contamination gradient in oil field. FEMS Microbiology Ecology, 2009, 70(2): 324–333
CrossRef Pubmed Google scholar
[57]
Ning J, Liebich J, Kästner M, Zhou J, Schäffer A, Burauel P. Different influences of DNA purity indices and quantity on PCR-based DGGE and functional gene microarray in soil microbial community study. Applied Microbiology and Biotechnology, 2009, 82(5): 983–993
CrossRef Pubmed Google scholar
[58]
Wu L, Liu X, Schadt C W, Zhou J. Microarray-based analysis of subnanogram quantities of microbial community DNAs by using whole-community genome amplification. Applied and Environmental Microbiology, 2006, 72(7): 4931–4941
CrossRef Pubmed Google scholar
[59]
Bürgmann H, Widmer F, Sigler W V, Zeyer J. mRNA extraction and reverse transcription-PCR protocol for detection of nifH gene expression by Azotobacter vinelandii in soil. Applied and Environmental Microbiology, 2003, 69(4): 1928–1935
CrossRef Pubmed Google scholar
[60]
McGrath K C, Thomas-Hall S R, Cheng C T, Leo L, Alexa A, Schmidt S, Schenk P M. Isolation and analysis of mRNA from environmental microbial communities. Journal of Microbiological Methods, 2008, 75(2): 172–176
CrossRef Pubmed Google scholar
[61]
Gao H, Yang Z K, Gentry T J, Wu L, Schadt C W, Zhou J. Microarray-based analysis of microbial community RNAs by whole-community RNA amplification. Applied and Environmental Microbiology, 2007, 73(2): 563–571
CrossRef Pubmed Google scholar
[62]
He Z, Wu L, Fields M W, Zhou J. Use of microarrays with different probe sizes for monitoring gene expression. Applied and Environmental Microbiology, 2005, 71(9): 5154–5162
CrossRef Pubmed Google scholar
[63]
Van Nostrand J D, Wu W M, Wu L, Deng Y, Carley J, Carroll S, He Z, Gu B, Luo J, Criddle C S, Watson D B, Jardine P M, Marsh T L, Tiedje J M, Hazen T C, Zhou J. GeoChip-based analysis of functional microbial communities during the reoxidation of a bioreduced uranium-contaminated aquifer. Environmental Microbiology, 2009, 11(10): 2611–2626
CrossRef Pubmed Google scholar
[64]
Waldron P J, Wu L, Van Nostrand J D, Schadt C W, He Z, Watson D B, Jardine P M, Palumbo A V, Hazen T C, Zhou J. Functional gene array-based analysis of microbial community structure in groundwaters with a gradient of contaminant levels. Environmental Science & Technology, 2009, 43(10): 3529–3534
CrossRef Pubmed Google scholar
[65]
Mason O U, Di Meo-Savoie C A, Van Nostrand J D, Zhou J, Fisk M R, Giovannoni S J. Prokaryotic diversity, distribution, and insights into their role in biogeochemical cycling in marine basalts.The ISME Journal, 2009, 3(2): 231–242
CrossRef Pubmed Google scholar
[66]
He Z, Zhou J. Empirical evaluation of a new method for calculating signal-to-noise ratio for microarray data analysis. Applied and Environmental Microbiology, 2008, 74(10): 2957–2966
CrossRef Pubmed Google scholar
[67]
He Z, Van Nostrand J D, Wu L, Zhou J. Development and application of functional gene arrays for microbial community analysis. Transactions of Nonferrous Metals Society of China, 2008, 18(6): 1319–1327
CrossRef Google scholar
[68]
Luo Y, Hui D, Zhang D. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis. Ecology, 2006, 87(1): 53–63
CrossRef Pubmed Google scholar
[69]
He Z, Xu M, Deng Y, Kang S, Kellogg L, Wu L, Van Nostrand J D, Hobbie S E, Reich P B, Zhou J. Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO2. Ecology Letters, 2010, 13(5): 564–575
CrossRef Pubmed Google scholar
[70]
.ter Braak C J F. Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology, 1986, 67(5): 1167–1179
CrossRef Google scholar
[71]
Økland R H, Eilertsen O. Canonical correspondence analysis with variation partitioning: Some comments and an application. Journal of Vegetation Science, 1994, 5(1): 117–126
CrossRef Google scholar
[72]
Ramette A, Tiedje J M. Multiscale responses of microbial life to spatial distance and environmental heterogeneity in a patchy ecosystem. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(8): 2761–2766
CrossRef Pubmed Google scholar
[73]
Yergeau E, Kang S, He Z, Zhou J, Kowalchuk G A. Functional microarray analysis of nitrogen and carbon cycling genes across an Antarctic latitudinal transect.The ISME Journal, 2007, 1(2): 163–179
CrossRef Pubmed Google scholar
[74]
Wu L, Kellogg L, Devol A H, Tiedje J M, Zhou J. Microarray-based characterization of microbial community functional structure and heterogeneity in marine sediments from the Gulf of Mexico. Applied and Environmental Microbiology, 2008, 74(14): 4516–4529
CrossRef Pubmed Google scholar
[75]
Wang F, Zhou H, Meng J, Peng X, Jiang L, Sun P, Zhang C, Van Nostrand J D, Deng Y, He Z, Wu L, Zhou J, Xiao X. GeoChip-based analysis of metabolic diversity of microbial communities at the Juan de Fuca Ridge hydrothermal vent. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(12): 4840–4845
CrossRef Pubmed Google scholar
[76]
Xiong J, Wu L, Tu S, Van Nostrand J D, He Z, Zhou J, Wang G.Microbial communities and functional genes associated with soil arsenic contamination and rhizosphere of the arsenic hyper-accumulating plant Pteris vittata L. Applied and Environmental Microbiology, 2010 (in press, AEM.00500-10)
[77]
Liu W, Wang A, Cheng S, Logan B E, Yu H, Deng Y, Nostrand J D V, Wu L, He Z, Zhou J. Geochip-based functional gene analysis of anodophilic communities in microbial electrolysis cells under different operational modes. Environmental Science & Technology, 2010, 44(19): 7729–7735
CrossRef Pubmed Google scholar
[78]
Dennis P, Edwards E A, Liss S N, Fulthorpe R. Monitoring gene expression in mixed microbial communities by using DNA microarrays. Applied and Environmental Microbiology, 2003, 69(2): 769–778
CrossRef Pubmed Google scholar
[79]
Deng Y, He Z, Van Nostrand J D, Zhou J. Design and analysis of mismatch probes for long oligonucleotide microarrays. BMC Genomics, 2008, 9(1): 491
CrossRef Pubmed Google scholar
[80]
Chen Q, Yin H, Luo H, Xie M, Qiu G, Liu X. Micro-array based whole-genome hybridization for detection of microorganisms in acid mine drainage and bioleaching systems. Hydrometallurgy, 2009, 95(1-2): 96–103
CrossRef Google scholar
[81]
Denef V J, Park J, Rodrigues J L M, Tsoi T V, Hashsham S A, Tiedje J M. Validation of a more sensitive method for using spotted oligonucleotide DNA microarrays for functional genomics studies on bacterial communities. Environmental Microbiology, 2003, 5(10): 933–943
CrossRef Pubmed Google scholar
[82]
Relógio A, Schwager C, Richter A, Ansorge W, Valcárcel J. Optimization of oligonucleotide-based DNA microarrays. Nucleic Acids Research, 2002, 30(11): e51
CrossRef Pubmed Google scholar
[83]
Cho J C, Tiedje J M. Quantitative detection of microbial genes by using DNA microarrays. Applied and Environmental Microbiology, 2002, 68(3): 1425–1430
CrossRef Pubmed Google scholar
[84]
Zhou J, Thompson D K. Challenges in applying microarrays to environmental studies. Current Opinion in Biotechnology, 2002, 13(3): 204–207
CrossRef Pubmed Google scholar
[85]
Schaupp C J, Jiang G, Myers T G, Wilson M A. Active mixing during hybridization improves the accuracy and reproducibility of microarray results. BioTechniques, 2005, 38(1): 117–119
CrossRef Pubmed Google scholar
[86]
Zhou X C, Wu L Y, Zhou J Z. Fabrication of DNA microarrays on nanoengineered polymeric ultrathin film prepared by self-assembly of polyelectrolyte multilayers. Langmuir, 2004, 20(20): 8877–8885
CrossRef Pubmed Google scholar
[87]
Branham W S, Melvin C D, Han T, Desai V G, Moland C L, Scully A T, Fuscoe J C. Elimination of laboratory ozone leads to a dramatic improvement in the reproducibility of microarray gene expression measurements. BMC Biotechnology, 2007, 7(1): 8
CrossRef Pubmed Google scholar
[88]
Kumar A, Larsson O, Parodi D, Liang Z. Silanized nucleic acids: a general platform for DNA immobilization. Nucleic Acids Research, 2000, 28(14): e71
CrossRef Pubmed Google scholar
[89]
Gudnason H, Dufva M, Duong Bang D, Wolff A. An inexpensive and simple method for thermally stable immobilization of DNA on an unmodified glass surface: UV linking of poly(T)10-poly(C)10-tagged DNA probes. BioTechniques, 2008, 45(3): 261–271
CrossRef Pubmed Google scholar
[90]
DeSantis T Z, Brodie E L, Moberg J P, Zubieta I X, Piceno Y M, Andersen G L. High-density universal 16S rRNA microarray analysis reveals broader diversity than typical clone library when sampling the environment. Microbial Ecology, 2007, 53(3): 371–383
CrossRef Pubmed Google scholar
[91]
Leigh M B, Pellizari V H, Uhlík O, Sutka R, Rodrigues J, Ostrom N E, Zhou J, Tiedje J M. Biphenyl-utilizing bacteria and their functional genes in a pine root zone contaminated with polychlorinated biphenyls (PCBs).The ISME Journal, 2007, 1(2): 134–148
CrossRef Pubmed Google scholar
[92]
Gu B, Brooks S C, Roh Y, Jardine P M. Geochemical reactions and dynamics during titration of a contaminated groundwater with high uranium, aluminum, and calcium. Geochimica et Cosmochimica Acta, 2003, 67(15): 2749–2761
CrossRef Google scholar
[93]
Wu W M, Carley J, Gentry T, Ginder-Vogel M A, Fienen M, Mehlhorn T, Yan H, Caroll S, Pace M N, Nyman J, Luo J, Gentile M E, Fields M W, Hickey R F, Gu B, Watson D, Cirpka O A, Zhou J, Fendorf S, Kitanidis P K, Jardine P M, Criddle C S. Pilot-scale in situ bioremedation of uranium in a highly contaminated aquifer. 2. Reduction of u(VI) and geochemical control of u(VI) bioavailability. Environmental Science & Technology, 2006, 40(12): 3986–3995
CrossRef Pubmed Google scholar
[94]
Wu W M, Carley J, Luo J, Ginder-Vogel M A, Cardenas E, Leigh M B, Hwang C, Kelly S D, Ruan C, Wu L, Van Nostrand J D, Gentry T, Lowe K, Mehlhorn T, Carroll S, Luo W, Fields M W, Gu B, Watson D, Kemner K M, Marsh T, Tiedje J, Zhou J, Fendorf S, Kitanidis P K, Jardine P M, Criddle C S. In situ bioreduction of uranium (VI) to submicromolar levels and reoxidation by dissolved oxygen. Environmental Science & Technology, 2007, 41(16): 5716–5723
CrossRef Pubmed Google scholar
[95]
Xu M, Wu W M, Wu L, He Z, Van Nostrand J D, Deng Y, Luo J, Carley J, Ginder-Vogel M, Gentry T J, Gu B, Watson D, Jardine P M, Marsh T L, Tiedje J M, Hazen T, Criddle C S, Zhou J. Responses of microbial community functional structures to pilot-scale uranium in situ bioremediation.The ISME Journal, 2010, 4(8): 1060–1070
CrossRef Pubmed Google scholar
[96]
Tas N, van Eekert M H, Schraa G, Zhou J, de Vos W M, Smidt H. Tracking functional guilds: “Dehalococcoides” spp. in European river basins contaminated with hexachlorobenzene. Applied and Environmental Microbiology, 2009, 75(14): 4696–4704
CrossRef Pubmed Google scholar
[97]
Kimes N E, Van Nostrand J D, Weil E, Zhou J, Morris P J. Microbial functional structure of Montastraea faveolata, an important Caribbean reef-building coral, differs between healthy and yellow-band diseased colonies. Environmental Microbiology, 2010, 12(2): 541–556
CrossRef Pubmed Google scholar
[98]
Zhang Y, Zhang X, Liu X, Xiao Y, Qu L, Wu L, Zhou J. Microarray-based analysis of changes in diversity of microbial genes involved in organic carbon decomposition following land use/cover changes. FEMS Microbiology Letters, 2007, 266(2): 144–151
CrossRef Pubmed Google scholar
[99]
Lawton J H. Are there general laws in ecology? Oikos, 1999, 84(2): 177–192
CrossRef Google scholar
[100]
Reich P B, Knops J, Tilman D, Craine J, Ellsworth D, Tjoelker M, Lee T, Wedin D, Naeem S, Bahauddin D, Hendrey G, Jose S, Wrage K, Goth J, Bengston W. Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition. Nature, 2001, 410(6830): 809–812
CrossRef Pubmed Google scholar
[101]
Parnell J J, Rompato G, Latta L C I V 4th, Pfrender M E, Van Nostrand J D, He Z, Zhou J, Andersen G, Champine P, Ganesan B, Weimer B C, Aziz R K. Functional biogeography as evidence of gene transfer in hypersaline microbial communities. PLoS ONE, 2010, 5(9): e12919
CrossRef Pubmed Google scholar
[102]
Xie J, He Z, Liu X, Liu X, Van Nostrand J D, Deng Y, Wu L, Qiu G, Zhou J.Geochip-based analysis of the functional gene diversity and metabolic potential of microbial communities in acid mine drainage. Applied and Environmental Microbiology, 2010,
CrossRef Google scholar
[103]
Rodríguez-Martínez E M, Pérez E X, Schadt C W, Zhou J, Massol-Deyá A A. Microbial diversity and bioremediation of a hydrocarbon-contaminated aquifer (Vega Baja, Puerto Rico). International Journal of Environmental Research and Public Health, 2006, 3(3): 292–300
CrossRef Pubmed Google scholar
[104]
Liang Y, Nostrand J D V, Wang J, Zhang X, Zhou J, Li G. Microarray-based functional gene analysis of soil microbial communities during ozonation and biodegradation of crude oil. Chemosphere, 2009, 75(2): 193–199
CrossRef Pubmed Google scholar
[105]
Liang Y, Van Nostrand J D, Deng Y, He Z, Wu L, Zhang X, Li G, Zhou J. Functional gene diversity of soil microbial communities from five oil-contaminated fields in China. The ISME Journal, 2010, (in press)
CrossRef Pubmed Google scholar
[106]
Hazen T C, Dubinsky E A, DeSantis T Z, Andersen G L, Piceno Y M, Singh N, Jansson J K, Probst A, Borglin S E, Fortney J L, Stringfellow W T, Bill M, Conrad M E, Tom L M, Chavarria K L, Alusi T R, Lamendella R, Joyner D C, Spier C, Baelum J, Auer M, Zemla M L, Chakraborty R, Sonnenthal E L, D’haeseleer P, Holman H Y N, Osman S, Lu Z, Van Nostrand J D, Deng Y, Zhou J, Mason O U. Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science, 2010, 330(6001): 204–208
CrossRef Pubmed Google scholar
[107]
Margulies M, Egholm M, Altman W E, Attiya S, Bader J S, Bemben L A, Berka J, Braverman M S, Chen Y J, Chen Z T, Dewell S B, Du L, Fierro J M, Gomes X V, Godwin B C, He W, Helgesen S, Ho C H, Irzyk G P, Jando S C, Alenquer M L, Jarvie T P, Jirage K B, Kim J B, Knight J R, Lanza J R, Leamon J H, Lefkowitz S M, Lei M, Li J, Lohman K L, Lu H, Makhijani V B, McDade K E, McKenna M P, Myers E W, Nickerson E, Nobile J R, Plant R, Puc B P, Ronan M T, Roth G T, Sarkis G J, Simons J F, Simpson J W, Srinivasan M, Tartaro K R, Tomasz A, Vogt K A, Volkmer G A, Wang S H, Wang Y, Weiner M P, Yu P, Begley R F, Rothberg J M. Genome sequencing in microfabricated high-density picolitre reactors. Nature, 2005, 437(7057): 376–380
Pubmed
[108]
Binladen J, Gilbert M T P, Bollback J P, Panitz F, Bendixen C, Nielsen R, Willerslev E, Hahn M. The use of coded PCR primers enables high-throughput sequencing of multiple homolog amplification products by 454 parallel sequencing. PLoS ONE, 2007, 2(2): e197
CrossRef Pubmed Google scholar
[109]
Hamady M, Walker J J, Harris J K, Gold N J, Knight R. Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nature Methods, 2008, 5(3): 235–237
CrossRef Pubmed Google scholar
[110]
Iwai S, Chai B, Sul W J, Cole J R, Hashsham S A, Tiedje J M. Gene-targeted-metagenomics reveals extensive diversity of aromatic dioxygenase genes in the environment.The ISME Journal, 2010, 4(2): 279–285
CrossRef Pubmed Google scholar
[111]
Qin J, Li R, Raes J, Arumugam M, Burgdorf K S, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende D R, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto J M, Hansen T, Le Paslier D, Linneberg A, Nielsen H B, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Doré J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, Bork P, Ehrlich S D, Wang J. A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 2010, 464(7285): 59–65
CrossRef Pubmed Google scholar

Acknowledgments

This work has been partially supported through contracts DE-SC0004601 and DE-AC02-05CH11231 (as part of ENIGMA, a Scientific Focus Area) by the U.S. Department of Energy, Office of Science, Office of Biologic and Environmental Research, Genomics: GTL Foundational Science and Environmental Remediation Science Program (ERSP) Programs, and Oklahoma Applied Research Support (OARS), Oklahoma Center for the Advancement of Science and Technology (OCAST), the Oklahoma Bioenergy Center (OBC), and the State of Oklahoma through the Project AR062-034.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(351 KB)

Accesses

Citations

Detail

Sections
Recommended

/