PDF
(391KB)
Abstract
Fluorochemicals (FCs) are oxidatively recalcitrant, environmentally persistent, and resistant to most conventional treatment technologies. FCs have unique physiochemical properties derived from fluorine which is the most electronegative element. Perfluorooctanesulfonate (PFOS), and perfluorooctanoate (PFOA) have been detected globally in the hydrosphere, atmosphere and biosphere. Reducing treatment technologies such as reverses osmosis, nano-filtration and activated carbon can remove FCs from water. However, incineration of the concentrated waste is required for complete FC destruction. Recently, a number of alternative technologies for FC decomposition have been reported. The FC degradation technologies span a wide range of chemical processes including direct photolysis, photocatalytic oxidation, photochemical oxidation, photochemical reduction, thermally-induced reduction, and sonochemical pyrolysis. This paper reviews these FC degradation technologies in terms of kinetics, mechanism, energetic cost, and applicability. The optimal PFOS/PFOA treatment method is strongly dependent upon the FC concentration, background organic and metal concentration, and available degradation time.
Keywords
fluorochemical (FC) degradation technologies
/
perfluoroctanesulfonate (PFOS)
/
perfluorooctanoate
/
(PFOA)
/
oxidation
/
reduction
/
photolysis
/
thermolysis
/
review
Cite this article
Download citation ▾
Chad D. VECITIS, Hyunwoong PARK, Jie CHENG, Brian T. MADER, Michael R. HOFFMANN.
Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA).
Front. Environ. Sci. Eng., 2009, 3(2): 129-151 DOI:10.1007/s11783-009-0022-7
| [1] |
Goss K U. The pK(a) values of PFOA and other highly fluorinated carboxylic acids. Environmental Science & Technology, 2008, 42(2): 456-458
|
| [2] |
Goss K U, Bronner, G. What is so special about the sorption behavior of highly fluorinated compounds? Journal of Physical Chemistry A, 2006, 110(30): 9518-9522
|
| [3] |
Goss K U, Bronner G, Harner T, Monika H, Schmidt T C. The partition behavior of fluorotelomer alcohols and olefins. Environmental Science & Technology, 2006, 40(11): 3572-3577
|
| [4] |
Wardman P. Reduction potentials of one-electron couples involving free-radicals in aqueous-solution. Journal of Physical and Chemical Reference Data, 1989, 18(4): 1637-1755
|
| [5] |
Office of Pollution Prevention and Toxics, Docket AR226-0547, ed. The Science of Organic Fluorochemistry. Washington DC: US Environmental Protection Agency, 1999, 12
|
| [6] |
Office of Pollution Prevention & Toxics, Docket AR226-1699, ed. Removal of PFOA with Granular Activated Carbon: 3M Wastewater Treatment System Monitoring. Washington DC: US Environmental Protection Agency, 2004, 5
|
| [7] |
Sinclair E, Kannan K. Mass loading and fate of perfluoroalkyl surfactants in wastewater treatment plants. Environmental Science & Technology, 2006, 40(5): 1408-1414
|
| [8] |
Schultz M M, Higgins C P, Huset C A, Luthy R G, Barofsky D F, Field J A. Fluorochemical mass flows in a municipal wastewater treatment facility. Environmental Science & Technology, 2006, 40: 7350-7357
|
| [9] |
Shinoda K, Hato M, Hayashi T. Physicochemical properties of aqueous-solutions of fluorinated surfactants. Journal of Physical Chemistry, 1972, 76(6): 909-914
|
| [10] |
Lopez-Fontan J L, Sarmiento F, Schulz P C. The aggregation of sodium perfluorooctanoate in water. Colloid & Polymer Science, 2005, 283(8): 862-871
|
| [11] |
Lu J R, Ottewill R H, Rennie A R. Adsorption of ammonium perfluorooctanoate at the air-water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 183: 15-26
|
| [12] |
Simister E A, Lee E M, Lu J R, Thomas R K, Ottewill R H, Rennie A R, Penfold J. Adsorption of ammonium perfluorooctanoate and ammonium decanoate at the air solution interface. Journal of the Chemical Society, Faraday Transactions articles, 1992, 88(20): 3033-3041
|
| [13] |
Boulanger B, Peck A M, Schnoor J L, Hornbuckle K C. Mass budget of perfluorooctane surfactant in Lake Ontario. Environmental Science & Technology, 2005, 39(1): 74-79
|
| [14] |
Boulanger B, Vargo J, Schnoor J L, Hornbuckle K C. Detection of perfluorooctane surfactants in Great Lakes water. Environmental Science & Technology, 2004, 38(15): 4064-4070
|
| [15] |
Hansen K J, Johnson H O, Eldridge J S, Butenhoff J L, Dick L A. Quantitative characterization of trace levels of PFOS and PFOA in the Tennessee River. Environmental Science & Technology, 2002, 36(8): 1681-1685
|
| [16] |
Harada K, Saito N, Sasaki K, Inoue K, Koizumi A. Perfluorooctane sulfonate contamination of drinking water in the Tama River, Japan: Estimated effects on resident serum levels. Bulletin of Environmental Contamination and Toxicology, 2003, 71(1): 31-36
|
| [17] |
Kim S K, Kannan K. Perfluorinated acids in air, rain, snow, surface runoff, and lakes: Relative importance of pathways to contamination of urban lakes. Environmental Science & Technology, 2007, 41(24): 8328-8334
|
| [18] |
McLachlan M S, Holmstrom K E, Reth M, Berger U. Riverine discharge of perfluorinated carboxylates from the European continent. Environmental Science & Technology, 2007, 41(21): 7260-7265
|
| [19] |
Moody C A, Hebert G N, Strauss S H, Field J A. Occurrence and persistence of perfluorooctanesulfonate and other perfluorinated surfactants in groundwater at a fire-training area at Wurtsmith Air Force Base, Michigan, USA. Journal of Environmental Monitoring, 2003, 5(2): 341-345
|
| [20] |
Moody C A, Martin J W, Kwan W C, Muir D C G, Mabury S C. Monitoring perfluorinated surfactants in biota and surface water samples following an accidental release of fire-fighting foam into Etohicoke Creek. Environmental Science & Technology, 2002, 36(4): 545-551
|
| [21] |
Schultz M M, Barofsky D F, Field J A. Fluorinated alkyl surfactants, 2003, 20(5): 487-501
|
| [22] |
Yamashita N, Kannan K, Taniyasu S, Horii Y, Petrick G, Gamo T. A global survey of perfluorinated acids in oceans. Marine Pollution Bulletin, 2005, 51(8-12): 658-668
|
| [23] |
Office of Pollution Prevention & Toxics, Docket AR226-0620, ed. Sulfonated perfluorochemicals in the environment: Sources, dispersion, fate and effects. Washington DC: US Environmental Protection Agency, 2000, 51
|
| [24] |
Armitage J, Cousins I T, Buck R C, Prevedouros K, Russell M H, MacLeod M, Korzeniowski S H. Modeling global-scale fate and transport of perfluorooctanoate emitted from direct sources. Environmental Science & Technology, 2006, 40(22): 6969-6975
|
| [25] |
Saito N, Harada K, Inoue K, Sasaki K, Yoshinaga T, Koizumi A. Perfluorooctanoate and perfluorooctane sulfonate concentrations in surface water in Japan. Journal of Occupational Health, 2004, 46(1): 49-59
|
| [26] |
Schultz M M, Barofsky D F, Field J A. Quantitative determination of fluorotelomer sulfonates in groundwater by LC MS/MS. Environmental Science & Technology, 2004, 38(6): 1828-1835
|
| [27] |
Scott B F, Moody C A, Spencer C, Small J M, Muir D C G, Mabury S A. Analysis for perfluorocarboxylic acids/anions in surface waters and precipitation using GC-MS and analysis of PFOA from large-volume samples. Environmental Science & Technology2006, 40(20): 6405-6410
|
| [28] |
Scott B F, Spencer C, Mabury S A, Muir D C G. Poly and perfluorinated carboxylates in north American precipitation. Environmental Science & Technology, 2006, 40(23): 7167-7174
|
| [29] |
Senthilkumar K, Ohi E, Sajwan K, Takasuga T, Kannan K. Perfluorinated compounds in river water, river sediment, market fish, and wildlife samples from Japan. Bulletin of Environmental Contamination and Toxicology, 2007, 79(4): 427-431
|
| [30] |
So M K, Miyake Y, Yeung W Y, Ho Y M, Taniyasu S, Rostkowski P, Yamashita N, ZhouB S, Shi X J, Wang J X, Giesy J P, Yu H , Lam P K S. Perfluorinated compounds in the Pearl River and Yangtze River of China. Chemosphere2007, 68(11): 2085-2095.
|
| [31] |
So M K, Taniyasu S, Yamashita N, Giesy J P, Zheng J, Fang Z, Im S H, Lam P K S. Perfluorinated compounds in coastal waters of Hong Kong, South China, and Korea. Environmental Science & Technology, 2004, 38(15): 4056-4063
|
| [32] |
Yamashita N, Kannan K, Taniyasu S, Horii Y, Okazawa T, Petrick G, Gamo T. Analysis of perfluorinated acids at parts-per-quadrillion levels in seawater using liquid chromatography-tandem mass spectrometry. Environmental Science & Technology, 2004, 38(21): 5522-5528
|
| [33] |
Yamashita N, Taniyasu S, Petrick G, Wei S, Gamo T, Lam P K S, Kannan K. Perfluorinated acids as novel chemical tracers of global circulation of ocean waters. Chemosphere, 2008, 70(7): 1247-1255
|
| [34] |
Calafat A M, Kuklenyik Z, Caudill S P, Reidy J A, Needham L L. Perfluorochemicals in pooled serum samples from United States residents in 2001 and 2002. Environmental Science & Technology, 2006, 40(7): 2128-2134
|
| [35] |
Calafat A M, Needham L L, Kuklenyik Z, Reidy J A, Tully J S, Aguilar-Villalobos M, Naeher L P. Perfluorinated chemicals in selected residents of the American continent. Chemosphere, 2006, 63(3): 490-496
|
| [36] |
Martin J W, Whittle D M, Muir D C G, Mabury S A. Perfluoroalkyl contaminants in a food web from lake Ontario. Environmental Science & Technology, 2004, 38(20): 5379-5385
|
| [37] |
Martin J W, Smithwick M M, Braune B M, Hoekstra P F, Muir D C G, Mabury S A. Identification of long-chain perfluorinated acids in biota from the Canadian Arctic. Environmental Science & Technology, 2004, 38(2): 373-380
|
| [38] |
Giesy J P, Kannan K. Global distribution of perfluorooctane sulfonate in wildlife. Environmental Science & Technology, 2001, 35(7): 1339-1342
|
| [39] |
Holmstrom K E, Jarnberg U, Bignert A. Temporal trends of PFOS and PFOA in guillemot eggs from the Baltic Sea, 1968-2003. Environmental Science & Technology, 2005, 39(1): 80-84
|
| [40] |
Houde M, Balmer B C, Brandsma S, Wells R S, Rowles T K, Solomon K R, Muir D C G. Perfluoroalkyl compounds in relation to life-history and reproductive parameters in bottlenose dolphins (Tursiops truncatus) from Sarasota Bay, Florida, USA. Environmental Toxicology and Chemistry, 2006, 25(9): 2405-2412
|
| [41] |
Houde M, Martin J W, Letcher R J, Solomon K R, Muir D C G. Biological monitoring of polyfluoroalkyl substances: A review. Environmental Science & Technology, 2006, 40(11): 3463-3473
|
| [42] |
Kannan K, Choi J W, Iseki N, Senthilkumar K, Kim D H, Masunaga S, Giesy J P. Concentrations of perfluorinated acids in livers of birds from Japan and Korea. Chemosphere, 2002, 49(3): 225-231
|
| [43] |
Kannan K, Corsolini S, Falandysz J, Fillmann G, Kumar K S, Loganathan B G, Mohd M A, Olivero J, Van Wouwe N, Yang J H, Aldous K M. Perfluorooctanesulfonate and related fluorochemicals in human blood from several countries. Environmental Science & Technology, 2004, 38(17): 4489-4495
|
| [44] |
Kannan K, Corsolini S, Falandysz J, Oehme G, Focardi S, Giesy J P. Perfluorooctanesulfonate and related fluorinated hydrocarbons in marine mammals, fishes, and birds from coasts of the Baltic and the Mediterranean Seas. Environmental Science & Technology, 2002, 36(15): 3210-3216
|
| [45] |
Kannan K, Koistinen J, Beckmen K, Evans T, Gorzelany J F, Hansen K J, Jones P D, Helle E, Nyman M, Giesy J P. Accumulation of perfluorooctane sulfonate in marine mammals. Environmental Science & Technology, 2001, 35(8): 1593-1598
|
| [46] |
Kannan K, Newsted J, Halbrook R S, Giesy J P. Perfluorooctanesulfonate and related fluorinated hydrocarbons in mink and river otters from the United States. Environmental Science & Technology, 2002, 36(12): 2566-2571
|
| [47] |
Kannan K, Tao L, Sinclair E, Pastva S D, Jude D J, Giesy J P. Perfluorinated compounds in aquatic organisms at various trophic levels in a Great Lakes food chain. Archives of Environmental Contamination and Toxicology, 2005, 48(4): 559-566
|
| [48] |
Nakata H, Kannan K, Nasu T, Cho H S, Sinclair E, Takemura A. Perfluorinated contaminants in sediments and aquatic organisms collected from shallow water and tidal flat areas of the Ariake Sea, Japan: Environmental fate of perfluorooctane sulfonate in aquatic ecosystems. Environmental Science & Technology, 2006, 40(16): 4916-4921
|
| [49] |
Olsen G W, Church T R, Larson E B, van Belle G, Lundberg J K, Hansen K J, Burris J M, Mandel J H, Zobel L R. Serum concentrations of perfluorooctanesulfonate and other fluorochemicals in an elderly population from Seattle, Washington. Chemosphere, 2004, 54(11): 1599-1611
|
| [50] |
Olsen G W, Church T R, Miller J P, Burris J M, Hansen K J, Lundberg J K, Armitage J B, Herron R M, Medhdizadehkashi Z, Nobiletti J B, O'Neill E M, Mandel J H, Zobel L R. Perfluorooctanesulfonate and other fluorochemicals in the serum of American Red Cross adult blood donors. Environmental Health Perspectives, 2003, 111(16): 1892-1901
|
| [51] |
Olsen G W, Huang H Y, Helzlsouer K J, Hansen K J, Butenhoff J L, Mandel J H. Historical comparison of perfluorooctanesulfonate, perfluorooctanoate, and other fluorochemicals in human blood. Environmental Health Perspectives, 2005, 113(5): 539-545
|
| [52] |
Olsen G W, Mair D C, Reagen W K, Ellefson M E, Ehresman D J, Butenhoff J L, Zobel L R. Preliminary evidence of a decline in perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) concentrations in American Red Cross blood donors. Chemosphere, 2007, 68(1): 105-111
|
| [53] |
Sinclair E, Mayack D T, Roblee K, Yamashita N, Kannan K. Occurrence of perfluoroalkyl surfactants in water, fish, and birds from New York State. Archives of Environmental Contamination and Toxicology, 2006, 50(3): 398-410
|
| [54] |
Smithwick M, Mabury S A, Solomon K R, Sonne C, Martin J W, Born E W, Dietz R, Derocher A E, Letcher R J, Evans T J, Gabrielsen G W, Nagy J, Stirling I, Taylor M K, Muir D C G. Circumpolar study of perfluoroalkyl contaminants in polar bears (Ursus maritimus). Environmental Science & Technology, 2005, 39(15): 5517-5523
|
| [55] |
Taniyasu S, Kannan K, Horii Y, Hanari N, Yamashita N. A survey of perfluorooctane sulfonate and related perfluorinated organic compounds in water, fish, birds, and humans from Japan. Environmental Science & Technology, 2003, 37(12): 2634-2639
|
| [56] |
Tomy G T, Budakowski W, Halldorson T, Helm P A, Stern G A, Friesen K, Pepper K, Tittlemier S A, Fisk A T. Fluorinated organic compounds in an eastern Arctic marine food web. Environmental Science & Technology, 2004, 38(24): 6475-6481
|
| [57] |
Van de Vijver K I, Hoff P T, Das K, Van Dongen W, Esmans E L, Siebert U, Bouquegneau J M, Blust R, De Coen W M. Baseline study of perfluorochemicals in harbour porpoises (Phocoena phocoena) from Northern Europe. Marine Pollution Bulletin, 2004, 48(9-10): 992-997
|
| [58] |
Verreault J, Berger U, Gabrielsen G W. Trends of perfluorinated alkyl substances in herring gull eggs from two coastal colonies in northern norway: 1983-2003. Environmental Science & Technology, 2007, 41(19): 6671-6677
|
| [59] |
Prevedouros K, Cousins I T, Buck R C, Korzeniowski S H. Sources, fate and transport of perfluorocarboxylates. Environmental Science & Technology, 2006, 40(1): 32-44
|
| [60] |
Kubwabo C, Stewart B, Zhu J P, Marro L. Occurrence of perfluorosulfonates and other perfluorochemicals in dust from selected homes in the city of Ottawa, Canada. Journal of Environmental Monitoring, 2005, 7(11): 1074-1078
|
| [61] |
Moriwaki H, Takata Y, Arakawa R. Concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in vacuum cleaner dust collected in Japanese homes. Journal of Environmental Monitoring, 2003, 5(5): 753-757
|
| [62] |
Ellis D A, Mabury S A, Martin J W, Muir D C G. Thermolysis of fluoropolymers as a potential source of halogenated organic acids in the environment. Nature, 2001, 412(6844): 321-324
|
| [63] |
Tittlemier S A, Pepper K, Seymour C, Moisey J, Bronson R, Cao X L, Dabeka R W. Dietary exposure of Canadians to perfluorinated carboxylates and perfluorooctane sulfonate via consumption of meat, fish, fast foods, and food items prepared in their packaging. Journal of Agricultural and Food Chemistry, 2007, 55(8): 3203-3210
|
| [64] |
Begley T H, White K, Honigfort P, Twaroski M L, Neches R, Walker R A. Perfluorochemicals: Potential sources of and migration from food packaging. Food Additives and Contaminants, 2005, 22(10): 1023-1031
|
| [65] |
Young C J, Furdui V I, Franklin J, Koerner R M, Muir D C G, Mabury S A. Perfluorinated acids in arctic snow: New evidence for atmospheric formation. Environmental Science & Technology, 2007, 41(10): 3455-3461
|
| [66] |
D'Eon J C, Hurley M D, Wallington T J, Mabury S A. Atmospheric chemistry of N-methyl perfluorobutane sulfonamidoethanol, C4F9SO2N(CH3)CH2CH2OH: Kinetics and mechanism of reaction with OH. Environmental Science & Technology, 2006, 40(6): 1862-1868
|
| [67] |
Martin J W, Ellis D A, Mabury S A, Hurley M D, Wallington T J. Atmospheric chemistry of perfluoroalkanesulfonamides: Kinetic and product studies of the OH radical and Cl atom initiated oxidation of N-ethyl perfluorobutanesulfonamide. Environmental Science & Technology, 2006, 40(3): 864-872
|
| [68] |
Office of Pollution Prevention and Toxics, Docket AR226-0380, ed. Study of the Stability of MeFOSEA in Aqueous Buffers. Washington DC: US Environmental Protection Agency, 1999, 69
|
| [69] |
Tomy G T, Tittlemier S A, Palace V P, Budakowski W R, Braekevelt E, Brinkworth L, Friesen K. Biotransformation of N-ethyl perfluorooctanesulfonamide by rainbow trout (Onchorhynchus mykiss) liver microsomes. Environmental Science & Technology, 2004, 38(3): 758-762
|
| [70] |
Xu L, Krenitsky D M, Seacat A M, Butenhoff J L, Anders M W. Biotransformation of N-ethyl-N-(2-hydroxyethyl)perfluorooetanesulfonamide by rat liver microsomes, cytosol, and slices and by expressed rat and human cytochromes P450. Chemical Research in Toxicology, 2004, 17(6): 767-775
|
| [71] |
Office of Pollution Prevention and Toxics, Docket AR226-0163, ed. Additional Characterization of Metabolites of T-6292, T-6293 and T-6294 from Rat and Human Hepatocytes. Washington DC: US Environmental Protection Agency, 1998, 69
|
| [72] |
Office of Pollution Prevention and Toxics, Docket AR226-0166, ed. Effect of N-Alkyl Perfluorooctylsulfonamides on Mitochondrial Bioenergetics In Vitro. Washington DC: US Environmental Protection Agency, 1998, 10.
|
| [73] |
Hagen D F, Belisle J, Johnson J D, Venkateswarlu P. Characterization of Fluorinated Metabolites by a Gas Chromatographic-Helium Microwave Plasma Detector—the Biotransformation of 1h,1h,2h,2h-Perfluorodecanol to Perfluorooctanoate. Analytical Biochemistry, 1981, 118(2): 336-343
|
| [74] |
Ellis D A, Martin J W, De Silva A O, Mabury S A, Hurley M D, Andersen M P S, Wallington T J. Degradation of fluorotelomer alcohols: A likely atmospheric source of perfluorinated carboxylic acids. Environmental Science & Technology, 2004, 38(12): 3316-3321
|
| [75] |
Stock N L, Lau F K, Ellis D A, Martin J W, Muir D C G, Mabury S A. Polyfluorinated telomer alcohols and sulfonamides in the worth American troposphere. Environmental Science & Technology, 2004, 38(4): 991-996
|
| [76] |
Shoeib M, Harner T, Vlahos P. Perfluorinated chemicals in the Arctic atmosphere. Environmental Science & Technology, 2006, 40(24) : 7577-7583
|
| [77] |
Office of Pollution Prevention & Toxics, Docket AR226-0588, ed. Phase-out Plan for POSF-Based Products. Washington DC: US Environmental Protection Agency, 2000, 11
|
| [78] |
Yarwood G, Kemball-Cook S, Keinath M, Waterland R L, Korzeniowski S H, Buck R C, Russell M H, Washburn S T. High-resolution atmospheric modeling of fluorotelomer alcohols and perfluorocarboxylic acids in the North American troposphere. Environmental Science & Technology, 2007, 41(16): 5756-5762
|
| [79] |
Investigation of Perfluorochemical (PFC) Contamination in Minnesota In Phase 1 ed. Minnesota: Senate Environment Committee, 2006, 79
|
| [80] |
Lampert D J, Frisch M A, Speitel G E. Removal of Perfluorooctanoic Acid and Perfluorooctane Sulfonate from Wastewater by Ion Exchange. Practice Periodical of Hazardous, Toxic and Radioactive Waste Management, 2007, 11(1): 60-68
|
| [81] |
Tsang W, Burgess D R, Babushok V. On the incinerability of highly fluorinated organic compounds. Combustion Science and Technology, 1998, 139(1-6): 385-402
|
| [82] |
Higgins C P, Field J A, Criddle C S, Luthy R G. Quantitative determination of perfluorochemicals in sediments and domestic sludge. Environmental Science & Technology, 2005, 39(11): 3946-3956
|
| [83] |
Schroder H F. Determination of fluorinated surfactants and their metabolites in sewage sludge samples by liquid chromatography with mass spectrometry and tandem mass spectrometry after pressurised liquid extraction and separation on fluorine-modified reversed-phase sorbents. Journal of Chromatography A, 2003, 1020(1): 131-151
|
| [84] |
Hollingsworth J, Sierra-Alvarez R, Zhou M, Ogden K L, Field J A. Anaerobic biodegradability and methanogenic toxicity of key constituents in copper chemical mechanical planarization effluents of the semiconductor industry. Chemosphere, 2005, 59(9): 1219-1228
|
| [85] |
Key B D, Howell R D, Criddle C S. Defluorination of organofluorine sulfur compounds by Pseudomonas sp. strain D2. Environmental Science & Technology, 1998, 32(15): 2283-2287
|
| [86] |
Office of Pollution Prevention & Toxics, Docket AR226-0489, ed. Biodegradation studies of fluorocarbons—III. Washington DC: US Environmental Protection Agency, 1978, 19
|
| [87] |
Office of Pollution Prevention & Toxics, Docket AR226-0058, ed. Biodegradation studies of Fluorocarbons. Washington DC: US Environmental Protection Agency, 1994, 4
|
| [88] |
Oppenlander T. Photochemical Purification of Water and Air. Weinheim: Wiley-VCH, 2003
|
| [89] |
Schroder H F, Meesters R J W. Stability of fluorinated surfactants in advanced oxidation processes—A follow up of degradation products using flow injection-mass spectrometry, liquid chromatography-mass spectrometry and liquid chromatography-multiple stage mass spectrometry. Journal of Chromatography A, 2005, 1082(1): 110-119
|
| [90] |
Moriwaki H, Takagi Y, Tanaka M, Tsuruho K, Okitsu K, Maeda Y. Sonochemical decomposition of perfluorooctane sulfonate and perfluorooctanoic acid. Environmental Science & Technology, 2005, 39(9): 3388-3392
|
| [91] |
Hori H, Hayakawa E, Einaga H, Kutsuna S, Koike K, Ibusuki T, Kiatagawa H, Arakawa R. Decomposition of environmentally persistent perfluorooctanoic acid in water by photochemical approaches. Environmental Science & Technology, 2004, 38(22): 6118-6124
|
| [92] |
Chen J, Zhang P. Photodegradation of perfluorooctanoic acid in water under irradiation of 254 nm and 185 nm light by use of persulfate. Water Science & Technology, 2006, 54(11-12): 317-325
|
| [93] |
Chen J, Zhang P, Liu J. Photodegradation of perfluorooctanoic acid by 185 nm vacuum ultraviolet light. Journal of Environmental Sciences, 2007, 19(4): 387-390
|
| [94] |
Yamamoto T, Noma Y, Sakai S, Shibata Y. Photodegradation of perfluorooctane sulfonate by UV irradiation in water and alkaline 2-propanol. Environmental Science & Technology, 2007, 41(16): 5660-5665
|
| [95] |
Office of Pollution Prevention & Toxics, Docket AR226-0056, ed. Summary of Photolysis Studies using Simulated Sunlight on the Potassium Salt of Perfluorooctanesulfonic Acid. Washington DC: US Environmental Protection Agency, 1978, 17
|
| [96] |
Office of Pollution Prevention & Toxics, Docket AR226-0490, ed. FC-143 Photolysis Study using Simulated Sunlight. Washington DC: US Environmental Protection Agency, 1979, 15
|
| [97] |
Hori H, Yamamoto A, Hayakawa E, Taniyasu S, Yamashita N, Kutsuna S, Kiatagawa H, Arakawa R. Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant. Environmental Science & Technology, 2005, 39(7): 2383-2388
|
| [98] |
Hori H, Yamamoto A, Kutsuna S. Efficient photochemical decomposition of long-chain perfluorocarboxylic acids by means of an aqueous/liquid CO2 biphasic system. Environmental Science & Technology, 2005, 39(19): 7692-7697
|
| [99] |
Kutsuna S, Hori H. Rate constants for aqueous-phase reactions of SO4- with C2F5C(O)O- and C3F7C(O)O- at 298 K. International Journal of Chemical Kinetics, 2007, 39(5) 276-288
|
| [100] |
Chen J, Zhang P Y, Zhang L. Photocatalytic decomposition of environmentally persistent perfluorooctanoic acid. Chemistry Letters, 2006, 35(2): 230-231
|
| [101] |
Hori H, Hayakawa E, Koike K, Einaga H, Ibusuki T. Decomposition of nonafluoropentanoic acid by heteropolyacid photocatalyst H3PW12O40 in aqueous solution. Journal of Molecular Catalysis A—Chemical, 2004, 211(1-2): 35-41
|
| [102] |
Kutsuna S, Nagaoka Y, Takeuchi K, Hori H. TiO2-induced heterogeneous photodegradation of a fluorotelomer alcohol in air. Environmental Science & Technology, 2006, 40, 6824-6829
|
| [103] |
Yuan Q, Ravikrishna R, Valsaraj K T. Reusable adsorbents for dilute solution separation. 5. Photodegradation of organic compounds on surfactant-modified titania. Separation and Purification Technology, 2001, 24(1-2): 309-318
|
| [104] |
Hidaka H, Jou H, Nohara K, Zhao J. Photocatalytic degradation of the hydrophobic pesticide permethrin in fluoro surfactant/TiO2 aqueous dispersions. Chemosphere, 1992, 25(11): 1589-1597
|
| [105] |
Vecitis C D, Park H, Cheng J, Mader B T, Hoffmann M R. Kinetics and mechanism of the sonolytic conversion of the aqueous perfluorinated surfactants, perfluorooctanoate (PFOA), and perfluorooctane sulfonate (PFOS) into inorganic products. Journal of Physical Chemistry A, 2008, 112(18): 4261–4270
|
| [106] |
Vecitis C D, Park H, Cheng J, Mader B T, Hoffmann M R. Enhancement of perlfuorooctanoate and perfluorooctanesulfonate activity at acoustic cavitation bubble interfaces. Journal of Physical Chemistry C, 2008, 112(43): 16850–16857
|
| [107] |
Cheng J, Vecitis C D, Park H, Mader B T, Hoffmann M R. Sonochemical degradation of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in landfill groundwater: Environmental matrix effects. Environmental Science & Technology, 2008, 42(21): 8057–8063
|
| [108] |
Sundstrom D W, Klei H E. Wastewater Treatment. Englewood Cliffs: Prentice-Hall, 1979
|
| [109] |
Investigation of Perfluorochemical (PFC) Contamination in Minnesota. In: Phase 1 ed. Minnesota: Senate Environment Committee, 2006, 79
|
| [110] |
Boulanger B, Vargo J D, Schnoor J L, Hornbuckle K C. Evaluation of perfluorooctane surfactants in a wastewater treatment system and in a commercial surface protection product. Environmental Science & Technology, 2005, 39(15): 5524-5530
|
| [111] |
Loganathan B G, Sajwan K S, Sinclair E, Kumar K S, Kannan K. Perfluoroalkyl sulfonates and perfluorocarboxylates in two wastewater treatment facilities in Kentucky and Georgia. Water Research, 2007, 41(20): 4611-4620
|
| [112] |
Office of Pollution Prevention and Toxics, Docket AR226-1264, ed. Accelerated Biodegradation of 8-2 Telomer B Alcohol. Washington DC: US Environmental Protection Agency, 2003, 45
|
| [113] |
Yamada T, Taylor P H, Buck R C, Kaiser M A, Giraud R J. Thermal degradation of fluorotelomer treated articles and related materials. Chemosphere, 2005, 61(7): 974-984
|
| [114] |
Tang C Y Y, Fu Q S, Robertson A P, Criddle C S, Leckie J O. Use of reverse osmosis membranes to remove perfluorooctane sulfonate (PFOS) from semiconductor wastewater. Environmental Science & Technology, 2006, 40(23): 7343-7349
|
| [115] |
Tang C Y, Fu Q S, Criddle C S, Leckie J O. Effect of flux (transmembrane pressure) and membrane properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing wastewater. Environmental Science & Technology, 2007, 41(6): 2008-2014
|
| [116] |
Higgins C P, Luthy R G. Sorption of perfluorinated surfactants on sediments. Environmental Science & Technology, 2006, 40(23): 7251-7256
|
| [117] |
Johnson R L, Anschutz A J, Smolen J M, Simcik M F, Penn R L. The adsorption of perfluorooctane sulfonate onto sand, clay, and iron oxide surfaces. Journal of Chemical and Engineering Data, 2007, 52(4): 1165-1170
|
| [118] |
Pera-Titus M, Garcia-Molina V, Banos M A, Gimenez J, Esplugas S. Degradation of chlorophenols by means of advanced oxidation processes: A general review. Applied Catalysis B—Environmental, 2004, 47(4): 219-256
|
| [119] |
Andreozzi R, Caprio V, Insola A, Marotta R. Advanced oxidation processes (AOP) for water purification and recovery. Catalysis Today, 1999, 53(1): 51-59
|
| [120] |
Legrini O, Oliveros E, Braun A M. Photochemical processes for water-treatment. Chemical Reviews, 1993, 93(2): 671-698
|
| [121] |
Kochany J, Bolton J R. Mechanism of photodegradation of aqueous organic pollutants. 2. Measurement of the primary rate constants for reaction of hydroxyl radicals with benzene and some halobenzenes using an EPR spin-trapping method following the photolysis of hydrogen peroxide. Environmental Science & Technology, 1992, 26(2): 262-265
|
| [122] |
Hoigne J, Bader H. Rate constants of reactions of ozone with organic and inorganic-compounds in water. 1. Non-dissociating organic-compounds. Water Research, 1983, 17(2): 173-183
|
| [123] |
Hoigne J, Bader H. Rate constants of reactions of ozone with organic and inorganic-compounds in water. 2. Dissociating organic-compounds. Water Research, 1983, 17(2): 185-194
|
| [124] |
Zepp R G, Faust B C, Hoigne J. Hydroxyl radical formation in aqueous reactions (PH 3-8) of iron (Ⅱ) with hydrogen peroxide: the photo-Fenton reaction. Environmental Science & Technology, 1992, 26(2): 313-319
|
| [125] |
Hua I, Hoffmann M R. Optimization of ultrasonic irradiation as an advanced oxidation technology. Environmental Science & Technology, 1997, 31(8): 2237-2243
|
| [126] |
Acero J L, Haderlein S B, Schmidt T C, Suter M J F, Von Gunten U. MTBE oxidation by conventional ozonation and the combination ozone/hydrogen peroxide: Efficiency of the processes and bromate formation. Environmental Science & Technology, 2001, 35(21): 4252-4259
|
| [127] |
Buxton G V, Greenstock C L, Helman W P, Ross A B. Critical-review of rate constants for reactions of hydrated electrons, hydrogen-atoms and hydroxyl radicals (∙OH/∙O-) in aqueous solution. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513-886
|
| [128] |
An Y J, Jeong S W. Interactions of perfluorinated surfactant with polycyclic aromatic hydrocarbons: Critical micelle concentration and solubility enhancement measurements. Journal of Colloid and Interface Science, 2001, 242(2): 419-424
|
| [129] |
An Y J, Carraway E R, Schlautman M A. Solubilization of polycyclic aromatic hydrocarbons by perfluorinated surfactant micelles. Water Research, 2002, 36(1): 300-308
|
| [130] |
Huang Q, Hong C S. TiO2 photocatalytic degradation of PCBs in soil-water systems containing fluoro surfactant. Chemosphere, 2000, 41(6): 871-879
|
| [131] |
Gromadzka K, Swietlik J. Organic micropollutants degradation in ozone-loaded system with perfluorinated solvent. Water Research, 2007, 41(12): 2572-2580
|
| [132] |
Waldemer R H, Tratnyek P G, Johnson R L, Nurmi J T. Oxidation of chlorinated ethenes by heat-activated persulfate: Kinetics and products. Environmental Science & Technology, 2007, 41(3): 1010-1015
|
| [133] |
Lau T K, Chu W, Graham N J D. The aqueous degradation of butylated hydroxyanisole by UV/S2O82-: Study of reaction mechanisms via dimerization and mineralization. Environmental Science & Technology, 2007, 41(2): 613-619
|
| [134] |
Anipsitakis G P, Dionysiou D D. Radical generation by the interaction of transition metals with common oxidants. Environmental Science & Technology, 2004, 38(13): 3705-3712
|
| [135] |
Anipsitakis G P, Dionysiou D D. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt. Environmental Science & Technology, 2003, 37(20): 4790-4797
|
| [136] |
Ball D L, Edwards J O. The Kinetics and mechanism of the decomposition of Caros acid. 1. Journal of the American Chemical Society, 1956, 78(6): 1125-1129
|
| [137] |
Dogliott L, Hayon E. Flash photolysis of persulfate ions in aqueous solutions. Study of sulfate and ozonide radical anions. Journal of Physical Chemistry, 1967, 71(8): 2511-2516
|
| [138] |
Kolthoff I M, Miller I K. The Chemistry of Persulfate. 1. The Kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium. Journal of the American Chemical Society, 1951, 73(7): 3055-3059
|
| [139] |
Maruthamuthu P, Padmaja S, Huie R E. Rate constants for some reactions of free-radicals with haloacetates in aqueous solution. International Journal of Chemical Kinetics, 1995, 27(6): 605-612
|
| [140] |
Neta P, Huie R E, Ross A B. Rate constants for reactions of inorganic radicals in aqueous solution. Journal of Physical and Chemical Reference Data, 1988, 17(3): 1027-1284
|
| [141] |
Schwarzenbach R P, Gschwend P M, Imboden D M. Environmental Organic Chemistry. 2nd ed. New York: Wiley, 2003
|
| [142] |
Zepp R G, Cline D M. Rates of direct photolysis in aquatic environment. Environmental Science & Technology, 1977, 11(4): 359-366
|
| [143] |
Office of Pollution Prevention & Toxics, Docket AR226-0363, ed. FM-3422: Photolysis Study using Simulated Sunlight. Washington DC: US Environmental Protection Agency, 1981, 20
|
| [144] |
Gauthier S A, Mabury S A. Aqueous photolysis of 8 : 2 fluorotelomer alcohol. Environmental Toxicology and Chemistry, 2005, 24(8): 1837-1846
|
| [145] |
Lee C, Choi W, Kim Y G, Yoon J. UV photolytic mechanism of N-nitrosodimethylamine in water: Dual pathways to methylamine versus dimethylamine. Environmental Science & Technology, 2005, 39(7): 2101-2106
|
| [146] |
Getoff N, Schenck G O. Primary products of liquid water photolysis at 1236, 1470 and 1849 Å. Photochemistry and Photobiology, 1968, 8(3): 167-178
|
| [147] |
Fricke H, Hart E J. Studies of reactions induced by the photoactivation of the water molecule. I. Journal of Chemical Physics, 1936, 4(7): 418-422
|
| [148] |
Oppenlander T, Gliese S. Mineralization of organic micropollutants (homologous alcohols and phenols) in water by vacuum-UV-oxidation (H2O-VUV) with an incoherent xenon-excimer lamp at 172 nm. Chemosphere, 2000, 40(1): 15-21
|
| [149] |
Jakob L, Hashem T M, Burki S, Guindy N M, Braun A M. Vacuum-ultraviolet (VUV) photolysis of water: Oxidative degradation of 4-chlorophenol. Journal of Photochemistry and Photobiology A: Chemistry, 1993, 75(2) 97-103
|
| [150] |
Quici N, Litter M I, Braun A A, Oliveros E. Vacuum-UV-photolysis of aqueous solutions of citric and gallic acids. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 197(2-3): 306-312
|
| [151] |
Hori H, Nagaoka Y, Murayama M, Kutsuna S. Efficient decomposition of perfluorocarboxylic acids and alternative fluorochemical surfactants in hot water. Environmental Science & Technology, 2008, 42, 7438-7443
|
| [152] |
Osborne M C, Li Q, Smith I W M. Products of the ultraviolet photodissociation of trifluoroacetic acid and acrylic acid. Physical Chemistry Chemical Physics, 1999, 1(7): 1447-1454
|
| [153] |
Ozer R R, Ferry J L. Investigation of the photocatalytic activity of TiO2-polyoxometalate systems. Environmental Science & Technology, 2001, 35(15): 3242-3246
|
| [154] |
Fox M A, Cardona R, Gaillard E. Photoactivation of metal-oxide surfaces: Photocatalyzed oxidation of alcohols by heteropolytungstates. Journal of the American Chemical Society, 1987, 109(21): 6347-6354
|
| [155] |
Lee J, Kim J, Choi W. Oxidation on zerovalent iron promoted by polyoxometalate as an electron shuttle. Environmental Science & Technology, 2007, 41(9): 3335-3340
|
| [156] |
Weinstock I A. Homogeneous-phase electron-transfer reactions of polyoxometalates. Chemical Reviews, 1998, 98(1): 113-170
|
| [157] |
Akid R, Darwent J R. Heteropolytungstates as catalysts for the photochemical reduction of oxygen and water. Journal of the Chemical Society. Dalton Transactions, 1985, 2: 395-399
|
| [158] |
Hori H, Takano Y, Koike K, Takeuchi K, Einaga H. Decomposition of environmentally persistent trifluoroacetic acid to fluoride ions by a homogeneous photocatalyst in water. Environmental Science & Technology, 2003, 37(2): 418-422
|
| [159] |
Hoffmann M R, Martin S T, Choi W Y, Bahnemann D W. Environmental applications of semiconductor photocatalysis. Chemical Reviews, 1995, 95(1): 69-96
|
| [160] |
Kormann C, Bahnemann D W, Hoffmann M R. Photolysis of chloroform and other organic-molecules in aqueous TiO2 suspensions. Environmental Science & Technology, 1991, 25(3): 494-500
|
| [161] |
Dillert R, Bahnemann D, Hidaka H. Light-induced degradation of perfluorocarboxylic acids in the presence of titanium dioxide. Chemosphere, 2007, 67(4): 785-792
|
| [162] |
Guan B, Zhi J, Zhang X, Murakami T, Fujishima A. Electrochemical route for fluorinated modification of boron-doped diamond surface with perfluorooctanoic acid. Electrochemistry Communications, 2007, 9(12): 2817-2821
|
| [163] |
Lee J, Seliger H H. Quantum yield of ferrioxalate actinometer. Journal of Chemical Physics, 1964, 40(2): 519-523
|
| [164] |
Hatchard C G, Parker C A. A new sensitive chemical actinometer. 2. Potassium ferrioxalate as a standard chemical actinometer. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1956, 235(1203): 518-536
|
| [165] |
Parker C A. A new sensitive chemical actinometer. 1. Some trials with potassium ferrioxalate. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1953, 220(1140): 104-116
|
| [166] |
Allmand A J, Webb W W. The photolysis of potassium ferrioxalate solutions. Part 1. Experimental. Journal of the Chemical Society, 1929: 1518-1531
|
| [167] |
Hori H, Yamamoto A, Koike K, Kutsuna S, Osaka I, Arakawa R. Photochemical decomposition of environmentally persistent short-chain perfluorocarboxylic acids in water mediated by iron(II)/(III) redox reactions. Chemosphere, 2007, 68(3): 572-578
|
| [168] |
Sayles G D, You G R, Wang M X, Kupferle M J. DDT, DDD, and DDE dechlorination by zero-valent iron. Environmental Science & Technology, 1997, 31(12): 3448-3454
|
| [169] |
Yak H K, Wenclawiak B W, Cheng I F, Doyle J G, Wai C M. Reductive dechlorination of polychlorinated biphenyls by zerovalent iron in subcritical water. Environmental Science & Technology, 1999, 33(8): 1307-1310
|
| [170] |
Jones C G, Silverman J, Al-Sheikhly M, Neta P, Poster D L. Dechlorination of polychlorinated biphenyls in industrial transformer oil by radiolytic and photolytic methods. Environmental Science & Technology, 2003, 37(24): 5773-5777
|
| [171] |
Hinz D C, Wai C M, Wenclawiak B W. Remediation of a nonachloro biphenyl congener with zero-valent iron in subcritical water. Journal of Environmental Monitoring, 2000, 2(1): 45-48
|
| [172] |
Zhang W X. Nanoscale iron particles for environmental remediation: An overview. Journal of Nanoparticle Research, 2003, 5(3-4): 323-332
|
| [173] |
Wang C B, Zhang W X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental Science & Technology, 1997, 31(7): 2154-2156
|
| [174] |
Hori H, Nagaoka Y, Sano T, Kutsuna S. Iron-induced decomposition of perfluorohexanesulfonate in sub- and supercritical water. Chemosphere, 2008, 70(5): 800-806
|
| [175] |
Hori H, Nagaoka Y, Yamamoto A, Sano T, Yamashita N, Taniyasu S, Kutsuna S, Osaka I, Arakawa R. Efficient decomposition of environmentally persistent perfluorooctanesulfonate and related fluorochemicals using zerovalent iron in subcritical water. Environmental Science & Technology, 2006, 40(3): 1049-1054
|
| [176] |
Macnicol D D, Robertson C D. New and unexpected reactivity of saturated fluorocarbons. Nature, 1988, 332(6159): 59-61
|
| [177] |
Shoute L C T, Mittal J P, Neta P. Fluoride elimination upon reaction of pentafluoroaniline with e(aq)(-), H, and OH radicals in aqueous solution. Journal of Physical Chemistry, 1996, 100(27): 11355-11359
|
| [178] |
Shoute L C T, Mittal J P, Neta P. Reduction and defluorination of pentafluorophenol in aqueous solutions. Journal of Physical Chemistry, 1996, 100(8): 3016-3019
|
| [179] |
Watson P L, Tulip T H, Williams I. Defluorination of perfluoroolefins by divalent lanthanoid reagents: Activating C–F Bonds. Organometallics, 1990, 9(7): 1999-2009
|
| [180] |
Combellas C, Kanoufi F, Thiebault A. Reduction of polyfluorinated compounds. Journal of Physical Chemistry B, 2003, 107(39): 10894-10905
|
| [181] |
Corvaja C, Farnia G, Formenton G, Navarrini W, Sandona G, Tortelli V. Electrochemical-behavior and EPR of radical-anions of perfluoroalkyl-substituted olefins. Journal of Physical Chemistry, 1994, 98(9): 2307-2313
|
| [182] |
Marsella J A, Gilicinski A G, Coughlin A M, Pez G P. Selective reduction of saturated perfluorocarbons. Journal of Organic Chemistry, 1992, 57(10): 2856-2860
|
| [183] |
Pud A A, Shapoval G S, Kukhar V P, Mikulina O E, Gervits L L. Electrochemical reduction of some saturated and unsaturated perfluorocarbons. Electrochimica Acta, 1995, 40(9): 1157-1164
|
| [184] |
Chen X D, Lemal D M. Functionalization of saturated fluorocarbons with and without light. Journal of Fluorine Chemistry, 2006, 127(9): 1158-1167
|
| [185] |
Szajdzinska-Pietek E, Gebicki J L. Pulse radiolytic investigation of perfluorinated surfactants in aqueous solutions. Research on Chemical Intermediates, 2000, 26(9): 897-912
|
| [186] |
Huang L, Dong W B, Hou H Q. Investigation of the reactivity of hydrated electron toward perfluorinated carboxylates by laser flash photolysis. Chemical Physics Letters, 2007, 436(1-3): 124-128
|
| [187] |
Ono T, Fukaya H, Hayashi E, Saida H, Abe T, Henderson P B, Fernandez R E, Scherer K V. Persistent perfluoroalkyl radical investigations under reductive environment: Reaction with electron-donating reagents. Journal of Fluorine Chemistry, 1999, 97(1-2): 173-182
|
| [188] |
Ochoa-Herrera V, Sierra-Alvarez R, Somogyi A, Jacobsen N E, Wysocki V H, Field J A. Reductive defluorination of perfluorooctane sulfonate. Environmental Science & Technology, 2008, 42(9): 3260-3264
|
| [189] |
Johnson T L, Scherer M M, Tratnyek P G. Kinetics of halogenated organic compound degradation by iron metal. Environmental Science & Technology, 1996, 30(8): 2634-2640
|
| [190] |
Roberts A L, Totten L A, Arnold W A, Burris D R, Campbell T J. Reductive elimination of chlorinated ethylenes by zero valent metals. Environmental Science & Technology, 1996, 30(8): 2654-2659
|
| [191] |
Puls R W, Paul C J, Powell R M. The application of in situ permeable reactive (zero-valent iron) barrier technology for the remediation of chromate-contaminated groundwater: A field test. Applied Geochemistry, 1999, 14(8): 989-1000
|
| [192] |
Tratnyek P G, Johnson T L, Scherer M M, Eykholt G R. Remediating ground water with zero-valent metals: Chemical considerations in barrier design. Ground Water Monitoring and Remediation, 1997, 17(4): 108-114
|
| [193] |
Cantrell K J, Kaplan D I, Wietsma T W. Zero-Valent Iron for the in-situ remediation of selected metals in groundwater. Journal of Hazardous Materials, 1995, 42(2): 201-212
|
| [194] |
Liu Y Q, Majetich S A, Tilton R D, Sholl D S, Lowry G V. TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environmental Science & Technology, 2005, 39(5): 1338-1345
|
| [195] |
Elliott D W, Zhang W X. Field assessment of nanoscale biometallic particles for groundwater treatment. Environmental Science & Technology, 2001, 35(24): 4922-4926
|
| [196] |
Kim Y H, Carraway E R. Dechlorination of pentachlorophenol by zero valent iron and modified zero valent irons. Environmental Science & Technology, 2000, 34(10): 2014-2017
|
| [197] |
Zhang W X, Wang C B, Lien H L, Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catalysis Today, 1998, 40(4): 387-395
|
| [198] |
Bransfield S J, Cwiertny D M, Livi K, Fairbrother D H. Influence of transition metal additives and temperature on the rate of organohalide reduction by granular iron: Implications for reaction mechanisms. Applied Catalysis B: Environmental, 2007, 76(3-4): 348-356
|
| [199] |
Cwiertny D M, Bransfield S J, Livi K J T, Fairbrother D H, Roberts A L. Exploring the influence of granular iron additives on 1,1,1-trichloroethane reduction. Environmental Science & Technology, 2006, 40(21): 6837-6843
|
| [200] |
Marshall W D, Kubatova A, Lagadec A J M, Miller D J, Hawthorne S B. Zero-valent metal accelerators for the dechlorination of pentachlorophenol (PCP) in subcritical water. Green Chemistry, 2002, 4(1): 17-23
|
| [201] |
Hart E J, Anbar M. The Hydrated Electron. New York: John Wiley & Sons, Inc., 1970
|
| [202] |
Mezyk S P, Helgeson T, Cole S K, Cooper W J, Fox R V, Gardinali P R, Mincher B J. Free radical chemistry of disinfection-byproducts. 1. Kinetics of hydrated electron and hydroxyl radical reactions with halonitromethanes in water. Journal of Physical Chemistry A, 2006, 110(6): 2176-2180
|
| [203] |
Milosavljevic B H, LaVerne J A, Pimblott S M. Rate coefficient measurements of hydrated electrons and hydroxyl radicals with chlorinated ethanes in aqueous solutions. Journal of Physical Chemistry A, 2005, 109(34): 7751-7756
|
| [204] |
Johnson H D, Cooper W J, Mezyk S P, Bartels D M. Free radical reactions of monochloramine and hydroxylamine in aqueous solution. Radiation Physics and Chemistry, 2002, 65(4-5): 317-326
|
| [205] |
Nickelsen M G, Cooper W J, Secker D A, Rosocha L A, Kurucz C N, Waite T D. Kinetic modeling and simulation of PCE and TCE removal in aqueous solutions by electron-beam irradiation. Radiation Physics and Chemistry, 2002, 65(4-5): 579-587
|
| [206] |
Rahn R O, Stephan M I, Bolton J R, Goren E, Shaw P S, Lykke K R. Quantum yield of the iodide–iodate chemical actinometer: Dependence on wavelength and concentration. Photochemistry and Photobiology, 2003, 78(2): 146-152
|
| [207] |
Anbar M, Hart E J. The reaction of haloaliphatic compounds with hydrated electrons. The Journal of Physical Chemistry, 1965, 69(1): 271-274
|
| [208] |
Czapski G, Schwarz H A. The nature of reducing radical in water radiolysis. The Journal of Physical Chemistry, 1962, 66(3): 471-474
|
| [209] |
Matheson M S, Mulac W A, Rabani J. Formation of hydrated electron in flash photolysis of aqueous solutions. Journal of Physical Chemistry, 1963, 67(12): 2613-2617
|
| [210] |
Hart, E. J.; Boag, J. W., Absorption Spectrum of Hydrated Electron in Water and in Aqueous Solutions. Journal of the American Chemical Society, 1962, 84(21): 4090-4095
|
| [211] |
Thomas-Smith T E, Blough N V. Photoproduction of hydrated electron from constituents of natural waters. Environmental Science & Technology, 2001, 35(13): 2721-2726
|
| [212] |
Hoigne J, Faust B C, Haag W R, Scully F E, Zepp R G. Aquatic humic substances as sources and sinks of photochemically produced transient reactants. ACS Symposium Series, 1989, 219: 363-381
|
| [213] |
Zepp R G, Braun A M, Hoigne J, Leenheer J A. Photoproduction of hydrated electrons from natural organic solutes in aquatic environments. Environmental Science & Technology, 1987, 21(5): 485-490
|
| [214] |
Park H, Vecitis C D, Cheng J, Mader B T, Hoffmann M R. Reductive defluorination of aqueous perfluorinated alkyl surfactants: Effects of ionic headgroupand chain length. Journal of Physical Chemistry A, 2009, 113(4): 690–696
|
| [215] |
Lian R, Oulianov D A, Crowell R A, Shkrob I A, Chen X Y, Bradforth S E. Electron photodetachment from aqueous anions. 3. Dynamics of geminate pairs derived from photoexcitation of mono-vs polyatomic anions. Journal of Physical Chemistry A, 2006, 110(29): 9071-9078
|
| [216] |
Nishiwaki T, Usui M, Anda K, Hida M. Dechlorination of polychlorinated biphenyls by UV-irradiation. 5. Reaction of 2,4,6-trichlorobiphenyl in neutral and alkaline alcoholic solution. Bulletin of the Chemical Society of Japan, 1979, 52(3): 821-825
|
| [217] |
Yao Y, Kakimoto K, Ogawa H I, Kato Y, Hanada Y, Shinohara R, Yoshino E. Reductive dechlorination of non-ortho substituted polychlorinated biphenyls by ultraviolet irradiation in alkaline 2-propanol. Chemosphere, 1997, 35(12): 2891-2897
|
| [218] |
Hawari J, Demeter A, Samson R. Sensitized photolysis of polychlorobiphenyls in alkaline 2-propanol: Dechlorination of aroclor 1254 in soil samples by solar-radiation. Environmental Science & Technology, 1992, 26(10): 2022-2027
|
| [219] |
Schwarz H A, Dodson R W. Reduction potentials of Co2- and the alcohol radicals. Journal of Physical Chemistry, 1989, 93(1): 409-414
|
| [220] |
Murakami Y, Kikuchi J, Hisaeda Y, Hayashida O. Artificial enzymes. Chemical Reviews, 1996, 96(2): 721-758
|
| [221] |
Gantzer C J, Wackett L P. Reductive dechlorination catalyzed by bacterial transition-metal coenzymes. Environmental Science & Technology, 1991, 25(4): 715-722
|
| [222] |
Costentin C, Robert M, Saveant J M. Does catalysis of reductive dechlorination of tetra- and trichloroethylenes by vitamin B12 and corrinoid-based dehalogenases follow an electron transfer mechanism?Journal of the American Chemical Society, 2005, 127(35): 12154-12155
|
| [223] |
Glod G, Angst W, Holliger C, Schwarzenbach R P. Corrinoid-mediated reduction of tetrachloroethene, trichloroethene, and trichlorofluoroethene in homogeneous aqueous solution: Reaction kinetics and reaction mechanisms. Environmental Science & Technology, 1997, 31(1): 253-260
|
| [224] |
Wood J M, Kennedy F S, Wolfe R S. Reaction of multihalogenated hydrocarbons with free and bound reduced vitamin B12. Biochemistry, 1968, 7(5): 1707-1713
|
| [225] |
Lexa D, Saveant J M. Electrochemistry of vitamin-B12. 3. One-electron intermediates in reduction of methylcobalamin and methylcobinamide. Journal of the American Chemical Society, 1978, 100(10): 3220-3222
|
| [226] |
Lexa D, Saveant J M, Zickler J. Electrochemistry of vitamin-B12. 2. Redox and acid-base equilibria in B12a/B12r system. Journal of the American Chemical Society, 1977, 99(8): 2786-2790
|
| [227] |
Zehnder A J B, Wuhrmann K. Titanium(Iii) citrate as a nontoxic oxidation-reduction buffering system for culture of obligate anaerobes. Science, 1976, 194(4270): 1165-1166
|
| [228] |
Shey J, van der Donk W A. Mechanistic studies on the vitamin B-12-catalyzed dechlorination of chlorinated alkenes. Journal of the American Chemical Society, 2000, 122(49): 12403-12404
|
| [229] |
Schrauze Gn, Deutsch E, Windgass Rj. The nucleophilicity of vitamin B12s. Journal of the American Chemical Society, 1968, 90(9): 2441-2442
|
| [230] |
Krusic P J, Marchione A A, Roe D C. Gas-phase NMR studies of the thermolysis of perfluorooctanoic acid. Journal of Fluorine Chemistry, 2005, 126(11-12): 1510-1516
|
| [231] |
Ainagos A F. Mechanism and kinetics of pyrolysis of perfluorohexane. AF AINAGOS Kinetics and catalysis, 1991, 32(4): 720-725
|
| [232] |
Hynes R G, Mackie J C, Masri A R. Shock-tube study of the pyrolysis of the halon replacement molecule CF3CHFCF3. Journal of Physical Chemistry A, 1999, 103(1): 54-61
|
| [233] |
Atkinson B, McKeagan D. The thermal decomposition of perfluorocyclopropane. Chemical Communications, 1966, 7: 189-190
|
| [234] |
Bauer S H, Hou K C, Resler E L. Single-pulse shock-tube studies of pyrolysis of fluorocarbons and of oxidation of perfluoroethylene. Physics of Fluids, 1969, 12(5): I-125-I-132
|
| [235] |
Blake P G, Tomlinso A D. Thermal decomposition of fluoroaceticacid. Journal of the Chemical Society B: Physical Organic, 1971, 8: 1596-1597
|
| [236] |
Brown C E, Smith D R. The infrared multiphoton dissociation of hexafluoroethane. Canadian Journal of Chemistry: Revue Canadienne De Chimie, 1988, 66(4): 609-614
|
| [237] |
Chowdhury P K. IR multiphoton dissociation dynamics of octafluorocyclopentene: Time-resolved observation of concerted products :CF2 and hexafluorobutadiene. The Journal of Physical Chemistry, 1995, 99(32): 12084-12089
|
| [238] |
Longfellow C A, Smoliar L A, Lee Y T, Lee Y R, Yeh C Y, Lin S M. Competing pathways in the infrared multiphoton dissociation of hexafluoropropene. Journal of Physical Chemistry A, 1997, 101(4): 338-344
|
| [239] |
Matula R A. Thermal decomposition of perfluoropropene. The Journal of Physical Chemistry, 1968, 72(8): 3054-3056
|
| [240] |
Millward G E, Tschuiko E. Kinetic analysis of shock-wave decomposition of 1,1,1,2-tetrafluoroethane. The Journal of Physical Chemistry, 1972, 76(3): 292-298
|
| [241] |
Tschuiko E. RRKM theory calculation of unimolecular decomposition of hexafluoroethane: Thermal activation. The Journal of Chemical Physics, 1968, 49(7): 3115-3121
|
| [242] |
Lee M C, Choi W. Development of thermochemical destruction method of perfluorocarbons (PFCs). Journal of Industrial and Engineering Chemistry, 2004, 10(1): 107-114
|
| [243] |
Burgess D R, Zachariah M R, Tsang W, Westmoreland P R. Thermochemical and chemical kinetic data for fluorinated hydrocarbons. Progress in Energy and Combustion Science, 1995, 21(6): 453-529
|
| [244] |
Lines D, Sutcliffe H. Preparation and properties of some salts of perfluorooctanoic acid. Journal of Fluorine Chemistry, 1984, 25(4): 505-512
|
| [245] |
Lazerte J D, Hals L J, Reid T S, Smith G H. Pyrolyses of the salts of the perfluoro carboxylic acids. Journal of the American Chemical Society, 1953, 75(18): 4525-4528
|
| [246] |
Glöckner V, Lunkwitz K, Prescher D. Zur chemischen und thermischen Stabilität von Fluortensiden. Tenside Surfactants Detergents, 1989, 26(6): 376-380 (in German)
|
| [247] |
Krusic P J, Roe D C. Gas-phase NMR technique for studying the thermolysis of materials: Thermal decomposition of ammonium perfluorooctanoate. Analytical Chemistry, 2004, 76(13): 3800-3803
|
| [248] |
Office of Pollution Prevention & Toxics, Docket AR226-1366, ed. Laboratory-Scale Thermal Degradation of Perfluorooctanyl Sulfonate and Related Substances. Washington DC: US Environmental Protection Agency, 2003, 13
|
| [249] |
Ravishankara A R, Solomon S, Turnipseed A A, Warren R F. Atmospheric lifetimes of long-lived halogenated species. Science, 1993, 259(5092): 194-199
|
| [250] |
Office of Pollution Prevention & Toxics, Docket AR226-1367, ed. Final Report: Laboratory-Scale Thermal Degradation of Perfluoro-Octanyl Sulfonate and Related Substances. Washington DC: US Environmental Protection Agency, 2003, 142
|
| [251] |
Leighton T G. The Acoustic Bubble. London: Academic Press, 1994, 316-335
|
| [252] |
Mason T J, Lorimer J P. Sonochemistry: Theory, Applications and Uses of Ultrasound in Chemistry. New York: Halsted Press, 1988
|
| [253] |
Suslick K S. Ultrasound: It's Chemical, Physical, and Biological Effects. New York: VCH Publishers, 1988
|
| [254] |
Destaillats H, Hung H M, Hoffmann M R. Degradation of alkylphenol ethoxylate surfactants in water with ultrasonic irradiation. Environmental Science & Technology, 2000, 34(2): 311-317
|
| [255] |
Kotronarou A, Mills G, Hoffmann M R. Ultrasonic irradiation of para-nitrophenol in aqueous solution. Journal of Physical Chemistry, 1991, 95(9): 3630-3638
|
| [256] |
Vinodgopal K, Ashokkumar M, Grieser F. Sonochemical degradation of a polydisperse nonylphenol ethoxylate in aqueous solution. Journal of Physical Chemistry B, 2001, 105(16): 3338-3342
|
| [257] |
Manousaki E, Psillakis E, Kalogerakis N, Mantzavinos D. Degradation of sodium dodecylbenzene sulfonate in water by ultrasonic irradiation. Water Research, 2004, 38(17): 3751-3759
|
| [258] |
Petrier C, Lamy M F, Francony A, Benahcene A, David B, Renaudin V, Gondrexon N. Sonochemical degradation of phenol in dilute aqueous solutions: Comparison of the reaction-rates at 20-Khz and 487-Khz. Journal of Physical Chemistry, 1994, 98(41): 10514-10520
|
| [259] |
Hung H M, Hoffmann M R. Kinetics and mechanism of the sonolytic degradation of chlorinated hydrocarbons: Frequency effects. Journal of Physical Chemistry A, 1999, 103(15): 2734-2739
|
| [260] |
Jennings B H, Townsend S N. Sonochemical reactions of carbon tetrachloride and chloroform in aqueous suspension in an inert atmosphere. Journal of Physical Chemistry, 1961, 65(9): 1574-1579
|
| [261] |
Petrier C, David B, Laguian S. Ultrasonic degradation at 20 khz and 500 khz of atrazine and pentachlorophenol in aqueous solution: Preliminary results. Chemosphere, 1996, 32(9): 1709-1718
|
| [262] |
Suslick K S, Hammerton D A, Cline R E. The sonochemical hot-spot. Journal of the American Chemical Society, 1986, 108(18): 5641-5642
|
| [263] |
Price G J, Ashokkumar M, Hodnett M, Zequiri B, Grieser F. Acoustic emission from cavitating solutions: Implications for the mechanisms of sonochemical reactions. Journal of Physical Chemistry B, 2005, 109(38): 17799-17801
|
| [264] |
Sunartio D, Ashokkumar M, Grieser F. Study of the coalescence of acoustic bubbles as a function of frequency, power, and water-soluble additives. Journal of the American Chemical Society, 2007, 129(18): 6031-6036
|
| [265] |
Brennen C E. Cavitation and Bubble Dynamics. New York: Oxford University Press, 1995
|
| [266] |
Didenko Y T, McNamara W B, Suslick K S. Hot spot conditions during cavitation in water. Journal of the American Chemical Society, 1999, 121(24): 5817-5818
|
| [267] |
Ciawi E, Rae J, Ashokkumar M, Grieser F. Determination of temperatures within acoustically generated bubbles in aqueous solutions at different ultrasound frequencies. Journal of Physical Chemistry B, 2006, 110(27): 13656-13660
|
| [268] |
Ashokkumar M, Grieser F. A comparison between multibubble sonoluminescence intensity and the temperature within cavitation bubbles. Journal of the American Chemical Society, 2005, 127(15): 5326-5327
|
| [269] |
Eddingsaas N C, Suslick K S. Evidence for a plasma core during multibubble sonoluminescence in sulfuric acid. Journal of the American Chemical Society, 2007, 129(13): 3838-3839
|
| [270] |
Sostaric J Z, Riesz P. Sonochemistry of surfactants in aqueous solutions: An EPR spin-trapping study. Journal of the American Chemical Society, 2001, 123(44): 11010-11019
|
| [271] |
Kato S, Makide Y, Tominaga T, Takeuchi K. Infrared multiphoton dissociation of heptafluoropropane. Journal of Physical Chemistry, 1987, 91(16): 4278-4284
|
| [272] |
Wilhelmi A R, Knopp P V. Wet air oxidation: An alternative to incineration. Chemical Engineering Progress, 1979, 75(8): 46-52
|
| [273] |
Kolaczkowski S T, Plucinski P, Beltran F J, Rivas F J, McLurgh D B. Wet air oxidation: A review of process technologies and aspects in reactor design. Chemical Engineering Journal, 1999, 73(2): 143-160
|
| [274] |
Chang M B, Chang J S. Abatement of PFCs from semiconductor manufacturing processes by nonthermal plasma technologies: A critical review. Industrial & Engineering Chemistry Research, 2006, 45(12): 4101-4109
|
| [275] |
Destaillats H, Colussi A J, Joseph J M, Hoffmann M R. Synergistic effects of sonolysis combined with ozonolysis for the oxidation of azobenzene and methyl orange. Journal of Physical Chemistry A, 2000, 104(39): 8930-8935
|
| [276] |
Weavers L K, Malmstadt N, Hoffmann M R. Kinetics and mechanism of pentachlorophenol degradation by sonication, ozonation, and sonolytic ozonation. Environmental Science & Technology, 2000, 34(7): 12801285
|
| [277] |
Lesko T, Colussi A J, Hoffmann M R. Sonochemical decomposition of phenol: Evidence for a synergistic effect of ozone and ultrasound for the elimination of total organic carbon from water. Environmental Science & Technology, 2006, 40(21): 6818-6823
|
| [278] |
Weavers L K, Ling F H, Hoffmann M R. Aromatic compound degradation in water using a combination of sonolysis and ozonolysis. Environmental Science & Technology, 1998, 32(18): 2727-2733
|
RIGHTS & PERMISSIONS
Higher Education Press and Springer-Verlag Berlin Heidelberg