Effect of soil crust on evaporation and dew deposition
in Mu Us sandy land, China
SUN Yongliang, LI Xiaoyan, XU Heye, YANG Zhipeng, TANG Jia, ZHANG Xiaoying
Author information+
Institute of Land Resources, College of Resources Science and Technology, Beijing Normal University
Show less
History+
Published
05 Dec 2008
Issue Date
05 Dec 2008
Abstract
The development of soil crust on sandy land may affect the surface hydrological process. This paper investigates the process of evaporation and dew deposition influenced by different soil surface types which were dominated by sand, primitive biotic crust, and advanced biotic crust, respectively, in the south fringe of Mu Us sandy land in Northwest China from July to September of 2006. The experimental results indicate that the advanced biotic crust could increase evaporation and dew deposition compared to the primitive biotic crust and bare sand although the differences between them were not significant. The average evaporation from advanced biotic crust, primitive biotic crust and sand was 6.8, 6.6, and 6.5 mm/d, respectively, and water content is around 16.2 % in the condition of initially identical soil. The average dew amount on advanced biotic crust was 0.116 mm/d with extreme 0.05 and 0.24 mm/d. The average values on primitive biotic crust and sand were 0.105 and 0.101 mm/d, respectively, with extreme 0.04 and 0.21 mm/d for both treatments. Also, the dew deposition on advanced biotic crust seemed stable and might rest for a longer time than that on primitive biotic crust and sand. The results suggest that the advanced biotic crust possibly facilitates evaporation and dew deposition. Therefore, the development of biotic crust may potentially enhance the hydrological circulation in the upper sand layer in sandy land.
SUN Yongliang, LI Xiaoyan, XU Heye, YANG Zhipeng, TANG Jia, ZHANG Xiaoying.
Effect of soil crust on evaporation and dew deposition
in Mu Us sandy land, China. Front.Environ.Sci.Eng., 2008, 2(4): 480‒486 https://doi.org/10.1007/s11783-008-0034-8
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact us for subscripton.
References
1. Nikolayev V S, Beysens D, Gioda A, Milimouk I, Katiushin E, Morel J P . Water recovery from dew. Journalof hydrology, 1996, 182: 19–35. doi:10.1016/0022-1694(95)02939-7 2. Malek E, Mccury G, Giles B . Dew contribution to the annual water balances in semi-ariddesert valleys. Journal of Arid Environments, 1999, 42(2): 71–80. doi:10.1006/jare.1999.0506 3. Evenari M, Shanan L, Tadmor N . The Negev: Challenge of A Desert. 2nd ed. Cambridge, MA, USA: Harvard UniversityPress, 1982, 150 4. Danin A, Garty J . Distribution of cyanobacteriaand lichens on hillsides of the Negev Highlands and their impact onbiogenic weathering. Zeitschriftfur Geomorphologie, 1983, 27: 423–444 5. Broza M . Dew,fog and hygroscopic food as a source of water for desert arthropods. Journal of Arid Environments, 1979, 2: 43–49 6. Munne-Bosch S, Nogues S, Alegre L . Diurnal variations of photosynthesis and dew absorptionby leaves in two evergreen shrubs growing in Mediterranean field conditions. New Phytologist, 1999, 144: 109–119. doi:10.1046/j.1469-8137.1999.00490.x 7. Li X Y . Effects of gravel and sand mulches on dew deposition in the semiaridregion of China. Journal of Hydrology, 2002, 260: 151–160. doi:10.1016/S0022-1694(01)00605-9 8. Diaz F, Jimenez C C, Tejedor M . Influence of the thickness and grain size of tephra mulchon soil water evaporation. AgriculturalWater Management, 2005, 74: 47–55. doi:10.1016/j.agwat.2004.10.011 9. Xie Z K, Wang Y J, Jiang W L, Wei X H . Evaporationand evapotranspiration in a watermelon field mulched with gravel ofdifferent sizes in Northwest China. AgriculturalWater Management, 2006, 81: 173–184. doi:10.1016/j.agwat.2005.04.004 10. West N E . Structure and function of microphytic soil crusts in wildland ecosystemsof arid to semi-arid regions. Advancesin Ecological Research, 1990, 20: 179–223. doi:10.1016/S0065-2504(08)60055-0 11. Tisdall J M, Oades J M . Organic matter and waterstable aggregates in soils. Journal ofsoil Sciences, 1982, 33: 141–163. doi:10.1111/j.1365-2389.1982.tb01755.x 12. Zobeck T M . Abrasion of crusted soils: Influence of abrader flux and soil properties. Soil Science Society of America Journal, 1991, 55: 1091–1097 13. Williams J D, Dobrowolski J P, West N E, Gillette D A . Microbiotic soil crusts influence on wind erosion. Transactions of the American Society of Agricultural Engineers, 1995, 38: 131–137 14. Li X R, Wang X P, Li T, Zhang J G . Microbioticsoil crust and its effect on vegetation and habitat on an artificiallystabilized desert dune in the Tengger Desert, North China. Biology and Fertility of Soils, 2002, 35: 147–154. doi:10.1007/s00374-002-0453-9 15. Blackburn W H . Factors influencing infiltration rate and sediment production ofsemiarid ranglands in Nevada. Water ResourcesResearch, 1975, 11: 929–937. doi:10.1029/WR011i006p00929 16. Eldridge D J, Tozer M E, Slangen S . Soil hydrology is independent of microphytic crust cover:Further evidence from the semiarid woodlands of eastern Australia. Arid Soil Research and Rehabilitation, 1997, 11: 113–126 17. Abu-Awwad A M, Shatanawi M R . Water harvesting and infiltrationin arid areas affected by surface crust: Examples from Jordan. Journal of Arid Environments, 1997, 37: 443–452. doi:10.1006/jare.1997.0301 18. Li X Y, González A, Solé-Benet A . Laboratory methods for the estimationof infiltration rate of soil crusts in the Tabernas Desert badlands. Catena, 2005, 60: 255–266. doi:10.1016/j.catena.2004.12.004 19. Eldridge D J, Greene R S B . Microbiotic soil crusts:A review of their roles in soil and ecological processes in the rangelandsof Australia. Australian Journal of SoilResearch, 1994, 32: 389–415. doi:10.1071/SR9940389 20. Romkens M J M, Prasad S N, Whisle F D . Surface sealing and infiltration. In: Anderson M G, Burt I P, eds. Process Studies in Hillslope Hydrology. New York: Wiley InterScience, 1990, 127–172 21. Liu L C, Li S Z, Duan Z H, Wang T, Zhang Z S, Li X R . Effect of microbiotic crusts on dew deposition in the restored vegetationarea at Shapotou, Northwest China. Journalof Hydrology, 2006, 328: 331–337.. doi: 10.1016/j.jhydrol.2005.12.004 22. Wu B, Ci L J . Landscape change and desertificationdevelopment in the Mu Us sandland, Nothern China. Journal of Arid Environments, 2002, 50: 429–444. doi:10.1006/jare.2001.0847 23. Wang S G, Yuan W, Shang K Z . The impacts of different kinds of dust event on PM10 pollution in Northern China. Atmospheric Environment, 2006, 40(40): 7975–7982. doi:10.1016/j.atmosenv.2006.06.058 24. Garratt J R, Segal M . On the contribution of atmosphericmoisture on dew formation. Boundary LayerMeteorology, 1988, 45: 209–236. doi:10.1007/BF01066671 25. Tuller S E, Chilton R . The role of dew in the seasonalmoisture balance of summer-dry climate. Agricultural Meteorology, 1973, 11: 135–142. doi:10.1016/0002-1571(73)90057-5 26. Agam N, Berliner P R . Dew formation and water vaporadsorption in semi-arid environments–A review. Journal of Arid Environments, 2006, 65: 572–590. doi:10.1016/j.jaridenv.2005.09.004 27. Zangvil A . Sixyears of dew observation in the Negev Desert, Israel. Journal of Arid Environments, 1996, 32: 361–372. doi:10.1006/jare.1996.0030 28. Atzema A J, Jacobs A F G, Wartena L . Moisture distribution within a maize crop due to dew. Netherland Journal of Agricultural Science, 1990, 38: 117–129 29. Neumann J . Estimatingthe amount of dew fall. Arch. Meteorol.Geophys. Bioclimontol. Ser. A, 1956, 9: 197–203. doi:10.1007/BF02247194 30. Monteith J I . Dew. Quarterly Journal of the Royal MeteorologicalSociety, 1956, 42: 572–580 31. Fuchs M, Tanner C B . Evaporation from drying soil. Journal of Applied Meteorology, 1967, 6: 852–857. doi:10.1175/1520-0450(1967)006<0852:EFADS>2.0.CO;2 32. Kidron G J, Yair A, Danin A . Dew variability within a small arid drainage basin inthe Negev Highlands. Israel. QuarterlyJournal of the Royal Meteorological Society, 2000, 126: 63–80 33. Menziani M, Pugnaghi S, Pilan L, Santangelo R, Vincenzi S . Field experiment to studyevaporation from saturated bare soil. Physicsand Chemistry of the Earth (B), 1999, 24(7): 813–818 34. Wang Z, Wang L, Liu L Y, Zheng Q H . Preliminarystudy on soil moisture content in dried layer of sand dunes in theMu Us sandland. Arid Zone Research, 2006, 23(1): 89–92 (in Chinese) 35. Yamanaka T, Yonetani T . Dynamics of the evaporationzone in dry sandy soils. Journal of Hydrology, 1999, 217: 135–148. doi:10.1016/S0022-1694(99)00021-9 36. Gill B S, Jalota S K . Evaporation from soil inrelation to residue rate, mixing depth, soil texture and evaporativity. Soil Technology, 1996, 8: 293–301. doi:10.1016/0933-3630(95)00026-7 37. Kosmas C, Danalatos N G, Poesen J, Wesemael B V . The effect of water vapor adsorption on soil moisture content underMediterranean climatic conditions. AgriculturalWater Management, 1998, 36: 157–168. doi:10.1016/S0378-3774(97)00050-4 38. Hu C X, Liu Y D, Zhang D L, Huang Z B, Paulsen B S . Cementing mechanism of algal crusts fromdesert area. Chinese Science Bulletin, 2002, 47(16): 1361–1368. doi:10.1360/02tb9301 39. Liu L C, Wang G F, Ma F Y . Characteristics of physical climatology during artificialvegetation succession. Journal of LanzhouUniversity (Natural Sciences), 2002, 38 (Suppl.): 18–23 (in Chinese) 40. Hu C X, Liu Y D, Song L, Zhang D L . Effect ofdesert soil algae on the stabilization of fine sands. Journal of Applied Phycology, 2002, 14(4): 281–292. doi:10.1023/A:1021128530086 41. Ninari N, Berliner P R . The role of dew in the waterand heat balance of bare loess soil in the Negev Desert: Quantifyingthe actual dew deposition on the soil surface. Atmospheric Research, 2002, 64: 323–334. doi:10.1016/S0169-8095(02)00102-3
AI Summary 中Eng×
Note: Please note that the content below is AI-generated. Frontiers Journals website shall not be held liable for any consequences associated with the use of this content.