Fenton process for degradation of selected chlorinated aliphatic hydrocarbons exemplified by trichloroethylene, 1,1-dichloroethylene and chloroform

QIANG Zhimin1, BEN Weiwei1, HUANG Chin-Pao2

PDF(327 KB)
PDF(327 KB)
Front. Environ. Sci. Eng. ›› 2008, Vol. 2 ›› Issue (4) : 397-409. DOI: 10.1007/s11783-008-0074-0

Fenton process for degradation of selected chlorinated aliphatic hydrocarbons exemplified by trichloroethylene, 1,1-dichloroethylene and chloroform

  • QIANG Zhimin1, BEN Weiwei1, HUANG Chin-Pao2
Author information +
History +

Abstract

The degradation of selected chlorinated aliphatic hydrocarbons (CAHs) exemplified by trichloroethylene (TCE), 1,1-dichloroethylene (DCE), and chloroform (CF) was investigated with Fenton oxidation process. The results indicate that the degradation rate was primarily affected by the chemical structures of organic contaminants. Hydroxyl radicals (OH) preferred to attack the organic contaminants with an electron-rich structure such as chlorinated alkenes (i.e., TCE and DCE). The dosing mode of Fenton’s reagent, particularly of Fe2+, significantly affected the degradation efficiency of studied organic compound. A new “time-squared” kinetic model, C = Coexp(-kobst2), was developed to express the degradation kinetics of selected CAHs. This model was applicable to TCE and DCE, but inapplicable to CF due to their varied reaction rate constants towards OH. Chloride release was monitored to examine the degree of dechlorination during the oxidation of selected CAHs. TCE was more easily dechlorinated than DCE and CF. Dichloroacetic acid (DCAA) was identified as the major reaction intermediate in the oxidation of TCE, which could be completely removed as the reaction proceeded. No reaction intermediates or byproducts were identified in the oxidation of DCE and CF. Based on the identified intermediate, the reaction mechanism of TCE with Fenton’s reagent was proposed.

Cite this article

Download citation ▾
QIANG Zhimin, BEN Weiwei, HUANG Chin-Pao. Fenton process for degradation of selected chlorinated aliphatic hydrocarbons exemplified by trichloroethylene, 1,1-dichloroethylene and chloroform. Front.Environ.Sci.Eng., 2008, 2(4): 397‒409 https://doi.org/10.1007/s11783-008-0074-0

References

1. Vogel T M, Criddle C S, McCarty P L . Transformations of halogenated aliphatic compounds: oxidation,reduction, substitution, and dehydrohalogenation reactions occur abioticallyor in microbial and mammalian systems. Environmental Science & Technology, 1987, 21(8): 722–736. doi:10.1021/es00162a001
2. Watts R J . Hazardous Wastes: Sources, Pathways, Receptors. New York: John Wiley & Sons, 1998
3. Higgins T E . Hazardous Waste Minimization Handbook. Chelsea: Lewis Publishers, 1989
4. Mackay D M, Smith L A . Agricultural chemicals ingroundwater: Monitoring and management in California. Journal of Soil and Water Conservation, 1990, 45(2): 253–255
5. ATSDR Biannual Report to Congress (10/17/1986–9/30/1988). Agency for Toxic Substances and Disease Registry,U.S. Public Health Service, Atlanta,GA, 1989
6. Keith L H, Telliard W A . Priority pollutants I-a perspectiveview. Environmental Science & Technology, 1979, 13(4): 416–423. doi:10.1021/es60152a601
7. El-Farhan Y H, Scow K M, de Jonge L W, Rolston D E, Moldrup P . Coupling transport and biodegradationof toluene and trichloroethylene in unsaturated soils. Water Resources Research, 1998, 34(3): 437–445. doi:10.1029/97WR03466
8. Heron G, Van Zutphen M, Christensen T H, Enfield C G . Soil heating for enhanced remediation of chlorinated solvents: alaboratory study on resistive heating and vapor extraction in a silty,low-permeable soil contaminated with trichloroethylene. Environmental Science & Technology, 1998, 32(10): 1474–1481. doi:10.1021/es970563j
9. Kawala Z, Atamanczuk T . Microwave-enhanced thermaldecontamination of soil. EnvironmentalScience & Technology, 1998, 32(17): 2602–2607. doi:10.1021/es980025m
10. Huang C P, Dong C D, Tang Z H . Advanced chemical oxidation: Its present role and futurepotential in hazardous waste treatment. Waste Management, 1993, 13(5/7): 361–377. doi:10.1016/0956-053X(93)90070-D
11. Burris D R, Delcomyn C A, Deng B L, Buck L E, Hatfield K . Kinetics of tetrachloroethylene-reductivedechlorination catalyzed by vitamin B12. Environmental Toxicology and Chemistry, 1998, 17(9): 1681–1688. doi:10.1897/1551-5028(1998)017<1681:KOTRDC>2.3.CO;2
12. Ho S V, Athmer C, Sheridan P W, Hughes B M, Orth R, McKenzie D, Brodsky P H, Shapiro A, Thornton R, Salvo J, Schultz D, Landis R, Griffith R, Shoemaker S . Thelasagna technology for in situ soil remediation. 1. Small field test. Environmental Science & Technology, 1999, 33(7): 1086–1091. doi:10.1021/es980332s
13. Ho S V, Athmer C, Sheridan P W, Hughes B M, Orth R, McKenzie D, Brodsky P H, Shapiro A, Sivaves T M, Salvo J, Schultz D, Landis R, Griffith R, Shoemaker S . Thelasagna technology for in situ soil remediation. 2. Large field test. Environmental Science & Technology, 1999, 33(7): 1092–1099. doi:10.1021/es980414g
14. Gotpagar J, Grulke E, Tsang T, Bhattacharyya D . Reductivedehalogenation of trichloroethylene using zero-valent iron. Environmental Progress, 1997, 16(2): 137–143. doi:10.1002/ep.3300160221
15. Arnold W A, Roberts A L . Pathways of chlorinated ethyleneand chlorinated acetylene reaction with Zn (0). Environmental Science & Technology, 1998, 32(19): 3017–3025. doi:10.1021/es980252o
16. Cooper W J, Meacham D E, Nickelsen M G, Lin K, Ford D B, Kurucz C N, Waite T D . The removal of trichloroethylene(TCE) and tetrachloroethylene (PCE) from aqueous-solution using high-energyelectrons. Journal of the Air & WasteManagement Association, 1993, 43(10): 1358–1366
17. Bhatnagar A, Cheung H M . Sonochemical destructionof chlorinated C1 and C2 volatile organic compounds in dilute aqueoussolution. Environmental Science & Technology, 1994, 28(8): 1481–1486. doi:10.1021/es00057a016
18. Crittenden J C, Liu J, Hand D W, Perram D L . Photocatalyticoxidation of chlorinated hydrocarbons in water. Water Research, 1997, 31(3): 429–438. doi:10.1016/S0043-1354(96)00267-9
19. Ollis D F, Hsiao C Y, Budiman L, Lee C L . Heterogeneousphotoassisted catalysis: conversions of perchloroethylene, dichloroethane,chloroacetic acids, and chlorobenzenes. Journal of Catalysis, 1984, 88(1): 89–96. doi:10.1016/0021-9517(84)90053-8
20. Amama P B, Itoh K, Murabayashi M . Effect of RuO2 deposition on theactivity of TiO2: Photocatalytic oxidationof trichloroethylene in aqueous phase. Journal of Materials Science, 2004, 39: 4349–4351. doi:10.1023/B:JMSC.0000033424.26080.70
21. Glaze W H, Kenneke J F, Ferry J L . Chlorinated byproducts from the TiO2-mediated photodegradation of trichloroethylene and tetrachloroethylenein water. Environmental Science & Technology, 1993, 27(1): 177–184. doi:10.1021/es00038a021
22. Bull R J, Sanchez I M, Nelson M A, Larson J L, Lansing A J . Liver tumor induction in B6C3F1 miceby dichloroacetate and trichloroacetate. Toxicology, 1990, 63(3): 341–359. doi:10.1016/0300-483X(90)90195-M
23. Ravikumar J X, Gurol M D . Chemical oxidation of chlorinatedorganics by hydrogen peroxide in the presence of sand. Environmental Science & Technology, 1994, 28(3): 394–400. doi:10.1021/es00052a009
24. Chen G, Hoag G E, Chedda P, Nadim F, Woody B A, Dobbs G M . The mechanism and applicability of in situ oxidation of trichloroethylenewith Fenton's reagent. Journal of HazardousMaterials, 2001, B87: 171–186. doi:10.1016/S0304-3894(01)00263-1
25. Tang W Z, Huang C P . Stoichiometry of Fenton'sreagent in the oxidation of chlorinated aliphatic organic pollutants. Environmental Technology, 1997, 18(1): 13–23. doi:10.1080/09593331808616508
26. Tang W Z, Tassos S . Oxidation kinetics and mechanismsof trihalomethanes by Fenton's reagent. Water Research, 1997, 31(5): 1117–1125. doi:10.1016/S0043-1354(96)00348-X
27. Liang C, Bruell C J . Thermally activated persulfateoxidation of trichloroethylene: Experimental investigation of reactionorders. Industrial Engineering ChemicalResearch, 2008, 47: 2912–2918. doi:10.1021/ie070820l
28. Schwarzenbach R P, Gschwend P M, Imboden D M . Environmental Organic Chemistry. New York: John Wiley & Sons, 1993
29. Fales H M, Jaouni T M, Babashak J F . Simple device for preparing ethereal diazomethane withoutresorting to codistillation. AnalyticalChemistry, 1973, 45(13): 2302–2303. doi:10.1021/ac60335a020
30. Knapp D R . Handbook of Analytical Derivatization Reactions. New York: John Wiley & Sons, 1979
31. Qiang Z M, Chang J H, Huang C P, Cha D . Oxidation ofselected polycyclic aromatic hydrocarbons by the Fenton's reagent:effect of major factors including organic solvent. In: Heineman W R, Eller P G, eds. Nuclear Site Remediation: First Accomplishmentsof the Environmental Management Science Program. Washington, DC: American ChemicalSociety, 2000, 187–209
32. Walling C . Fenton'sreagent revisited. Accounts of ChemicalResearch, 1975, 8: 125–131. doi:10.1021/ar50088a003
33. Sedlak D L, Andren A W . Oxidation of chlorobenzenewith Fenton's reagent. Environmental Science &Technology, 1991, 25(4): 777–782. doi:10.1021/es00016a024
34. Beltran F J, Gonzalez M, Rivas F J, Alvarez P . Fentonreagent advanced oxidation of polynuclear aromatic hydrocarbons inwater. Water Air & Soil Pollution, 1998, 105(3–4): 685–700
35. Getoff N . Radiation-degradationand photoinduced-degradation of pollutants in water-A comparative-study. Radiation Physics and Chemistry, 1991, 37(5–6): 673–680
36. Köster R, Asmus K D . Die Reaktionen chlorierter Äthylenemit hydrotisierten Elektronen und OH-Radikalen in wässriger Lösung. Z. Naturforsch, 1971, 26b: 1108–1116
37. Haag W R, Yao C C D . Rate constants for reactionof hydroxyl radicals with several drinking-water contaminants. Environmental Science & Technology, 1992, 26(5): 1005–1013. doi:10.1021/es00029a021
38. Chen J R, Xu X W, Lee A S, Yen T F . A feasibilitystudy of dechlorination of chloroform in water by ultrasound in thepresence of hydrogen peroxide. EnvironmentalTechnology, 1990, 11(9): 829–836
39. Pignatello J J, Liu D, Huston P . Evidence for an additional oxidant in the photoassistedFenton reaction. Environmental Science &Technology, 1999, 33(11): 1832–1839. doi:10.1021/es980969b
AI Summary AI Mindmap
PDF(327 KB)

Accesses

Citations

Detail

Sections
Recommended

/