Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA)
Chad D. VECITIS, Hyunwoong PARK, Jie CHENG, Brian T. MADER, Michael R. HOFFMANN
Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA)
Fluorochemicals (FCs) are oxidatively recalcitrant, environmentally persistent, and resistant to most conventional treatment technologies. FCs have unique physiochemical properties derived from fluorine which is the most electronegative element. Perfluorooctanesulfonate (PFOS), and perfluorooctanoate (PFOA) have been detected globally in the hydrosphere, atmosphere and biosphere. Reducing treatment technologies such as reverses osmosis, nano-filtration and activated carbon can remove FCs from water. However, incineration of the concentrated waste is required for complete FC destruction. Recently, a number of alternative technologies for FC decomposition have been reported. The FC degradation technologies span a wide range of chemical processes including direct photolysis, photocatalytic oxidation, photochemical oxidation, photochemical reduction, thermally-induced reduction, and sonochemical pyrolysis. This paper reviews these FC degradation technologies in terms of kinetics, mechanism, energetic cost, and applicability. The optimal PFOS/PFOA treatment method is strongly dependent upon the FC concentration, background organic and metal concentration, and available degradation time.
fluorochemical (FC) degradation technologies / perfluoroctanesulfonate (PFOS) / perfluorooctanoate / (PFOA) / oxidation / reduction / photolysis / thermolysis / review
[1] |
Goss K U. The pK(a) values of PFOA and other highly fluorinated carboxylic acids. Environmental Science & Technology, 2008, 42(2): 456-458
CrossRef
Google scholar
|
[2] |
Goss K U, Bronner, G. What is so special about the sorption behavior of highly fluorinated compounds? Journal of Physical Chemistry A, 2006, 110(30): 9518-9522
CrossRef
Google scholar
|
[3] |
Goss K U, Bronner G, Harner T, Monika H, Schmidt T C. The partition behavior of fluorotelomer alcohols and olefins. Environmental Science & Technology, 2006, 40(11): 3572-3577
CrossRef
Google scholar
|
[4] |
Wardman P. Reduction potentials of one-electron couples involving free-radicals in aqueous-solution. Journal of Physical and Chemical Reference Data, 1989, 18(4): 1637-1755
|
[5] |
Office of Pollution Prevention and Toxics, Docket AR226-0547, ed. The Science of Organic Fluorochemistry. Washington DC: US Environmental Protection Agency, 1999, 12
|
[6] |
Office of Pollution Prevention & Toxics, Docket AR226-1699, ed. Removal of PFOA with Granular Activated Carbon: 3M Wastewater Treatment System Monitoring. Washington DC: US Environmental Protection Agency, 2004, 5
|
[7] |
Sinclair E, Kannan K. Mass loading and fate of perfluoroalkyl surfactants in wastewater treatment plants. Environmental Science & Technology, 2006, 40(5): 1408-1414
CrossRef
Google scholar
|
[8] |
Schultz M M, Higgins C P, Huset C A, Luthy R G, Barofsky D F, Field J A. Fluorochemical mass flows in a municipal wastewater treatment facility. Environmental Science & Technology, 2006, 40: 7350-7357
CrossRef
Google scholar
|
[10] |
Shinoda K, Hato M, Hayashi T. Physicochemical properties of aqueous-solutions of fluorinated surfactants. Journal of Physical Chemistry, 1972, 76(6): 909-914
CrossRef
Google scholar
|
[11] |
Lopez-Fontan J L, Sarmiento F, Schulz P C. The aggregation of sodium perfluorooctanoate in water. Colloid & Polymer Science, 2005, 283(8): 862-871
CrossRef
Google scholar
|
[12] |
Lu J R, Ottewill R H, Rennie A R. Adsorption of ammonium perfluorooctanoate at the air-water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 183: 15-26
CrossRef
Google scholar
|
[13] |
Simister E A, Lee E M, Lu J R, Thomas R K, Ottewill R H, Rennie A R, Penfold J. Adsorption of ammonium perfluorooctanoate and ammonium decanoate at the air solution interface. Journal of the Chemical Society, Faraday Transactions articles, 1992, 88(20): 3033-3041
|
[14] |
Boulanger B, Peck A M, Schnoor J L, Hornbuckle K C. Mass budget of perfluorooctane surfactant in Lake Ontario. Environmental Science & Technology, 2005, 39(1): 74-79
CrossRef
Google scholar
|
[15] |
Boulanger B, Vargo J, Schnoor J L, Hornbuckle K C. Detection of perfluorooctane surfactants in Great Lakes water. Environmental Science & Technology, 2004, 38(15): 4064-4070
CrossRef
Google scholar
|
[16] |
Hansen K J, Johnson H O, Eldridge J S, Butenhoff J L, Dick L A. Quantitative characterization of trace levels of PFOS and PFOA in the Tennessee River. Environmental Science & Technology, 2002, 36(8): 1681-1685
CrossRef
Google scholar
|
[17] |
Harada K, Saito N, Sasaki K, Inoue K, Koizumi A. Perfluorooctane sulfonate contamination of drinking water in the Tama River, Japan: Estimated effects on resident serum levels. Bulletin of Environmental Contamination and Toxicology, 2003, 71(1): 31-36
CrossRef
Google scholar
|
[18] |
Kim S K, Kannan K. Perfluorinated acids in air, rain, snow, surface runoff, and lakes: Relative importance of pathways to contamination of urban lakes. Environmental Science & Technology, 2007, 41(24): 8328-8334
CrossRef
Google scholar
|
[19] |
McLachlan M S, Holmstrom K E, Reth M, Berger U. Riverine discharge of perfluorinated carboxylates from the European continent. Environmental Science & Technology, 2007, 41(21): 7260-7265
CrossRef
Google scholar
|
[20] |
Moody C A, Hebert G N, Strauss S H, Field J A. Occurrence and persistence of perfluorooctanesulfonate and other perfluorinated surfactants in groundwater at a fire-training area at Wurtsmith Air Force Base, Michigan, USA. Journal of Environmental Monitoring, 2003, 5(2): 341-345
CrossRef
Google scholar
|
[21] |
Moody C A, Martin J W, Kwan W C, Muir D C G, Mabury S C. Monitoring perfluorinated surfactants in biota and surface water samples following an accidental release of fire-fighting foam into Etohicoke Creek. Environmental Science & Technology, 2002, 36(4): 545-551
CrossRef
Google scholar
|
[22] |
Schultz M M, Barofsky D F, Field J A. Fluorinated alkyl surfactants, 2003, 20(5): 487-501
|
[23] |
Yamashita N, Kannan K, Taniyasu S, Horii Y, Petrick G, Gamo T. A global survey of perfluorinated acids in oceans. Marine Pollution Bulletin, 2005, 51(8-12): 658-668
|
[24] |
Office of Pollution Prevention & Toxics, Docket AR226-0620, ed. Sulfonated perfluorochemicals in the environment: Sources, dispersion, fate and effects. Washington DC: US Environmental Protection Agency, 2000, 51
|
[25] |
Armitage J, Cousins I T, Buck R C, Prevedouros K, Russell M H, MacLeod M, Korzeniowski S H. Modeling global-scale fate and transport of perfluorooctanoate emitted from direct sources. Environmental Science & Technology, 2006, 40(22): 6969-6975
CrossRef
Google scholar
|
[26] |
Saito N, Harada K, Inoue K, Sasaki K, Yoshinaga T, Koizumi A. Perfluorooctanoate and perfluorooctane sulfonate concentrations in surface water in Japan. Journal of Occupational Health, 2004, 46(1): 49-59
CrossRef
Google scholar
|
[27] |
Schultz M M, Barofsky D F, Field J A. Quantitative determination of fluorotelomer sulfonates in groundwater by LC MS/MS. Environmental Science & Technology, 2004, 38(6): 1828-1835
CrossRef
Google scholar
|
[28] |
Scott B F, Moody C A, Spencer C, Small J M, Muir D C G, Mabury S A. Analysis for perfluorocarboxylic acids/anions in surface waters and precipitation using GC-MS and analysis of PFOA from large-volume samples. Environmental Science & Technology2006, 40(20): 6405-6410
CrossRef
Google scholar
|
[29] |
Scott B F, Spencer C, Mabury S A, Muir D C G. Poly and perfluorinated carboxylates in north American precipitation. Environmental Science & Technology, 2006, 40(23): 7167-7174
CrossRef
Google scholar
|
[30] |
Senthilkumar K, Ohi E, Sajwan K, Takasuga T, Kannan K. Perfluorinated compounds in river water, river sediment, market fish, and wildlife samples from Japan. Bulletin of Environmental Contamination and Toxicology, 2007, 79(4): 427-431
CrossRef
Google scholar
|
[31] |
So M K, Miyake Y, Yeung W Y, Ho Y M, Taniyasu S, Rostkowski P, Yamashita N, ZhouB S, Shi X J, Wang J X, Giesy J P, Yu H , Lam P K S. Perfluorinated compounds in the Pearl River and Yangtze River of China. Chemosphere2007, 68(11): 2085-2095.
|
[32] |
So M K, Taniyasu S, Yamashita N, Giesy J P, Zheng J, Fang Z, Im S H, Lam P K S. Perfluorinated compounds in coastal waters of Hong Kong, South China, and Korea. Environmental Science & Technology, 2004, 38(15): 4056-4063
CrossRef
Google scholar
|
[33] |
Yamashita N, Kannan K, Taniyasu S, Horii Y, Okazawa T, Petrick G, Gamo T. Analysis of perfluorinated acids at parts-per-quadrillion levels in seawater using liquid chromatography-tandem mass spectrometry. Environmental Science & Technology, 2004, 38(21): 5522-5528
CrossRef
Google scholar
|
[34] |
Yamashita N, Taniyasu S, Petrick G, Wei S, Gamo T, Lam P K S, Kannan K. Perfluorinated acids as novel chemical tracers of global circulation of ocean waters. Chemosphere, 2008, 70(7): 1247-1255
CrossRef
Google scholar
|
[35] |
Calafat A M, Kuklenyik Z, Caudill S P, Reidy J A, Needham L L. Perfluorochemicals in pooled serum samples from United States residents in 2001 and 2002. Environmental Science & Technology, 2006, 40(7): 2128-2134
CrossRef
Google scholar
|
[36] |
Calafat A M, Needham L L, Kuklenyik Z, Reidy J A, Tully J S, Aguilar-Villalobos M, Naeher L P. Perfluorinated chemicals in selected residents of the American continent. Chemosphere, 2006, 63(3): 490-496
CrossRef
Google scholar
|
[37] |
Martin J W, Whittle D M, Muir D C G, Mabury S A. Perfluoroalkyl contaminants in a food web from lake Ontario. Environmental Science & Technology, 2004, 38(20): 5379-5385
CrossRef
Google scholar
|
[38] |
Martin J W, Smithwick M M, Braune B M, Hoekstra P F, Muir D C G, Mabury S A. Identification of long-chain perfluorinated acids in biota from the Canadian Arctic. Environmental Science & Technology, 2004, 38(2): 373-380
CrossRef
Google scholar
|
[39] |
Giesy J P, Kannan K. Global distribution of perfluorooctane sulfonate in wildlife. Environmental Science & Technology, 2001, 35(7): 1339-1342
CrossRef
Google scholar
|
[40] |
Holmstrom K E, Jarnberg U, Bignert A. Temporal trends of PFOS and PFOA in guillemot eggs from the Baltic Sea, 1968-2003. Environmental Science & Technology, 2005, 39(1): 80-84
CrossRef
Google scholar
|
[41] |
Houde M, Balmer B C, Brandsma S, Wells R S, Rowles T K, Solomon K R, Muir D C G. Perfluoroalkyl compounds in relation to life-history and reproductive parameters in bottlenose dolphins (Tursiops truncatus) from Sarasota Bay, Florida, USA. Environmental Toxicology and Chemistry, 2006, 25(9): 2405-2412
CrossRef
Google scholar
|
[42] |
Houde M, Martin J W, Letcher R J, Solomon K R, Muir D C G. Biological monitoring of polyfluoroalkyl substances: A review. Environmental Science & Technology, 2006, 40(11): 3463-3473
CrossRef
Google scholar
|
[43] |
Kannan K, Choi J W, Iseki N, Senthilkumar K, Kim D H, Masunaga S, Giesy J P. Concentrations of perfluorinated acids in livers of birds from Japan and Korea. Chemosphere, 2002, 49(3): 225-231
CrossRef
Google scholar
|
[44] |
Kannan K, Corsolini S, Falandysz J, Fillmann G, Kumar K S, Loganathan B G, Mohd M A, Olivero J, Van Wouwe N, Yang J H, Aldous K M. Perfluorooctanesulfonate and related fluorochemicals in human blood from several countries. Environmental Science & Technology, 2004, 38(17): 4489-4495
CrossRef
Google scholar
|
[45] |
Kannan K, Corsolini S, Falandysz J, Oehme G, Focardi S, Giesy J P. Perfluorooctanesulfonate and related fluorinated hydrocarbons in marine mammals, fishes, and birds from coasts of the Baltic and the Mediterranean Seas. Environmental Science & Technology, 2002, 36(15): 3210-3216
CrossRef
Google scholar
|
[46] |
Kannan K, Koistinen J, Beckmen K, Evans T, Gorzelany J F, Hansen K J, Jones P D, Helle E, Nyman M, Giesy J P. Accumulation of perfluorooctane sulfonate in marine mammals. Environmental Science & Technology, 2001, 35(8): 1593-1598
CrossRef
Google scholar
|
[47] |
Kannan K, Newsted J, Halbrook R S, Giesy J P. Perfluorooctanesulfonate and related fluorinated hydrocarbons in mink and river otters from the United States. Environmental Science & Technology, 2002, 36(12): 2566-2571
CrossRef
Google scholar
|
[48] |
Kannan K, Tao L, Sinclair E, Pastva S D, Jude D J, Giesy J P. Perfluorinated compounds in aquatic organisms at various trophic levels in a Great Lakes food chain. Archives of Environmental Contamination and Toxicology, 2005, 48(4): 559-566
CrossRef
Google scholar
|
[49] |
Nakata H, Kannan K, Nasu T, Cho H S, Sinclair E, Takemura A. Perfluorinated contaminants in sediments and aquatic organisms collected from shallow water and tidal flat areas of the Ariake Sea, Japan: Environmental fate of perfluorooctane sulfonate in aquatic ecosystems. Environmental Science & Technology, 2006, 40(16): 4916-4921
CrossRef
Google scholar
|
[50] |
Olsen G W, Church T R, Larson E B, van Belle G, Lundberg J K, Hansen K J, Burris J M, Mandel J H, Zobel L R. Serum concentrations of perfluorooctanesulfonate and other fluorochemicals in an elderly population from Seattle, Washington. Chemosphere, 2004, 54(11): 1599-1611
CrossRef
Google scholar
|
[51] |
Olsen G W, Church T R, Miller J P, Burris J M, Hansen K J, Lundberg J K, Armitage J B, Herron R M, Medhdizadehkashi Z, Nobiletti J B, O'Neill E M, Mandel J H, Zobel L R. Perfluorooctanesulfonate and other fluorochemicals in the serum of American Red Cross adult blood donors. Environmental Health Perspectives, 2003, 111(16): 1892-1901
|
[52] |
Olsen G W, Huang H Y, Helzlsouer K J, Hansen K J, Butenhoff J L, Mandel J H. Historical comparison of perfluorooctanesulfonate, perfluorooctanoate, and other fluorochemicals in human blood. Environmental Health Perspectives, 2005, 113(5): 539-545
|
[53] |
Olsen G W, Mair D C, Reagen W K, Ellefson M E, Ehresman D J, Butenhoff J L, Zobel L R. Preliminary evidence of a decline in perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) concentrations in American Red Cross blood donors. Chemosphere, 2007, 68(1): 105-111
CrossRef
Google scholar
|
[54] |
Sinclair E, Mayack D T, Roblee K, Yamashita N, Kannan K. Occurrence of perfluoroalkyl surfactants in water, fish, and birds from New York State. Archives of Environmental Contamination and Toxicology, 2006, 50(3): 398-410
CrossRef
Google scholar
|
[55] |
Smithwick M, Mabury S A, Solomon K R, Sonne C, Martin J W, Born E W, Dietz R, Derocher A E, Letcher R J, Evans T J, Gabrielsen G W, Nagy J, Stirling I, Taylor M K, Muir D C G. Circumpolar study of perfluoroalkyl contaminants in polar bears (Ursus maritimus). Environmental Science & Technology, 2005, 39(15): 5517-5523
CrossRef
Google scholar
|
[56] |
Taniyasu S, Kannan K, Horii Y, Hanari N, Yamashita N. A survey of perfluorooctane sulfonate and related perfluorinated organic compounds in water, fish, birds, and humans from Japan. Environmental Science & Technology, 2003, 37(12): 2634-2639
CrossRef
Google scholar
|
[57] |
Tomy G T, Budakowski W, Halldorson T, Helm P A, Stern G A, Friesen K, Pepper K, Tittlemier S A, Fisk A T. Fluorinated organic compounds in an eastern Arctic marine food web. Environmental Science & Technology, 2004, 38(24): 6475-6481
CrossRef
Google scholar
|
[58] |
Van de Vijver K I, Hoff P T, Das K, Van Dongen W, Esmans E L, Siebert U, Bouquegneau J M, Blust R, De Coen W M. Baseline study of perfluorochemicals in harbour porpoises (Phocoena phocoena) from Northern Europe. Marine Pollution Bulletin, 2004, 48(9-10): 992-997
CrossRef
Google scholar
|
[59] |
Verreault J, Berger U, Gabrielsen G W. Trends of perfluorinated alkyl substances in herring gull eggs from two coastal colonies in northern norway: 1983-2003. Environmental Science & Technology, 2007, 41(19): 6671-6677
CrossRef
Google scholar
|
[60] |
Prevedouros K, Cousins I T, Buck R C, Korzeniowski S H. Sources, fate and transport of perfluorocarboxylates. Environmental Science & Technology, 2006, 40(1): 32-44
CrossRef
Google scholar
|
[61] |
Kubwabo C, Stewart B, Zhu J P, Marro L. Occurrence of perfluorosulfonates and other perfluorochemicals in dust from selected homes in the city of Ottawa, Canada. Journal of Environmental Monitoring, 2005, 7(11): 1074-1078
CrossRef
Google scholar
|
[62] |
Moriwaki H, Takata Y, Arakawa R. Concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in vacuum cleaner dust collected in Japanese homes. Journal of Environmental Monitoring, 2003, 5(5): 753-757
CrossRef
Google scholar
|
[63] |
Ellis D A, Mabury S A, Martin J W, Muir D C G. Thermolysis of fluoropolymers as a potential source of halogenated organic acids in the environment. Nature, 2001, 412(6844): 321-324
CrossRef
Google scholar
|
[64] |
Tittlemier S A, Pepper K, Seymour C, Moisey J, Bronson R, Cao X L, Dabeka R W. Dietary exposure of Canadians to perfluorinated carboxylates and perfluorooctane sulfonate via consumption of meat, fish, fast foods, and food items prepared in their packaging. Journal of Agricultural and Food Chemistry, 2007, 55(8): 3203-3210
CrossRef
Google scholar
|
[65] |
Begley T H, White K, Honigfort P, Twaroski M L, Neches R, Walker R A. Perfluorochemicals: Potential sources of and migration from food packaging. Food Additives and Contaminants, 2005, 22(10): 1023-1031
CrossRef
Google scholar
|
[66] |
Young C J, Furdui V I, Franklin J, Koerner R M, Muir D C G, Mabury S A. Perfluorinated acids in arctic snow: New evidence for atmospheric formation. Environmental Science & Technology, 2007, 41(10): 3455-3461
CrossRef
Google scholar
|
[67] |
D'Eon J C, Hurley M D, Wallington T J, Mabury S A. Atmospheric chemistry of N-methyl perfluorobutane sulfonamidoethanol, C4F9SO2N(CH3)CH2CH2OH: Kinetics and mechanism of reaction with OH. Environmental Science & Technology, 2006, 40(6): 1862-1868
CrossRef
Google scholar
|
[68] |
Martin J W, Ellis D A, Mabury S A, Hurley M D, Wallington T J. Atmospheric chemistry of perfluoroalkanesulfonamides: Kinetic and product studies of the OH radical and Cl atom initiated oxidation of N-ethyl perfluorobutanesulfonamide. Environmental Science & Technology, 2006, 40(3): 864-872
CrossRef
Google scholar
|
[69] |
Office of Pollution Prevention and Toxics, Docket AR226-0380, ed. Study of the Stability of MeFOSEA in Aqueous Buffers. Washington DC: US Environmental Protection Agency, 1999, 69
|
[70] |
Tomy G T, Tittlemier S A, Palace V P, Budakowski W R, Braekevelt E, Brinkworth L, Friesen K. Biotransformation of N-ethyl perfluorooctanesulfonamide by rainbow trout (Onchorhynchus mykiss) liver microsomes. Environmental Science & Technology, 2004, 38(3): 758-762
CrossRef
Google scholar
|
[71] |
Xu L, Krenitsky D M, Seacat A M, Butenhoff J L, Anders M W. Biotransformation of N-ethyl-N-(2-hydroxyethyl)perfluorooetanesulfonamide by rat liver microsomes, cytosol, and slices and by expressed rat and human cytochromes P450. Chemical Research in Toxicology, 2004, 17(6): 767-775
CrossRef
Google scholar
|
[72] |
Office of Pollution Prevention and Toxics, Docket AR226-0163, ed. Additional Characterization of Metabolites of T-6292, T-6293 and T-6294 from Rat and Human Hepatocytes. Washington DC: US Environmental Protection Agency, 1998, 69
|
[73] |
Office of Pollution Prevention and Toxics, Docket AR226-0166, ed. Effect of N-Alkyl Perfluorooctylsulfonamides on Mitochondrial Bioenergetics In Vitro. Washington DC: US Environmental Protection Agency, 1998, 10.
|
[74] |
Hagen D F, Belisle J, Johnson J D, Venkateswarlu P. Characterization of Fluorinated Metabolites by a Gas Chromatographic-Helium Microwave Plasma Detector—the Biotransformation of 1h,1h,2h,2h-Perfluorodecanol to Perfluorooctanoate. Analytical Biochemistry, 1981, 118(2): 336-343
CrossRef
Google scholar
|
[75] |
Ellis D A, Martin J W, De Silva A O, Mabury S A, Hurley M D, Andersen M P S, Wallington T J. Degradation of fluorotelomer alcohols: A likely atmospheric source of perfluorinated carboxylic acids. Environmental Science & Technology, 2004, 38(12): 3316-3321
CrossRef
Google scholar
|
[76] |
Stock N L, Lau F K, Ellis D A, Martin J W, Muir D C G, Mabury S A. Polyfluorinated telomer alcohols and sulfonamides in the worth American troposphere. Environmental Science & Technology, 2004, 38(4): 991-996
CrossRef
Google scholar
|
[77] |
Shoeib M, Harner T, Vlahos P. Perfluorinated chemicals in the Arctic atmosphere. Environmental Science & Technology, 2006, 40(24) : 7577-7583
CrossRef
Google scholar
|
[78] |
Office of Pollution Prevention & Toxics, Docket AR226-0588, ed. Phase-out Plan for POSF-Based Products. Washington DC: US Environmental Protection Agency, 2000, 11
|
[79] |
Yarwood G, Kemball-Cook S, Keinath M, Waterland R L, Korzeniowski S H, Buck R C, Russell M H, Washburn S T. High-resolution atmospheric modeling of fluorotelomer alcohols and perfluorocarboxylic acids in the North American troposphere. Environmental Science & Technology, 2007, 41(16): 5756-5762
CrossRef
Google scholar
|
[80] |
Investigation of Perfluorochemical (PFC) Contamination in Minnesota In Phase 1 ed. Minnesota: Senate Environment Committee, 2006, 79
|
[82] |
Lampert D J, Frisch M A, Speitel G E. Removal of Perfluorooctanoic Acid and Perfluorooctane Sulfonate from Wastewater by Ion Exchange. Practice Periodical of Hazardous, Toxic and Radioactive Waste Management, 2007, 11(1): 60-68
CrossRef
Google scholar
|
[83] |
Tsang W, Burgess D R, Babushok V. On the incinerability of highly fluorinated organic compounds. Combustion Science and Technology, 1998, 139(1-6): 385-402
|
[84] |
Higgins C P, Field J A, Criddle C S, Luthy R G. Quantitative determination of perfluorochemicals in sediments and domestic sludge. Environmental Science & Technology, 2005, 39(11): 3946-3956
CrossRef
Google scholar
|
[85] |
Schroder H F. Determination of fluorinated surfactants and their metabolites in sewage sludge samples by liquid chromatography with mass spectrometry and tandem mass spectrometry after pressurised liquid extraction and separation on fluorine-modified reversed-phase sorbents. Journal of Chromatography A, 2003, 1020(1): 131-151
CrossRef
Google scholar
|
[86] |
Hollingsworth J, Sierra-Alvarez R, Zhou M, Ogden K L, Field J A. Anaerobic biodegradability and methanogenic toxicity of key constituents in copper chemical mechanical planarization effluents of the semiconductor industry. Chemosphere, 2005, 59(9): 1219-1228
CrossRef
Google scholar
|
[87] |
Key B D, Howell R D, Criddle C S. Defluorination of organofluorine sulfur compounds by Pseudomonas sp. strain D2. Environmental Science & Technology, 1998, 32(15): 2283-2287
CrossRef
Google scholar
|
[88] |
Office of Pollution Prevention & Toxics, Docket AR226-0489, ed. Biodegradation studies of fluorocarbons—III. Washington DC: US Environmental Protection Agency, 1978, 19
|
[89] |
Office of Pollution Prevention & Toxics, Docket AR226-0058, ed. Biodegradation studies of Fluorocarbons. Washington DC: US Environmental Protection Agency, 1994, 4
|
[90] |
Oppenlander T. Photochemical Purification of Water and Air. Weinheim: Wiley-VCH, 2003
|
[91] |
Schroder H F, Meesters R J W. Stability of fluorinated surfactants in advanced oxidation processes—A follow up of degradation products using flow injection-mass spectrometry, liquid chromatography-mass spectrometry and liquid chromatography-multiple stage mass spectrometry. Journal of Chromatography A, 2005, 1082(1): 110-119
CrossRef
Google scholar
|
[92] |
Moriwaki H, Takagi Y, Tanaka M, Tsuruho K, Okitsu K, Maeda Y. Sonochemical decomposition of perfluorooctane sulfonate and perfluorooctanoic acid. Environmental Science & Technology, 2005, 39(9): 3388-3392
CrossRef
Google scholar
|
[93] |
Hori H, Hayakawa E, Einaga H, Kutsuna S, Koike K, Ibusuki T, Kiatagawa H, Arakawa R. Decomposition of environmentally persistent perfluorooctanoic acid in water by photochemical approaches. Environmental Science & Technology, 2004, 38(22): 6118-6124
CrossRef
Google scholar
|
[94] |
Chen J, Zhang P. Photodegradation of perfluorooctanoic acid in water under irradiation of 254 nm and 185 nm light by use of persulfate. Water Science & Technology, 2006, 54(11-12): 317-325
CrossRef
Google scholar
|
[95] |
Chen J, Zhang P, Liu J. Photodegradation of perfluorooctanoic acid by 185 nm vacuum ultraviolet light. Journal of Environmental Sciences, 2007, 19(4): 387-390
CrossRef
Google scholar
|
[96] |
Yamamoto T, Noma Y, Sakai S, Shibata Y. Photodegradation of perfluorooctane sulfonate by UV irradiation in water and alkaline 2-propanol. Environmental Science & Technology, 2007, 41(16): 5660-5665
CrossRef
Google scholar
|
[97] |
Office of Pollution Prevention & Toxics, Docket AR226-0056, ed. Summary of Photolysis Studies using Simulated Sunlight on the Potassium Salt of Perfluorooctanesulfonic Acid. Washington DC: US Environmental Protection Agency, 1978, 17
|
[98] |
Office of Pollution Prevention & Toxics, Docket AR226-0490, ed. FC-143 Photolysis Study using Simulated Sunlight. Washington DC: US Environmental Protection Agency, 1979, 15
|
[99] |
Hori H, Yamamoto A, Hayakawa E, Taniyasu S, Yamashita N, Kutsuna S, Kiatagawa H, Arakawa R. Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant. Environmental Science & Technology, 2005, 39(7): 2383-2388
CrossRef
Google scholar
|
[100] |
Hori H, Yamamoto A, Kutsuna S. Efficient photochemical decomposition of long-chain perfluorocarboxylic acids by means of an aqueous/liquid CO2 biphasic system. Environmental Science & Technology, 2005, 39(19): 7692-7697
CrossRef
Google scholar
|
[101] |
Kutsuna S, Hori H. Rate constants for aqueous-phase reactions of
CrossRef
Google scholar
|
[102] |
Chen J, Zhang P Y, Zhang L. Photocatalytic decomposition of environmentally persistent perfluorooctanoic acid. Chemistry Letters, 2006, 35(2): 230-231
CrossRef
Google scholar
|
[103] |
Hori H, Hayakawa E, Koike K, Einaga H, Ibusuki T. Decomposition of nonafluoropentanoic acid by heteropolyacid photocatalyst H3PW12O40 in aqueous solution. Journal of Molecular Catalysis A—Chemical, 2004, 211(1-2): 35-41
CrossRef
Google scholar
|
[104] |
Kutsuna S, Nagaoka Y, Takeuchi K, Hori H. TiO2-induced heterogeneous photodegradation of a fluorotelomer alcohol in air. Environmental Science & Technology, 2006, 40, 6824-6829
CrossRef
Google scholar
|
[105] |
Yuan Q, Ravikrishna R, Valsaraj K T. Reusable adsorbents for dilute solution separation. 5. Photodegradation of organic compounds on surfactant-modified titania. Separation and Purification Technology, 2001, 24(1-2): 309-318
CrossRef
Google scholar
|
[106] |
Hidaka H, Jou H, Nohara K, Zhao J. Photocatalytic degradation of the hydrophobic pesticide permethrin in fluoro surfactant/TiO2 aqueous dispersions. Chemosphere, 1992, 25(11): 1589-1597
CrossRef
Google scholar
|
[107] |
Vecitis C D, Park H, Cheng J, Mader B T, Hoffmann M R. Kinetics and mechanism of the sonolytic conversion of the aqueous perfluorinated surfactants, perfluorooctanoate (PFOA), and perfluorooctane sulfonate (PFOS) into inorganic products. Journal of Physical Chemistry A, 2008, 112(18): 4261–4270
CrossRef
Google scholar
|
[108] |
Vecitis C D, Park H, Cheng J, Mader B T, Hoffmann M R. Enhancement of perlfuorooctanoate and perfluorooctanesulfonate activity at acoustic cavitation bubble interfaces. Journal of Physical Chemistry C, 2008, 112(43): 16850–16857
CrossRef
Google scholar
|
[109] |
Cheng J, Vecitis C D, Park H, Mader B T, Hoffmann M R. Sonochemical degradation of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in landfill groundwater: Environmental matrix effects. Environmental Science & Technology, 2008, 42(21): 8057–8063
CrossRef
Google scholar
|
[110] |
Sundstrom D W, Klei H E. Wastewater Treatment. Englewood Cliffs: Prentice-Hall, 1979
|
[80] |
Investigation of Perfluorochemical (PFC) Contamination in Minnesota. In: Phase 1 ed. Minnesota: Senate Environment Committee, 2006, 79
|
[111] |
Boulanger B, Vargo J D, Schnoor J L, Hornbuckle K C. Evaluation of perfluorooctane surfactants in a wastewater treatment system and in a commercial surface protection product. Environmental Science & Technology, 2005, 39(15): 5524-5530
CrossRef
Google scholar
|
[112] |
Loganathan B G, Sajwan K S, Sinclair E, Kumar K S, Kannan K. Perfluoroalkyl sulfonates and perfluorocarboxylates in two wastewater treatment facilities in Kentucky and Georgia. Water Research, 2007, 41(20): 4611-4620
CrossRef
Google scholar
|
[113] |
Office of Pollution Prevention and Toxics, Docket AR226-1264, ed. Accelerated Biodegradation of 8-2 Telomer B Alcohol. Washington DC: US Environmental Protection Agency, 2003, 45
|
[114] |
Yamada T, Taylor P H, Buck R C, Kaiser M A, Giraud R J. Thermal degradation of fluorotelomer treated articles and related materials. Chemosphere, 2005, 61(7): 974-984
CrossRef
Google scholar
|
[115] |
Tang C Y Y, Fu Q S, Robertson A P, Criddle C S, Leckie J O. Use of reverse osmosis membranes to remove perfluorooctane sulfonate (PFOS) from semiconductor wastewater. Environmental Science & Technology, 2006, 40(23): 7343-7349
CrossRef
Google scholar
|
[116] |
Tang C Y, Fu Q S, Criddle C S, Leckie J O. Effect of flux (transmembrane pressure) and membrane properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing wastewater. Environmental Science & Technology, 2007, 41(6): 2008-2014
CrossRef
Google scholar
|
[117] |
Higgins C P, Luthy R G. Sorption of perfluorinated surfactants on sediments. Environmental Science & Technology, 2006, 40(23): 7251-7256
CrossRef
Google scholar
|
[118] |
Johnson R L, Anschutz A J, Smolen J M, Simcik M F, Penn R L. The adsorption of perfluorooctane sulfonate onto sand, clay, and iron oxide surfaces. Journal of Chemical and Engineering Data, 2007, 52(4): 1165-1170
CrossRef
Google scholar
|
[119] |
Pera-Titus M, Garcia-Molina V, Banos M A, Gimenez J, Esplugas S. Degradation of chlorophenols by means of advanced oxidation processes: A general review. Applied Catalysis B—Environmental, 2004, 47(4): 219-256
CrossRef
Google scholar
|
[120] |
Andreozzi R, Caprio V, Insola A, Marotta R. Advanced oxidation processes (AOP) for water purification and recovery. Catalysis Today, 1999, 53(1): 51-59
CrossRef
Google scholar
|
[121] |
Legrini O, Oliveros E, Braun A M. Photochemical processes for water-treatment. Chemical Reviews, 1993, 93(2): 671-698
CrossRef
Google scholar
|
[122] |
Kochany J, Bolton J R. Mechanism of photodegradation of aqueous organic pollutants. 2. Measurement of the primary rate constants for reaction of hydroxyl radicals with benzene and some halobenzenes using an EPR spin-trapping method following the photolysis of hydrogen peroxide. Environmental Science & Technology, 1992, 26(2): 262-265
CrossRef
Google scholar
|
[123] |
Hoigne J, Bader H. Rate constants of reactions of ozone with organic and inorganic-compounds in water. 1. Non-dissociating organic-compounds. Water Research, 1983, 17(2): 173-183
CrossRef
Google scholar
|
[124] |
Hoigne J, Bader H. Rate constants of reactions of ozone with organic and inorganic-compounds in water. 2. Dissociating organic-compounds. Water Research, 1983, 17(2): 185-194
CrossRef
Google scholar
|
[125] |
Zepp R G, Faust B C, Hoigne J. Hydroxyl radical formation in aqueous reactions (PH 3-8) of iron (Ⅱ) with hydrogen peroxide: the photo-Fenton reaction. Environmental Science & Technology, 1992, 26(2): 313-319
CrossRef
Google scholar
|
[126] |
Hua I, Hoffmann M R. Optimization of ultrasonic irradiation as an advanced oxidation technology. Environmental Science & Technology, 1997, 31(8): 2237-2243
CrossRef
Google scholar
|
[127] |
Acero J L, Haderlein S B, Schmidt T C, Suter M J F, Von Gunten U. MTBE oxidation by conventional ozonation and the combination ozone/hydrogen peroxide: Efficiency of the processes and bromate formation. Environmental Science & Technology, 2001, 35(21): 4252-4259
CrossRef
Google scholar
|
[128] |
Buxton G V, Greenstock C L, Helman W P, Ross A B. Critical-review of rate constants for reactions of hydrated electrons, hydrogen-atoms and hydroxyl radicals (∙OH/∙O-) in aqueous solution. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513-886
|
[129] |
An Y J, Jeong S W. Interactions of perfluorinated surfactant with polycyclic aromatic hydrocarbons: Critical micelle concentration and solubility enhancement measurements. Journal of Colloid and Interface Science, 2001, 242(2): 419-424
CrossRef
Google scholar
|
[130] |
An Y J, Carraway E R, Schlautman M A. Solubilization of polycyclic aromatic hydrocarbons by perfluorinated surfactant micelles. Water Research, 2002, 36(1): 300-308
CrossRef
Google scholar
|
[131] |
Huang Q, Hong C S. TiO2 photocatalytic degradation of PCBs in soil-water systems containing fluoro surfactant. Chemosphere, 2000, 41(6): 871-879
CrossRef
Google scholar
|
[132] |
Gromadzka K, Swietlik J. Organic micropollutants degradation in ozone-loaded system with perfluorinated solvent. Water Research, 2007, 41(12): 2572-2580
CrossRef
Google scholar
|
[133] |
Waldemer R H, Tratnyek P G, Johnson R L, Nurmi J T. Oxidation of chlorinated ethenes by heat-activated persulfate: Kinetics and products. Environmental Science & Technology, 2007, 41(3): 1010-1015
CrossRef
Google scholar
|
[134] |
Lau T K, Chu W, Graham N J D. The aqueous degradation of butylated hydroxyanisole by UV/
CrossRef
Google scholar
|
[135] |
Anipsitakis G P, Dionysiou D D. Radical generation by the interaction of transition metals with common oxidants. Environmental Science & Technology, 2004, 38(13): 3705-3712
CrossRef
Google scholar
|
[136] |
Anipsitakis G P, Dionysiou D D. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt. Environmental Science & Technology, 2003, 37(20): 4790-4797
CrossRef
Google scholar
|
[137] |
Ball D L, Edwards J O. The Kinetics and mechanism of the decomposition of Caros acid. 1. Journal of the American Chemical Society, 1956, 78(6): 1125-1129
CrossRef
Google scholar
|
[138] |
Dogliott L, Hayon E. Flash photolysis of persulfate ions in aqueous solutions. Study of sulfate and ozonide radical anions. Journal of Physical Chemistry, 1967, 71(8): 2511-2516
CrossRef
Google scholar
|
[139] |
Kolthoff I M, Miller I K. The Chemistry of Persulfate. 1. The Kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium. Journal of the American Chemical Society, 1951, 73(7): 3055-3059
CrossRef
Google scholar
|
[140] |
Maruthamuthu P, Padmaja S, Huie R E. Rate constants for some reactions of free-radicals with haloacetates in aqueous solution. International Journal of Chemical Kinetics, 1995, 27(6): 605-612
CrossRef
Google scholar
|
[141] |
Neta P, Huie R E, Ross A B. Rate constants for reactions of inorganic radicals in aqueous solution. Journal of Physical and Chemical Reference Data, 1988, 17(3): 1027-1284
|
[142] |
Schwarzenbach R P, Gschwend P M, Imboden D M. Environmental Organic Chemistry. 2nd ed. New York: Wiley, 2003
|
[143] |
Zepp R G, Cline D M. Rates of direct photolysis in aquatic environment. Environmental Science & Technology, 1977, 11(4): 359-366
CrossRef
Google scholar
|
[144] |
Office of Pollution Prevention & Toxics, Docket AR226-0363, ed. FM-3422: Photolysis Study using Simulated Sunlight. Washington DC: US Environmental Protection Agency, 1981, 20
|
[145] |
Gauthier S A, Mabury S A. Aqueous photolysis of 8 : 2 fluorotelomer alcohol. Environmental Toxicology and Chemistry, 2005, 24(8): 1837-1846
CrossRef
Google scholar
|
[146] |
Lee C, Choi W, Kim Y G, Yoon J. UV photolytic mechanism of N-nitrosodimethylamine in water: Dual pathways to methylamine versus dimethylamine. Environmental Science & Technology, 2005, 39(7): 2101-2106
CrossRef
Google scholar
|
[147] |
Getoff N, Schenck G O. Primary products of liquid water photolysis at 1236, 1470 and 1849 Å. Photochemistry and Photobiology, 1968, 8(3): 167-178
CrossRef
Google scholar
|
[148] |
Fricke H, Hart E J. Studies of reactions induced by the photoactivation of the water molecule. I. Journal of Chemical Physics, 1936, 4(7): 418-422
CrossRef
Google scholar
|
[149] |
Oppenlander T, Gliese S. Mineralization of organic micropollutants (homologous alcohols and phenols) in water by vacuum-UV-oxidation (H2O-VUV) with an incoherent xenon-excimer lamp at 172 nm. Chemosphere, 2000, 40(1): 15-21
CrossRef
Google scholar
|
[150] |
Jakob L, Hashem T M, Burki S, Guindy N M, Braun A M. Vacuum-ultraviolet (VUV) photolysis of water: Oxidative degradation of 4-chlorophenol. Journal of Photochemistry and Photobiology A: Chemistry, 1993, 75(2) 97-103
CrossRef
Google scholar
|
[151] |
Quici N, Litter M I, Braun A A, Oliveros E. Vacuum-UV-photolysis of aqueous solutions of citric and gallic acids. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 197(2-3): 306-312
CrossRef
Google scholar
|
[152] |
Hori H, Nagaoka Y, Murayama M, Kutsuna S. Efficient decomposition of perfluorocarboxylic acids and alternative fluorochemical surfactants in hot water. Environmental Science & Technology, 2008, 42, 7438-7443
CrossRef
Google scholar
|
[153] |
Osborne M C, Li Q, Smith I W M. Products of the ultraviolet photodissociation of trifluoroacetic acid and acrylic acid. Physical Chemistry Chemical Physics, 1999, 1(7): 1447-1454
CrossRef
Google scholar
|
[154] |
Ozer R R, Ferry J L. Investigation of the photocatalytic activity of TiO2-polyoxometalate systems. Environmental Science & Technology, 2001, 35(15): 3242-3246
CrossRef
Google scholar
|
[155] |
Fox M A, Cardona R, Gaillard E. Photoactivation of metal-oxide surfaces: Photocatalyzed oxidation of alcohols by heteropolytungstates. Journal of the American Chemical Society, 1987, 109(21): 6347-6354
CrossRef
Google scholar
|
[156] |
Lee J, Kim J, Choi W. Oxidation on zerovalent iron promoted by polyoxometalate as an electron shuttle. Environmental Science & Technology, 2007, 41(9): 3335-3340
CrossRef
Google scholar
|
[157] |
Weinstock I A. Homogeneous-phase electron-transfer reactions of polyoxometalates. Chemical Reviews, 1998, 98(1): 113-170
CrossRef
Google scholar
|
[158] |
Akid R, Darwent J R. Heteropolytungstates as catalysts for the photochemical reduction of oxygen and water. Journal of the Chemical Society. Dalton Transactions, 1985, 2: 395-399
CrossRef
Google scholar
|
[159] |
Hori H, Takano Y, Koike K, Takeuchi K, Einaga H. Decomposition of environmentally persistent trifluoroacetic acid to fluoride ions by a homogeneous photocatalyst in water. Environmental Science & Technology, 2003, 37(2): 418-422
CrossRef
Google scholar
|
[160] |
Hoffmann M R, Martin S T, Choi W Y, Bahnemann D W. Environmental applications of semiconductor photocatalysis. Chemical Reviews, 1995, 95(1): 69-96
CrossRef
Google scholar
|
[161] |
Kormann C, Bahnemann D W, Hoffmann M R. Photolysis of chloroform and other organic-molecules in aqueous TiO2 suspensions. Environmental Science & Technology, 1991, 25(3): 494-500
CrossRef
Google scholar
|
[162] |
Dillert R, Bahnemann D, Hidaka H. Light-induced degradation of perfluorocarboxylic acids in the presence of titanium dioxide. Chemosphere, 2007, 67(4): 785-792
CrossRef
Google scholar
|
[163] |
Guan B, Zhi J, Zhang X, Murakami T, Fujishima A. Electrochemical route for fluorinated modification of boron-doped diamond surface with perfluorooctanoic acid. Electrochemistry Communications, 2007, 9(12): 2817-2821
CrossRef
Google scholar
|
[164] |
Lee J, Seliger H H. Quantum yield of ferrioxalate actinometer. Journal of Chemical Physics, 1964, 40(2): 519-523
CrossRef
Google scholar
|
[165] |
Hatchard C G, Parker C A. A new sensitive chemical actinometer. 2. Potassium ferrioxalate as a standard chemical actinometer. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1956, 235(1203): 518-536
CrossRef
Google scholar
|
[166] |
Parker C A. A new sensitive chemical actinometer. 1. Some trials with potassium ferrioxalate. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1953, 220(1140): 104-116
CrossRef
Google scholar
|
[167] |
Allmand A J, Webb W W. The photolysis of potassium ferrioxalate solutions. Part 1. Experimental. Journal of the Chemical Society, 1929: 1518-1531
CrossRef
Google scholar
|
[168] |
Hori H, Yamamoto A, Koike K, Kutsuna S, Osaka I, Arakawa R. Photochemical decomposition of environmentally persistent short-chain perfluorocarboxylic acids in water mediated by iron(II)/(III) redox reactions. Chemosphere, 2007, 68(3): 572-578
CrossRef
Google scholar
|
[170] |
Sayles G D, You G R, Wang M X, Kupferle M J. DDT, DDD, and DDE dechlorination by zero-valent iron. Environmental Science & Technology, 1997, 31(12): 3448-3454
CrossRef
Google scholar
|
[171] |
Yak H K, Wenclawiak B W, Cheng I F, Doyle J G, Wai C M. Reductive dechlorination of polychlorinated biphenyls by zerovalent iron in subcritical water. Environmental Science & Technology, 1999, 33(8): 1307-1310
CrossRef
Google scholar
|
[172] |
Jones C G, Silverman J, Al-Sheikhly M, Neta P, Poster D L. Dechlorination of polychlorinated biphenyls in industrial transformer oil by radiolytic and photolytic methods. Environmental Science & Technology, 2003, 37(24): 5773-5777
CrossRef
Google scholar
|
[173] |
Hinz D C, Wai C M, Wenclawiak B W. Remediation of a nonachloro biphenyl congener with zero-valent iron in subcritical water. Journal of Environmental Monitoring, 2000, 2(1): 45-48
CrossRef
Google scholar
|
[174] |
Zhang W X. Nanoscale iron particles for environmental remediation: An overview. Journal of Nanoparticle Research, 2003, 5(3-4): 323-332
CrossRef
Google scholar
|
[175] |
Wang C B, Zhang W X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental Science & Technology, 1997, 31(7): 2154-2156
CrossRef
Google scholar
|
[176] |
Hori H, Nagaoka Y, Sano T, Kutsuna S. Iron-induced decomposition of perfluorohexanesulfonate in sub- and supercritical water. Chemosphere, 2008, 70(5): 800-806
CrossRef
Google scholar
|
[177] |
Hori H, Nagaoka Y, Yamamoto A, Sano T, Yamashita N, Taniyasu S, Kutsuna S, Osaka I, Arakawa R. Efficient decomposition of environmentally persistent perfluorooctanesulfonate and related fluorochemicals using zerovalent iron in subcritical water. Environmental Science & Technology, 2006, 40(3): 1049-1054
CrossRef
Google scholar
|
[178] |
Macnicol D D, Robertson C D. New and unexpected reactivity of saturated fluorocarbons. Nature, 1988, 332(6159): 59-61
CrossRef
Google scholar
|
[179] |
Shoute L C T, Mittal J P, Neta P. Fluoride elimination upon reaction of pentafluoroaniline with e(aq)(-), H, and OH radicals in aqueous solution. Journal of Physical Chemistry, 1996, 100(27): 11355-11359
CrossRef
Google scholar
|
[180] |
Shoute L C T, Mittal J P, Neta P. Reduction and defluorination of pentafluorophenol in aqueous solutions. Journal of Physical Chemistry, 1996, 100(8): 3016-3019
CrossRef
Google scholar
|
[181] |
Watson P L, Tulip T H, Williams I. Defluorination of perfluoroolefins by divalent lanthanoid reagents: Activating C–F Bonds. Organometallics, 1990, 9(7): 1999-2009
CrossRef
Google scholar
|
[182] |
Combellas C, Kanoufi F, Thiebault A. Reduction of polyfluorinated compounds. Journal of Physical Chemistry B, 2003, 107(39): 10894-10905
CrossRef
Google scholar
|
[183] |
Corvaja C, Farnia G, Formenton G, Navarrini W, Sandona G, Tortelli V. Electrochemical-behavior and EPR of radical-anions of perfluoroalkyl-substituted olefins. Journal of Physical Chemistry, 1994, 98(9): 2307-2313
CrossRef
Google scholar
|
[184] |
Marsella J A, Gilicinski A G, Coughlin A M, Pez G P. Selective reduction of saturated perfluorocarbons. Journal of Organic Chemistry, 1992, 57(10): 2856-2860
CrossRef
Google scholar
|
[185] |
Pud A A, Shapoval G S, Kukhar V P, Mikulina O E, Gervits L L. Electrochemical reduction of some saturated and unsaturated perfluorocarbons. Electrochimica Acta, 1995, 40(9): 1157-1164
CrossRef
Google scholar
|
[186] |
Chen X D, Lemal D M. Functionalization of saturated fluorocarbons with and without light. Journal of Fluorine Chemistry, 2006, 127(9): 1158-1167
CrossRef
Google scholar
|
[187] |
Szajdzinska-Pietek E, Gebicki J L. Pulse radiolytic investigation of perfluorinated surfactants in aqueous solutions. Research on Chemical Intermediates, 2000, 26(9): 897-912
CrossRef
Google scholar
|
[188] |
Huang L, Dong W B, Hou H Q. Investigation of the reactivity of hydrated electron toward perfluorinated carboxylates by laser flash photolysis. Chemical Physics Letters, 2007, 436(1-3): 124-128
CrossRef
Google scholar
|
[189] |
Ono T, Fukaya H, Hayashi E, Saida H, Abe T, Henderson P B, Fernandez R E, Scherer K V. Persistent perfluoroalkyl radical investigations under reductive environment: Reaction with electron-donating reagents. Journal of Fluorine Chemistry, 1999, 97(1-2): 173-182
CrossRef
Google scholar
|
[190] |
Ochoa-Herrera V, Sierra-Alvarez R, Somogyi A, Jacobsen N E, Wysocki V H, Field J A. Reductive defluorination of perfluorooctane sulfonate. Environmental Science & Technology, 2008, 42(9): 3260-3264
CrossRef
Google scholar
|
[191] |
Johnson T L, Scherer M M, Tratnyek P G. Kinetics of halogenated organic compound degradation by iron metal. Environmental Science & Technology, 1996, 30(8): 2634-2640
CrossRef
Google scholar
|
[192] |
Roberts A L, Totten L A, Arnold W A, Burris D R, Campbell T J. Reductive elimination of chlorinated ethylenes by zero valent metals. Environmental Science & Technology, 1996, 30(8): 2654-2659
CrossRef
Google scholar
|
[193] |
Puls R W, Paul C J, Powell R M. The application of in situ permeable reactive (zero-valent iron) barrier technology for the remediation of chromate-contaminated groundwater: A field test. Applied Geochemistry, 1999, 14(8): 989-1000
CrossRef
Google scholar
|
[194] |
Tratnyek P G, Johnson T L, Scherer M M, Eykholt G R. Remediating ground water with zero-valent metals: Chemical considerations in barrier design. Ground Water Monitoring and Remediation, 1997, 17(4): 108-114
CrossRef
Google scholar
|
[195] |
Cantrell K J, Kaplan D I, Wietsma T W. Zero-Valent Iron for the in-situ remediation of selected metals in groundwater. Journal of Hazardous Materials, 1995, 42(2): 201-212
CrossRef
Google scholar
|
[196] |
Liu Y Q, Majetich S A, Tilton R D, Sholl D S, Lowry G V. TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environmental Science & Technology, 2005, 39(5): 1338-1345
CrossRef
Google scholar
|
[197] |
Elliott D W, Zhang W X. Field assessment of nanoscale biometallic particles for groundwater treatment. Environmental Science & Technology, 2001, 35(24): 4922-4926
CrossRef
Google scholar
|
[198] |
Kim Y H, Carraway E R. Dechlorination of pentachlorophenol by zero valent iron and modified zero valent irons. Environmental Science & Technology, 2000, 34(10): 2014-2017
CrossRef
Google scholar
|
[199] |
Zhang W X, Wang C B, Lien H L, Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catalysis Today, 1998, 40(4): 387-395
CrossRef
Google scholar
|
[200] |
Bransfield S J, Cwiertny D M, Livi K, Fairbrother D H. Influence of transition metal additives and temperature on the rate of organohalide reduction by granular iron: Implications for reaction mechanisms. Applied Catalysis B: Environmental, 2007, 76(3-4): 348-356
CrossRef
Google scholar
|
[201] |
Cwiertny D M, Bransfield S J, Livi K J T, Fairbrother D H, Roberts A L. Exploring the influence of granular iron additives on 1,1,1-trichloroethane reduction. Environmental Science & Technology, 2006, 40(21): 6837-6843
CrossRef
Google scholar
|
[202] |
Marshall W D, Kubatova A, Lagadec A J M, Miller D J, Hawthorne S B. Zero-valent metal accelerators for the dechlorination of pentachlorophenol (PCP) in subcritical water. Green Chemistry, 2002, 4(1): 17-23
CrossRef
Google scholar
|
[203] |
Hart E J, Anbar M. The Hydrated Electron. New York: John Wiley & Sons, Inc., 1970
|
[204] |
Mezyk S P, Helgeson T, Cole S K, Cooper W J, Fox R V, Gardinali P R, Mincher B J. Free radical chemistry of disinfection-byproducts. 1. Kinetics of hydrated electron and hydroxyl radical reactions with halonitromethanes in water. Journal of Physical Chemistry A, 2006, 110(6): 2176-2180
CrossRef
Google scholar
|
[205] |
Milosavljevic B H, LaVerne J A, Pimblott S M. Rate coefficient measurements of hydrated electrons and hydroxyl radicals with chlorinated ethanes in aqueous solutions. Journal of Physical Chemistry A, 2005, 109(34): 7751-7756
CrossRef
Google scholar
|
[206] |
Johnson H D, Cooper W J, Mezyk S P, Bartels D M. Free radical reactions of monochloramine and hydroxylamine in aqueous solution. Radiation Physics and Chemistry, 2002, 65(4-5): 317-326
CrossRef
Google scholar
|
[207] |
Nickelsen M G, Cooper W J, Secker D A, Rosocha L A, Kurucz C N, Waite T D. Kinetic modeling and simulation of PCE and TCE removal in aqueous solutions by electron-beam irradiation. Radiation Physics and Chemistry, 2002, 65(4-5): 579-587
CrossRef
Google scholar
|
[208] |
Rahn R O, Stephan M I, Bolton J R, Goren E, Shaw P S, Lykke K R. Quantum yield of the iodide–iodate chemical actinometer: Dependence on wavelength and concentration. Photochemistry and Photobiology, 2003, 78(2): 146-152
CrossRef
Google scholar
|
[209] |
Anbar M, Hart E J. The reaction of haloaliphatic compounds with hydrated electrons. The Journal of Physical Chemistry, 1965, 69(1): 271-274
CrossRef
Google scholar
|
[210] |
Czapski G, Schwarz H A. The nature of reducing radical in water radiolysis. The Journal of Physical Chemistry, 1962, 66(3): 471-474
CrossRef
Google scholar
|
[211] |
Matheson M S, Mulac W A, Rabani J. Formation of hydrated electron in flash photolysis of aqueous solutions. Journal of Physical Chemistry, 1963, 67(12): 2613-2617
CrossRef
Google scholar
|
[212] |
Hart, E. J.; Boag, J. W., Absorption Spectrum of Hydrated Electron in Water and in Aqueous Solutions. Journal of the American Chemical Society, 1962, 84(21): 4090-4095
CrossRef
Google scholar
|
[213] |
Thomas-Smith T E, Blough N V. Photoproduction of hydrated electron from constituents of natural waters. Environmental Science & Technology, 2001, 35(13): 2721-2726
CrossRef
Google scholar
|
[214] |
Hoigne J, Faust B C, Haag W R, Scully F E, Zepp R G. Aquatic humic substances as sources and sinks of photochemically produced transient reactants. ACS Symposium Series, 1989, 219: 363-381
|
[215] |
Zepp R G, Braun A M, Hoigne J, Leenheer J A. Photoproduction of hydrated electrons from natural organic solutes in aquatic environments. Environmental Science & Technology, 1987, 21(5): 485-490
CrossRef
Google scholar
|
[216] |
Park H, Vecitis C D, Cheng J, Mader B T, Hoffmann M R. Reductive defluorination of aqueous perfluorinated alkyl surfactants: Effects of ionic headgroupand chain length. Journal of Physical Chemistry A, 2009, 113(4): 690–696
CrossRef
Google scholar
|
[217] |
Lian R, Oulianov D A, Crowell R A, Shkrob I A, Chen X Y, Bradforth S E. Electron photodetachment from aqueous anions. 3. Dynamics of geminate pairs derived from photoexcitation of mono-vs polyatomic anions. Journal of Physical Chemistry A, 2006, 110(29): 9071-9078
CrossRef
Google scholar
|
[218] |
Nishiwaki T, Usui M, Anda K, Hida M. Dechlorination of polychlorinated biphenyls by UV-irradiation. 5. Reaction of 2,4,6-trichlorobiphenyl in neutral and alkaline alcoholic solution. Bulletin of the Chemical Society of Japan, 1979, 52(3): 821-825
CrossRef
Google scholar
|
[219] |
Yao Y, Kakimoto K, Ogawa H I, Kato Y, Hanada Y, Shinohara R, Yoshino E. Reductive dechlorination of non-ortho substituted polychlorinated biphenyls by ultraviolet irradiation in alkaline 2-propanol. Chemosphere, 1997, 35(12): 2891-2897
CrossRef
Google scholar
|
[220] |
Hawari J, Demeter A, Samson R. Sensitized photolysis of polychlorobiphenyls in alkaline 2-propanol: Dechlorination of aroclor 1254 in soil samples by solar-radiation. Environmental Science & Technology, 1992, 26(10): 2022-2027
CrossRef
Google scholar
|
[221] |
Schwarz H A, Dodson R W. Reduction potentials of Co2- and the alcohol radicals. Journal of Physical Chemistry, 1989, 93(1): 409-414
CrossRef
Google scholar
|
[222] |
Murakami Y, Kikuchi J, Hisaeda Y, Hayashida O. Artificial enzymes. Chemical Reviews, 1996, 96(2): 721-758
CrossRef
Google scholar
|
[223] |
Gantzer C J, Wackett L P. Reductive dechlorination catalyzed by bacterial transition-metal coenzymes. Environmental Science & Technology, 1991, 25(4): 715-722
CrossRef
Google scholar
|
[224] |
Costentin C, Robert M, Saveant J M. Does catalysis of reductive dechlorination of tetra- and trichloroethylenes by vitamin B12 and corrinoid-based dehalogenases follow an electron transfer mechanism?Journal of the American Chemical Society, 2005, 127(35): 12154-12155
CrossRef
Google scholar
|
[225] |
Glod G, Angst W, Holliger C, Schwarzenbach R P. Corrinoid-mediated reduction of tetrachloroethene, trichloroethene, and trichlorofluoroethene in homogeneous aqueous solution: Reaction kinetics and reaction mechanisms. Environmental Science & Technology, 1997, 31(1): 253-260
CrossRef
Google scholar
|
[226] |
Wood J M, Kennedy F S, Wolfe R S. Reaction of multihalogenated hydrocarbons with free and bound reduced vitamin B12. Biochemistry, 1968, 7(5): 1707-1713
CrossRef
Google scholar
|
[227] |
Lexa D, Saveant J M. Electrochemistry of vitamin-B12. 3. One-electron intermediates in reduction of methylcobalamin and methylcobinamide. Journal of the American Chemical Society, 1978, 100(10): 3220-3222
CrossRef
Google scholar
|
[228] |
Lexa D, Saveant J M, Zickler J. Electrochemistry of vitamin-B12. 2. Redox and acid-base equilibria in B12a/B12r system. Journal of the American Chemical Society, 1977, 99(8): 2786-2790
CrossRef
Google scholar
|
[229] |
Zehnder A J B, Wuhrmann K. Titanium(Iii) citrate as a nontoxic oxidation-reduction buffering system for culture of obligate anaerobes. Science, 1976, 194(4270): 1165-1166
CrossRef
Google scholar
|
[230] |
Shey J, van der Donk W A. Mechanistic studies on the vitamin B-12-catalyzed dechlorination of chlorinated alkenes. Journal of the American Chemical Society, 2000, 122(49): 12403-12404
CrossRef
Google scholar
|
[231] |
Schrauze Gn, Deutsch E, Windgass Rj. The nucleophilicity of vitamin B12s. Journal of the American Chemical Society, 1968, 90(9): 2441-2442
|
[232] |
Krusic P J, Marchione A A, Roe D C. Gas-phase NMR studies of the thermolysis of perfluorooctanoic acid. Journal of Fluorine Chemistry, 2005, 126(11-12): 1510-1516
CrossRef
Google scholar
|
[233] |
Ainagos A F. Mechanism and kinetics of pyrolysis of perfluorohexane. AF AINAGOS Kinetics and catalysis, 1991, 32(4): 720-725
|
[234] |
Hynes R G, Mackie J C, Masri A R. Shock-tube study of the pyrolysis of the halon replacement molecule CF3CHFCF3. Journal of Physical Chemistry A, 1999, 103(1): 54-61
CrossRef
Google scholar
|
[235] |
Atkinson B, McKeagan D. The thermal decomposition of perfluorocyclopropane. Chemical Communications, 1966, 7: 189-190
CrossRef
Google scholar
|
[236] |
Bauer S H, Hou K C, Resler E L. Single-pulse shock-tube studies of pyrolysis of fluorocarbons and of oxidation of perfluoroethylene. Physics of Fluids, 1969, 12(5): I-125-I-132
CrossRef
Google scholar
|
[237] |
Blake P G, Tomlinso A D. Thermal decomposition of fluoroaceticacid. Journal of the Chemical Society B: Physical Organic, 1971, 8: 1596-1597
|
[238] |
Brown C E, Smith D R. The infrared multiphoton dissociation of hexafluoroethane. Canadian Journal of Chemistry: Revue Canadienne De Chimie, 1988, 66(4): 609-614
CrossRef
Google scholar
|
[239] |
Chowdhury P K. IR multiphoton dissociation dynamics of octafluorocyclopentene: Time-resolved observation of concerted products :CF2 and hexafluorobutadiene. The Journal of Physical Chemistry, 1995, 99(32): 12084-12089
CrossRef
Google scholar
|
[240] |
Longfellow C A, Smoliar L A, Lee Y T, Lee Y R, Yeh C Y, Lin S M. Competing pathways in the infrared multiphoton dissociation of hexafluoropropene. Journal of Physical Chemistry A, 1997, 101(4): 338-344
CrossRef
Google scholar
|
[241] |
Matula R A. Thermal decomposition of perfluoropropene. The Journal of Physical Chemistry, 1968, 72(8): 3054-3056
CrossRef
Google scholar
|
[242] |
Millward G E, Tschuiko E. Kinetic analysis of shock-wave decomposition of 1,1,1,2-tetrafluoroethane. The Journal of Physical Chemistry, 1972, 76(3): 292-298
CrossRef
Google scholar
|
[243] |
Tschuiko E. RRKM theory calculation of unimolecular decomposition of hexafluoroethane: Thermal activation. The Journal of Chemical Physics, 1968, 49(7): 3115-3121
CrossRef
Google scholar
|
[244] |
Lee M C, Choi W. Development of thermochemical destruction method of perfluorocarbons (PFCs). Journal of Industrial and Engineering Chemistry, 2004, 10(1): 107-114
|
[245] |
Burgess D R, Zachariah M R, Tsang W, Westmoreland P R. Thermochemical and chemical kinetic data for fluorinated hydrocarbons. Progress in Energy and Combustion Science, 1995, 21(6): 453-529
CrossRef
Google scholar
|
[246] |
Lines D, Sutcliffe H. Preparation and properties of some salts of perfluorooctanoic acid. Journal of Fluorine Chemistry, 1984, 25(4): 505-512
CrossRef
Google scholar
|
[247] |
Lazerte J D, Hals L J, Reid T S, Smith G H. Pyrolyses of the salts of the perfluoro carboxylic acids. Journal of the American Chemical Society, 1953, 75(18): 4525-4528
CrossRef
Google scholar
|
[248] |
Glöckner V, Lunkwitz K, Prescher D. Zur chemischen und thermischen Stabilität von Fluortensiden. Tenside Surfactants Detergents, 1989, 26(6): 376-380 (in German)
|
[249] |
Krusic P J, Roe D C. Gas-phase NMR technique for studying the thermolysis of materials: Thermal decomposition of ammonium perfluorooctanoate. Analytical Chemistry, 2004, 76(13): 3800-3803
CrossRef
Google scholar
|
[250] |
Office of Pollution Prevention & Toxics, Docket AR226-1366, ed. Laboratory-Scale Thermal Degradation of Perfluorooctanyl Sulfonate and Related Substances. Washington DC: US Environmental Protection Agency, 2003, 13
|
[251] |
Ravishankara A R, Solomon S, Turnipseed A A, Warren R F. Atmospheric lifetimes of long-lived halogenated species. Science, 1993, 259(5092): 194-199
CrossRef
Google scholar
|
[252] |
Office of Pollution Prevention & Toxics, Docket AR226-1367, ed. Final Report: Laboratory-Scale Thermal Degradation of Perfluoro-Octanyl Sulfonate and Related Substances. Washington DC: US Environmental Protection Agency, 2003, 142
|
[253] |
Leighton T G. The Acoustic Bubble. London: Academic Press, 1994, 316-335
|
[254] |
Mason T J, Lorimer J P. Sonochemistry: Theory, Applications and Uses of Ultrasound in Chemistry. New York: Halsted Press, 1988
|
[255] |
Suslick K S. Ultrasound: It's Chemical, Physical, and Biological Effects. New York: VCH Publishers, 1988
|
[256] |
Destaillats H, Hung H M, Hoffmann M R. Degradation of alkylphenol ethoxylate surfactants in water with ultrasonic irradiation. Environmental Science & Technology, 2000, 34(2): 311-317
CrossRef
Google scholar
|
[257] |
Kotronarou A, Mills G, Hoffmann M R. Ultrasonic irradiation of para-nitrophenol in aqueous solution. Journal of Physical Chemistry, 1991, 95(9): 3630-3638
CrossRef
Google scholar
|
[258] |
Vinodgopal K, Ashokkumar M, Grieser F. Sonochemical degradation of a polydisperse nonylphenol ethoxylate in aqueous solution. Journal of Physical Chemistry B, 2001, 105(16): 3338-3342
CrossRef
Google scholar
|
[259] |
Manousaki E, Psillakis E, Kalogerakis N, Mantzavinos D. Degradation of sodium dodecylbenzene sulfonate in water by ultrasonic irradiation. Water Research, 2004, 38(17): 3751-3759
CrossRef
Google scholar
|
[260] |
Petrier C, Lamy M F, Francony A, Benahcene A, David B, Renaudin V, Gondrexon N. Sonochemical degradation of phenol in dilute aqueous solutions: Comparison of the reaction-rates at 20-Khz and 487-Khz. Journal of Physical Chemistry, 1994, 98(41): 10514-10520
CrossRef
Google scholar
|
[261] |
Hung H M, Hoffmann M R. Kinetics and mechanism of the sonolytic degradation of chlorinated hydrocarbons: Frequency effects. Journal of Physical Chemistry A, 1999, 103(15): 2734-2739
CrossRef
Google scholar
|
[262] |
Jennings B H, Townsend S N. Sonochemical reactions of carbon tetrachloride and chloroform in aqueous suspension in an inert atmosphere. Journal of Physical Chemistry, 1961, 65(9): 1574-1579
CrossRef
Google scholar
|
[263] |
Petrier C, David B, Laguian S. Ultrasonic degradation at 20 khz and 500 khz of atrazine and pentachlorophenol in aqueous solution: Preliminary results. Chemosphere, 1996, 32(9): 1709-1718
CrossRef
Google scholar
|
[264] |
Suslick K S, Hammerton D A, Cline R E. The sonochemical hot-spot. Journal of the American Chemical Society, 1986, 108(18): 5641-5642
CrossRef
Google scholar
|
[265] |
Price G J, Ashokkumar M, Hodnett M, Zequiri B, Grieser F. Acoustic emission from cavitating solutions: Implications for the mechanisms of sonochemical reactions. Journal of Physical Chemistry B, 2005, 109(38): 17799-17801
CrossRef
Google scholar
|
[266] |
Sunartio D, Ashokkumar M, Grieser F. Study of the coalescence of acoustic bubbles as a function of frequency, power, and water-soluble additives. Journal of the American Chemical Society, 2007, 129(18): 6031-6036
CrossRef
Google scholar
|
[267] |
Brennen C E. Cavitation and Bubble Dynamics. New York: Oxford University Press, 1995
|
[268] |
Didenko Y T, McNamara W B, Suslick K S. Hot spot conditions during cavitation in water. Journal of the American Chemical Society, 1999, 121(24): 5817-5818
CrossRef
Google scholar
|
[269] |
Ciawi E, Rae J, Ashokkumar M, Grieser F. Determination of temperatures within acoustically generated bubbles in aqueous solutions at different ultrasound frequencies. Journal of Physical Chemistry B, 2006, 110(27): 13656-13660
CrossRef
Google scholar
|
[270] |
Ashokkumar M, Grieser F. A comparison between multibubble sonoluminescence intensity and the temperature within cavitation bubbles. Journal of the American Chemical Society, 2005, 127(15): 5326-5327
CrossRef
Google scholar
|
[271] |
Eddingsaas N C, Suslick K S. Evidence for a plasma core during multibubble sonoluminescence in sulfuric acid. Journal of the American Chemical Society, 2007, 129(13): 3838-3839
CrossRef
Google scholar
|
[272] |
Sostaric J Z, Riesz P. Sonochemistry of surfactants in aqueous solutions: An EPR spin-trapping study. Journal of the American Chemical Society, 2001, 123(44): 11010-11019
CrossRef
Google scholar
|
[273] |
Kato S, Makide Y, Tominaga T, Takeuchi K. Infrared multiphoton dissociation of heptafluoropropane. Journal of Physical Chemistry, 1987, 91(16): 4278-4284
CrossRef
Google scholar
|
[274] |
Wilhelmi A R, Knopp P V. Wet air oxidation: An alternative to incineration. Chemical Engineering Progress, 1979, 75(8): 46-52
|
[275] |
Kolaczkowski S T, Plucinski P, Beltran F J, Rivas F J, McLurgh D B. Wet air oxidation: A review of process technologies and aspects in reactor design. Chemical Engineering Journal, 1999, 73(2): 143-160
CrossRef
Google scholar
|
[276] |
Chang M B, Chang J S. Abatement of PFCs from semiconductor manufacturing processes by nonthermal plasma technologies: A critical review. Industrial & Engineering Chemistry Research, 2006, 45(12): 4101-4109
CrossRef
Google scholar
|
[277] |
Destaillats H, Colussi A J, Joseph J M, Hoffmann M R. Synergistic effects of sonolysis combined with ozonolysis for the oxidation of azobenzene and methyl orange. Journal of Physical Chemistry A, 2000, 104(39): 8930-8935
CrossRef
Google scholar
|
[278] |
Weavers L K, Malmstadt N, Hoffmann M R. Kinetics and mechanism of pentachlorophenol degradation by sonication, ozonation, and sonolytic ozonation. Environmental Science & Technology, 2000, 34(7): 12801285
CrossRef
Google scholar
|
[279] |
Lesko T, Colussi A J, Hoffmann M R. Sonochemical decomposition of phenol: Evidence for a synergistic effect of ozone and ultrasound for the elimination of total organic carbon from water. Environmental Science & Technology, 2006, 40(21): 6818-6823
CrossRef
Google scholar
|
[280] |
Weavers L K, Ling F H, Hoffmann M R. Aromatic compound degradation in water using a combination of sonolysis and ozonolysis. Environmental Science & Technology, 1998, 32(18): 2727-2733
CrossRef
Google scholar
|
/
〈 | 〉 |