Algal-bloom control by allelopathy of aquatic macrophytes-A review

HU Hongying1, HONG Yu2

PDF(329 KB)
PDF(329 KB)
Front. Environ. Sci. Eng. ›› 2008, Vol. 2 ›› Issue (4) : 421-438. DOI: 10.1007/s11783-008-0070-4

Algal-bloom control by allelopathy of aquatic macrophytes-A review

  • HU Hongying1, HONG Yu2
Author information +
History +

Abstract

Algal-bloom control is an important issue for water environment protection as it induces several negative impacts on the lives of aquatic organisms, aquaculture, landscaping, and human health. The development of an environment-friendly, cost-effective, and convenient alternative for controlling algal bloom has gained much concern. Using the allelopathy of aquatic macrophytes as a novel and safe method for algal-bloom control is a promising alternative. This paper reviews the development and potential application about allelopathy of aquatic plants on algae, including the allelopathic research history, the potential research problems, the research methodology, and the reported aquatic macrophytes and their inhibitory allelochemicals. Potential modes of inhibition action of allelochemicals on algae, possible ways for application, and future development directions of research on algal-bloom control by aquatic macrophytes were also presented.

Cite this article

Download citation ▾
HU Hongying, HONG Yu. Algal-bloom control by allelopathy of aquatic macrophytes-A review. Front.Environ.Sci.Eng., 2008, 2(4): 421‒438 https://doi.org/10.1007/s11783-008-0070-4

References

1. Lam A K Y, Prepas L E E, Spink D, Hrudey S E . Chemicalcontrol of hepatotoxic phytoplankton blooms: Implications for humanhealth. Water Res., 1995, 29(8): 1845–1854
2. Verschuren D, Johnson T C, Kling H J, Edgington D N, Leavitt P R, Brown E T, Talbot M R, Hecky R E . History and timing of human impact onLake Victoria, East Africa. Proc. R Soc.B, 2002, 269(1488): 289–294. doi:10.1098/rspb.2001.1850
3. Liu X, Du G S . Phytoplankton and the controllingof eutrophication of water body. J. Capital.Normal Univ. (Nat. Sci. Ed.), 2002, 23(4): 56–59 (in Chinese)
4. Peng H Q, Tang Z R, Gao R Y, Meng C Z . Algal removalin water-supply treatments. Chin. Wat.Wastewat. 2002, 18(2): 29–31 (in Chinese)
5. Wang G X, Pu P M . Influence of Some artificalcontrols on eutrophic algal population dynamics. Environ. Sci., 1999, 20: 71–74 (in Chinese)
6. Wang Z S, Liu W J . Micro-polluted Drinking WaterSource Treatment. Beijing: China Architecture & Building Press, 1999 (in Chinese)
7. Zhou Y L, Yu M . The occurrence, hazards andprevention of water bloom. Bulletin. Biol., 2004, 39(6): 11–14 (in Chinese)
8. He L P . Control blue algal bloom by using algaecide. Yunnan Environ. Sci., 2001, 20(2): 43–44 (in Chinese)
9. Li J H, Gao W, Zhang H, Lu J J, Liu G Z . Emergency control of blue algal bloomby algaecide: experimental study in Xuanwu Lake. Environ. Pollut. Control, 2007, 29(1): 60–62 (in Chinese)
10. Dolan J R, Simek K . Diel periodicity in synechococcus populations and grazing byheterotrophic nanoflagellates: Analysis of food vacuole contents. Limnol. Oceanogr., 1999, 44(6): 1565–1570
11. Chen K . Severalphysiological and ecological characters of freshwater cyanophage. Dissertation for the Master's Degree. Wuhan: HuazhongNormal University, 2002 (in Chinese)
12. Liu X Y, Shi M, Liao Y H, Zhou L, An C C . Protozoa capable of grazing on cyanobacteriaand its biological control of the algae blooming. Acta Hydrobiol. Sin., 2005, 29(14): 456–461 (in Chinese)
13. Ferrier M D, Butler B R, Terlizzi E . The effects of barley straw (Hordeum vulgare) on the growth of freshwater algae. Bioresource Technol., 2005, 96: 1788–1795. doi:10.1016/j.biortech.2005.01.021
14. Ball A S, Williams M, Vincent D, Robinson J . Algalgrowth control by a barley straw extract. Bioresource Technol., 2001, 77: 177–181. doi:10.1016/S0960-8524(00)00148-6
15. Cooper W J, ZIKA R G . Photochemical formation ofhydrogen peroxide in surface and ground water exposed to sunlight. Science, 1983, 220: 711–712. doi:10.1126/science.220.4598.711
16. Everall N C, Lees D R . The identification and significanceof chemichals released from decomposing barley straw during reservoiralgal control. Water Res., 1997, 31(3): 614–620. doi:10.1016/S0043-1354(96)00291-6
17. Pillinger J M, Cooper J A, Ridge I, Barrett P R F . Barley straw as an inhibitor of algal growth III: The role of fungaldecomposition. J. Appl. Phycol., 1992, 4: 353–355. doi:10.1007/BF02185793
18. Zhang X, Hu H Y, Men Y J . Inhibitory effect of extract from barley straw on thegrowth of Microcystis aeruginosa. Acta Scien Circum, 27(12): 1984–1987 (in Chinese)
19. Zhao Y K . Investigation of mechanism of inhibitory effect of rotting barleystraw on algal growth. J. Hebei Acad. Sci., 1997, (3): 19–24 (in Chinese)
20. Ridge I, Walters J, Street M . Algal growth control by terrestrial leaf litter: A realistictool? Hydrobiologia, 1999, 395/396: 173–180. doi:10.1023/A:1017049618962
21. Wan H, Zhang Y . Growth inhibition of cyanobacteriaby decomposed rice straw. Acta Sci. Nat.Univ. Pekin., 2000, 36(4): 485–488 (in Chinese)
22. Gopal B, Goel U . Competition and allelopathyin aquatic plant communities. Bot. Rev., 1993, 59: 155–210. doi:10.1007/BF02856599
23. Inderjit S, Dakshini K M M . Algal allelopathy, Bot. Rev., 1994, 60: 182–196. doi:10.1007/BF02856576
24. Gross E M . Allelopathy of aquatic autotrophs. Crit.Rev. Plant Sci., 2003, 22: 313–339. doi:10.1080/713610859
25. van Donk E, van de Bund W J . Impact of submerged macrophytesincluding charophytes on phyto- and zooplankton communities: Allelopathyversus other mechanisms. Aquat. Bot., 2002, 72: 261–274. doi:10.1016/S0304-3770(01)00205-4
26. Molisch H . DerEinfluss einer Pflanze auf die andere Allelopathie. Jena: Gustav Fischer Verlag, 1937
27. Rice E L . Allelopathy (2nd edition). London: Academic Press, 1984
28. Hasler A D, Jones E . Demonstration of the antagonisticaction of large aquatic plants on algae and rotifers. Ecology, 1949, 30: 359–365. doi:10.2307/1932616
29. Proctor V W . Some controlling factors in the distribution of Haematococcus pluvialis. Ecology, 1957, 38: 457–462. doi:10.2307/1929890
30. van Aller R T, Pessoney G F, Rogers V A, Watkins E J, Leggett H G . Oxygenated fatty acids: Aclass of allelochemicals from aquatic plants. ACS Symp. Ser., 1985, 268: 387–400
31. Hogetsu K M, Okanishi Y, Sugawara H . Studies on the antagonistic relationship between phytoplanktonand rooted aquatic plants. Jap. J. Limnol., 1960, 21: 124–130
32. Kogan S I, Chinnova G A . Relations between Ceratophyllum demersum L. and some blue-greenalgae. Hydrobiol. J., 1972, 8: 14–19
33. van Vierssen W, Prins Th C . On the relationship betweenthe growth of algae and aquatic macrophytes in brackish water. Aquat Bot, 1985, 21: 165–179. doi:10.1016/0304-3770(85)90087-7
34. Elakovich S D, Wooten J W . An examination of the phytotoxicityof the water shield, Brasenia schreberi. J. Chem. Ecol., 1987, 13(9): 1935–1940. doi:10.1007/BF01014676
35. Weaks T . Allelopathicinterference as a factor influencing the periphyton community of afreshwater marsh. Arch. Hydrobiol., 1988, 111: 369–382
36. Sun W H, Yu Z W, Yu S W . Inhibitory effect of Eichhorniacrassipes (Mart.) Solms on algae. Acta Phytophysiol. Sin., 1988, 14(3): 294–300 (in Chinese)
37. Yu Z W, Sun W H, Guo K Q, Yu S W . Allelopathiceffects of several aquatic plants on algae. Acta Hydrobiol. Sin., 1992, 16(1): 1–7 (in Chinese)
38. Jasser I . Theinfluence of macrophytes on a phytoplankton community in experimentalcondition. Hydrobiologia, 1995, 306: 21–32. doi:10.1007/BF00007855
39. Brammer E S . Exclusion of phytoplankton in the proximity of dominant water-soldier(Stratiotes aloides). Freshwat. Biol., 1979, 9: 233–249. doi:10.1111/j.1365-2427.1979.tb01506.x
40. Forsberg C, Kleiven S, Willen T . Absence of allelopathic effects of Chara on phytoplankton in situ. Aquat. Bot., 1990, 38: 289–294. doi:10.1016/0304-3770(90)90012-A
41. Inderjit S, Dakshimi K M M . Allelopathic effect of cyanobacterialinoculum on soil characteristics and cereal growth. Can. J. Bot., 1997, 75: 1267–1272
42. Whittaker R . Thebiochemical ecology of higher plants. In: Soudheimer E, Simeone J B, eds. Chemical Ecology. New York: Academic Press Inc., 1970
43. Sutton D L, Portier K M . Influence of allelochemicalsand aqueous plant extracts on growth of duckweed. J. Aquat. Plant Manage, 1989, 27: 90–95
44. Sutton D L, Portier K M . Influence of spikeruch plantson growth and nutrient content of hydrilla. J. Aquat. Plant Manage, 1991, 29: 6–11
45. Stevens K L, Merril G B . Growth inhibitors from Spikerush. J. Agric. Food Chem., 1980, 28: 644–646. doi:10.1021/jf60229a009
46. Xian Q M, Chen H D, Liu H L, Zou H X, Yin D Q . Isolation and identification of antialgalcompounds from the leaves of Vallisneria spiralis L. by activity-guided fractionation. Environ. Sci. Pollut. Res., 2006, 13(4): 233–237. doi:10.1065/espr2006.06.314
47. Yang S Y, Sun W H . Isolation and identificationof antialgal compounds from root system of water hyacinth. Acta Photophysiol. Sin., 1992, 18(4): 399–402 (in Chinese)
48. Sutfeld R, Petereit F, Nahrstedt A . Resorcinol in exudates of Nupharlutea. J. Chem. Ecol., 1996, 22: 2221–2231. doi:10.1007/BF02029542
49. Sutfeld R . Polymerizationof resorcinol by a cryptophycean exoenzyme. Phytochemistry, 1998, 49: 451–459. doi:10.1016/S0031-9422(98)00174-5
50. Nakai S, Inoue Y, Hosomi M, Murakami A . Myriophyllum spicatum-released allelopathicpolyphenols inhibiting growth of blue-green algae Microcystis aeruginosa. WaterRes., 2000, 34(11): 3026–3032. doi:10.1016/S0043-1354(00)00039-7
51. Nakai S, Yamada S, Hosomi M . Anti-cyanobacterial fatty acids released from Myriophyllum spicatum. Hydrobiologia, 2005, 543: 71–78. doi:10.1007/s10750-004-6822-7
52. Einhellig F A . Mechanisms and modes of action of allelochemicals. In: Putnam A R, Tang C S, eds. The Science of Allelopathy. New York: John Wiley& Sons 1986, 171–188
53. Leu E, Krieger-Liszkay A, Goussias C, Gross E M . Polyphenolicallelochemicals from the aquatic angiosperm Myriophyllum spicatum inhibit photosystem II. Plant Physiol., 2002, 130(4): 2011–2018. doi:10.1104/pp.011593
54. Li F M, Hu H Y . Isolation and characterizationof a novel antialgal allelochemical from Phragmitescommunis. Appl. Environ. Microbiol., 2005, 71(11): 6545–6553. doi:10.1128/AEM.71.11.6545-6553.2005
55. Ervin G N, Wetzel R G . Allelochemical autotoxicityin the emergent wetland macrophyte Juncuseffusus (Juncaceae). Am. J.Bot., 2000, 87: 853–860. doi:10.2307/2656893
56. McNaughton S J . Autotoxic feedback in relation to germination and seedling growthin Typha latifolia. Ecology, 1968, 49: 367–369. doi:10.2307/1934475
57. Hong Y, Hu H Y . Effects of the aquatic extractsof Arundo donax L. on the growthof freshwater algae. Allelopathy J., 2007, 20(2): 315–325
58. D'Abrosca B, Greca M D, Fiorentino A, Isidori M, Monaco P, Pacifico S . Chemical constituents of the aquatic plant Schoenoplectus lacustris: Evaluation of phytotoxiceffects on the green alga Selenastrum capricornutum. J Chem Ecol, 2006, 32(1): 81–96. doi:10.1007/s10886-006-9354-y
59. Ma J F, Zheng S J, Matsumoto H . Specific secretion of citric acid induced by Al stressin Cassia tora L. Plant Cell Physiol., 1997, 38(9): 1019–1025
60. Tang C S, Yang C C . Collection and identificationof allelopathic compounds from the undisturbed root system of biganltalimpograss (Hemarthria altissima). Plant Physiol., 1982, 69(1): 155–160
61. Zeng R S, Luo S M . Allelopathic effects of rootexudates of Cymbopogon citratus, Ageratum conyzoides and Bidens pilosa. J. South China Agri. Univ., 1996, 17(2): 119–120 (in Chinese)
62. He C Q, Ye J X . Inhibitory effects of Acorus tatarinowii on algae growth. Acta Ecol. Sin., 1999, 19(5): 754–758 (in Chinese)
63. Körner S, Nicklisch A . Allelopathic growth inhibitionof selected phytoplankton species by submerged macrophytes. J. Phycol., 2002, 38: 862–871. doi:10.1046/j.1529-8817.2002.t01-1-02001.x
64. Mulderij G, Van Donk E, Roelofs J G M . Differential sensitivity of green algae to allelopathicsubstances from Chara. Hydrobiologia, 2003, 491: 261–271. doi:10.1023/A:1024483704903
65. Men Y J, Hu H Y, Li F M . Effects of the novel allelochemical ethyl 2-methylacetoacetatefrom the reed (Phragmitis australis Trin) on the growth of several common species of green algae. J. Appl. Phycol., 2007, 19(5): 521–527. doi:10.1007/s10811-007-9165-8
66. Hootsmans M J M, Blindow I . Allelopathic limitation ofalgal growth by macrophytes. In: van Vierssen W, Hootsmans M J M, Vermaat J E, eds. Lake Veluwe, A Macrophyte-dominated System Under Eutrophication Stress. Dordrecht: Kluwer Academic Publisher, 1994, 175–192
67. Li F M . Inhibition effect of allelochemicals from macrophytes on harmfulalgal growth. Dissertation for the DoctoralDegree. Beijing: Tsinghua University, 2005 (in Chinese)
68. Blum U . Allelopathicinteractions involving phenolic acids. J. Nematol., 1996, 28: 259–267
69. Ishida K, Murakami M . Kasumigamide, an antialgalpeptide from the cyanobacterium Microcystisaeruginosa. J. Org. Chem., 2000, 65: 5898–5900. doi:10.1021/jo991918f
70. Mjelde M, Faafeng B A . Ceratophyllumdemersum hampers phytoplankton development in some smallNorwegian lakes over a wide range of phosphorus concentrations andgeographical latitude. Freshwat. Biol., 1997, 37: 355–365. doi:10.1046/j.1365-2427.1997.00159.x
71. Fitzgerald G P . Some factors in the competition or antagonism among bacteria, algae,and aquatic weeds. J. Phycol., 1969, 5: 351–359. doi:10.1111/j.1529-8817.1969.tb02625.x
72. Zhuang Y Y, Zhao F, Dai S G, Jin Z H . Algal growthinhibition by phytotoxins. Adv. Environ.Sci., 1995, 3(6): 44–49 (in Chinese)
73. Wetzel R G . Limnology-Lake and River Ecosystems. 3rd ed. San Diego: Academic Press, 2001
74. Nakai S, Inoue Y, Hosomi M . Growth inhibition of blue-green algae by allelopathiceffects of macrophyte. Water Sci. Tech., 1999, 39(8): 47–53. doi:10.1016/S0273-1223(99)00185-7
75. Tang P, Wu G R, Lu C M, Zou C F, Wei J C . Effects of the excretion from root systemof Eichhornia crassipes on thecell structure and metabolism of Scenedesmusarcuatus. Acta Scien. Circum., 2000, 20(3): 355–359 (in Chinese)
76. Wium-Andersen S . Allelopathyamong aquatic plants. Arch. Hydrobiol., 1987, 27: 167–172
77. Gross E M, Erhard D, Ivanyi E . Allelopathic activity of Ceratophyllumdemersum L. and Najas marina ssp intermedia (Wolfgang) Casper. Hydrobiologia, 2003, 506(1–3): 583–589. doi:10.1023/B:HYDR.0000008539.32622.91
78. Berger J, Schagerl M . Allelopathic activity of Characeae. Biologia, 2004, 59: 9–15
79. Crawford S A . Farm pond restoration using Chara vulgaris vegetation. Hydrobiologia, 1979, 62: 17–31
80. Berger J, Schagerl M . Allelopathic acitivity of Chara aspera. Hydrobiologia, 2003, 501: 109–115. doi:10.1023/A:1026263504260
81. Horecka M . Thesignificant role of Chara hispida grown in water regions of a gravel pit lake at Senec. Arch. Protistenkd., 1991, 139: 275–278
82. Brammer E S, Wetzel R G . Uptake and release of K+, Na+ and Ca2+ by the water soldier, Stratiotesaloides L. Aquat. Bot., 1984, 19: 119–130. doi:10.1016/0304-3770(84)90012-3
83. Mulderij G, Mau B, van Donk E, Gross E M . Allelopathicactivity of Stratiotes aloides onphytoplankton-towards identification of allelopathic substances. Hydrobiologia, 2007, 584: 89–100. doi:10.1007/s10750-007-0602-0
84. Anthoni U, Christophersen C, Madsen J, Wium-Andersen S, Jacobsen N . Biologically active sulphurcompounds from the green alga Chara globularis. Phytochemistry, 1980, 19: 1228–1229. doi:10.1016/0031-9422(80)83090-1
85. Wium-Andersen S, Anthoni U, Christophersen C, Houen G . Allelopathiceffects on phytoplankton by substances isolated from aquatic macrophytes(Charales). Oikos, 1982, 39: 187–190. doi:10.2307/3544484
86. Greca M D, Fiorentino A, Isidori M, Monaco P, Zarrelli A . Antialgal ent-labdane diterpenes from Ruppia maritime. Phytochemistry, 2000, 55: 909–913. doi:10.1016/S0031-9422(00)00253-3
87. Wang W H, Ji M, Wang M M, Zhang N, Tang Y P, Zhang Z Y . Allelopathy of Ruppia Maritima on Chlorella vulgaris in reclaimedwastewater. J. Lake Sci., 2007, 19(3): 321–325 (in Chinese)
88. Wang L X, Zhang L, Zhang Y X, Jin C Y, Lu C M, Wu G R . The inhibitory effect of Hydrilla verticillata culture water on Microcystic aeruginosa and its mechanism. J. Plant Physiol.Mol. Biol., 2006, 32(6): 672–678 (in Chinese)
89. Greca M D, Monaco P, Previtera L, Aliotta G, Pinto G, Pollio A . Allelochemical activity of phenylpropanes from Acorus gramineus. Phytochemistry, 1989, 28(9): 2319–2321. doi:10.1016/S0031-9422(00)97975-5
90. Greca M D, Ferrara M, Fiorentino A, Monaco P, Previtera L . Antialgal compounds from Zantedeschia aethiopica. Phytochemistry, 1998, 49(5): 1299–1304. doi:10.1016/S0031-9422(98)00092-2
91. Greca M D, Fiorentino A, Monaco P, Pinto G, Pollio A, Previtera L . Actionof antialgal compounds from Juncus effusus L. on Selenastrum capricornutum. J. Chem. Ecol., 1996, 22(3): 587–603. doi:10.1007/BF02033657
92. Greca M D, Fiorentino A, Monaco P, Pinto G, Previtera L, Zarrelli A . Synthesisand antialgal activity of dihydrophenanthrenes and phenanthrenes II:Mimics of naturally occurring compounds in Juncus effusus. J. Chem. Ecol., 2001, 27(2): 257–271. doi:10.1023/A:1005624304413
93. Greca M D, Isidori M, Lavorgna M, Monaco P, Previtera L, Zarrelli A . Bioactivityof phenanthrenes from Juncus acutus on Selenastrum capricornutum. J. Chem. Ecol., 2004, 30(4): 867–879. doi:10.1023/B:JOEC.0000028437.96654.2c
94. Greca M D, Fiorentino A, Monaco P, Previtera L, Temussi F, Zarrelli A . New dimeric phenanthrenoids from the rhizomes of Juncus acutus. Structure determination andantialgal activity. Tetrahedron, 2003, 59(13): 2317–2324. doi:10.1016/S0040-4020(03)00237-0
95. Dai S G, Zhao F, Jin Z H, Zhuang Y Y, Yuan Y C . Allelopathic effect of plant's extractson algae and the isolation and identification of phytotoxins. Environ. Chem., 1997, 16(3): 268–271 (in Chinese)
96. Aliotta G, Greca M D, Monaco P, Pinto G, Pollio A, Previtera L . Invitro algal growth inhibition by phytotoxins of Typha latifolia L.. J. Chem.Eco.l, 1990, 16(9): 2637–2646. doi:10.1007/BF00988075
97. Greca M D, Mangoni L, Molinaro A, Monaco P, Previtera L . (20S)-4α-Methyl-24-methylenecholest-7-en-3β-ol, an allelopathic sterol from Typha latifolia. Phytochemistry, 1990, 29: 1797–1798. doi:10.1016/0031-9422(90)85019-C
98. Gallardo M T, Martin B B, Martin D F . Inhibition of water ferm (Salvianiaminima) by cattail (Typha domingensis) extracts and by 2-chlorophenol and salicylaldehyde. J. Chem. Ecol., 1998, 24: 1483–1490. doi:10.1023/A:1020955615868
99. Zhou S, Nakai S, Hosomi M, Sezaki Y, Tominaga M . Allelopathic growth inhibition of cyanobacteriaby reed. Allelopathy J., 2006, 18(2): 277–285
100. Aliotta G, Monaco P, Pinto G, Pollio A, Previtera L . Potential allelochemicals from Pistia stratiotes L. J. Chem. Ecol., 1991, 17(11): 2223–2234. doi:10.1007/BF00988003
101. Sun W H, Yu S W, Yang S Y, Zhao B W, Yu Z W, Wu H L, Huang S Y, Tang C S . Allelochemicals from root exudates of water hyacinth(Eichhornis crassipes). Acta Photophysiol. Sin., 1993, 19(1): 92–96 (in Chinese)
102. Greca M D, Lanzetta R, Mangoni L, Monaco P, Previtera L . A bioactive benzoindenone from Eichhornia crassipes. Solms. Bioorg. Med. Chem. Lett., 1991, 1: 599–600. doi:10.1016/S0960-894X(01)81159-8
103. Greca M D, Lanzetta R, Molinaro A, Monaco P, Previtera L . Phenalene metabolites from Eichhornia crassipes. Bioorg. Med. Chem. Lett., 1992, 2: 311–314. doi:10.1016/S0960-894X(01)80207-9
104. Wu Z B, Deng P, Wu X H, Luo S, Gao Y N . Allelopathic effects of the submergedmacrophyte Potamogeton malaianus on Scenedesmus obliquus. Hydrobiologia, 2007, 592: 465–474. doi:10.1007/s10750-007-0787-2
105. Cangiano T, Greca M D, Fiorentino A, Isidori M, Monaco P, Zarrelli A . Lactone diterpenes from the aquatic plant Potamogeton natans. Phytochemistry, 2001, 56(5): 469–473. doi:10.1016/S0031-9422(00)00387-3
106. Greca M D, Fiorentino A, Isidori M, Monaco P, Temussi F, Zarrelli A . Antialgalfurano-diterpenes from Potamogeton natans L. Phytochemistry, 2001a, 58(2): 299–304. doi:10.1016/S0031-9422(01)00203-5
107. Waridel P, Wolfender J L, Lachavanne J B, Hostettmann K . ent-Labdanediterpenes from the aquatic plant Potamogetonpectinatus. Phytochemistry, 2003, 64(7): 1309–1317. doi:10.1016/j.phytochem.2003.08.014
108. Gross E M, Meyer H, Schilling G . Release and ecological impact of algicidal hydrolysablepolyphenols in Myriophyllum spicatum. Phytochemistry, 1996, 41(1): 133–138. doi:10.1016/0031-9422(95)00598-6
109. Planas D, Sarhan F, Dube L, Godmaire H, Cadieux C . Ecological significance ofphenolic compounds of Myriophyllum spicatum. Verh. Internat. Verein. Theor. Angew.Limnol., 1981, 21: 1492–1496
110. Saito K, Matsumoto M, Sekine T, Murakashi J . Inhibitorysubstances form Myriophyllum brasiliense on growth of blue-green algae. J. Nat.Prod., 1989, 52(6): 1221–1226. doi:10.1021/np50066a004
111. Aliotta G, Molinaro A, Monaco P, Pinto G, Previtera L . Three biologically active phenylpropanoidglucosides from Myriophyllum verticillatum. Phytochemistry, 1992, 31(1): 109–111. doi:10.1016/0031-9422(91)83017-F
112. Pollio A, Pinto G, Ligrone R, Aliotta G . Effectsof the potential allelochemical α-asarone on growth, physiologyand ultrastructure of two unicellular green algae. J. Appl. Phycol., 1993, 5: 395–403. doi:10.1007/BF02182732
113. Wium-Andersen S, Anthoni U, Houen G . Elemental sulphur, a possible allelopathic compound from Ceratophyllum demersum. Phytochemistry, 1983, 22: 2613. doi: 10.1016/0031-9422(83)80178-2
114. Men Y J, Hu H Y, Li F M . Effects of an allelopathic fraction from Phragmitis communis Trin on the growth characteristicsof Scenedesmus obliquus. Ecol. Environ., 2006, 15(5): 925–929 (in Chinese)
115. Wang L X, Wu G R, Wang J A, Zhang H, Lu C M, Xu Q S . The inhibition of Hydrilla verticillata on Microcystis aeruginosa. J. Lake Sci., 2004, 16(4): 337–342 (in Chinese)
116. Jiang G B, Ceng R S . Allelopathic potentials ofvolatiles from Artemisia lavandulaefolia DC. Prodr. Ecol. Sci., 2006, (2): 106–108 (in Chinese)
117. Hao Z P, Wang Q, Christie P, Li X L . Allelopathicpotential of watermelon tissues and root exudates. Sci. Hort., 2007, 112(3): 1673–1679
118. Yu J Q . Autotoxic potential of vegetable crops. In: Narwal S S, ed. Allelopathy Update-basicand Applied Aspects. New Hampshire: Science Publishers Inc., 1999, 159–162
119. Viator R P, Johnson R M, Grimm C C, Richard E P Jr . Allelopathic, autotoxic, and hormetic effects of postharvest sugarcaneresidue. Agron. J., 2006, 98: 1526–1531. doi:10.2134/agronj2006.0030
120. Chen D Q, Chen R M, Pan R C . The new promotive allelopathy substance-Lepidimoide. Plant Physiol. Commun., 1998, 34(6): 455–457
121. Ortega R C, Anaya A L, Ramos L . Effects of allelopathic compounds of corn pollen on respirationand cell division of watermelon. J. Chem.Ecol., 1988, 14(1): 71–86. doi:10.1007/BF01022532
122. Romagni J G, Allen S N, Dayan F E . Allelopathic effects of volatile cineoles on two weedyplant species. J. Chem. Ecol., 2000, 26(1): 303–314. doi:10.1023/A:1005414216848
123. Baziramakenga R, Simard R R, Leroux G D . Effects of benzoic and cinnamic acids on growth, mineralcomposition, and chlorophyll content of soybean. J. Chem. Ecol., 1994, 20(11): 2821–2833. doi:10.1007/BF02098391
124. Netzly D H, Riopel J L, Ejeta G, Butler L G . Germinationstimulants of withweed (Striga asiatica) from hydrophobic root exudate of sorghum (Sorghum bicolor). Weed Sci., 1988, 36: 441–446
125. Ma R X, Liu X F, Yuan G L, Sun S E . Study onallelochemicals in the process of decomposition of wheat straw bymicroorganisms and their bioactivity. ActaEcol. Sin., 1996, 16(6): 632–639 (in Chinese)
AI Summary AI Mindmap
PDF(329 KB)

Accesses

Citations

Detail

Sections
Recommended

/