Mar 2021, Volume 8 Issue 1

  • Select all
    Weihe HUANG, Chunfang LU, Dongping FANG
    Qinghua HE, Junyan XU, Ting WANG, Albert P. C. CHAN

    The construction of megaprojects has always resulted in extensive and long-term impacts on the society. However, the performance of megaproject management is poor, and improving it remains an urgent and necessary issue. Although many studies on megaproject success have been conducted, existing studies on the driving factors of successful megaproject construction are rather limited. Therefore, this study aims to systematically explore the key factors that can lead to successful megaproject construction management based on three cases: The Beijing–Shanghai High-Speed Railway, the Three Gorges Dam, and the Hong Kong–Zhuhai–Macao Bridge. Mixed research methods, such as literature review, case studies, and expert interviews, were used in this study. Consequently, 11 driving factors, namely, government support, public support, accumulation and application of technology and experience, development and innovation of technology, innovation and application of management system, organizational mode and structure, top management support, project culture, megaproject citizenship behavior, corporate reputation, and fulfillment of social responsibilities, were identified and grouped into five categories, namely, project environment, construction capabilities, organization, positive culture and behavior, and requirements for sustainable development. The contributions of this study lie in two aspects. First, the driving factors of successful megaproject construction are identified to deepen the understanding of industrial practitioners, assist them in focusing on key factors, and aid them in effectively managing megaprojects. Second, researchers could use the identified driving factors in conducting further empirical studies and apply them in future projects to enhance their chances of success.

    Xiaoxiao XU, Patrick X. W. ZOU

    Building and infrastructure construction projects can be viewed as a complex system consisting of many subsystems. Over the last two decades, considerable researches that use system dynamics (SD) as an analytical and modeling approach exist to address construction project management issues. However, only few critical reviews have been conducted to provide an in-depth understanding of SD application in construction project management. Moreover, many studies have failed to apply SD accurately. Therefore, the present study aims to gain an understanding of the current state of play and future directions in applying SD method in construction project management research, by undertaking a comprehensive review of 105 relevant articles published from 1994 to 2018. These articles are analyzed in terms of annual publication rate, key papers and their contribution, critical issues in SD application, and research topics. A significant increase in the number of publications in the last five years has been observed. When applying SD method to model construction system, the following aspects must be carefully considered: Model boundary, model development, model test, and model simulation. In addition, SD has been applied in a wide range of research topics, including (1) sustainable construction; (2) design error, rework, and change management; (3) risk management; (4) resource management; (5) decision making; (6) hybrid modeling; (7) safety management; (8) PPP project; and (9) organization performance. Based on the review findings, this study discusses three future research directions, namely, integration of SD with other methods, uncertainty analysis, and human factor analysis. This study can help researchers gain an in-depth understanding of the critical issues in the application of SD in construction management and the state-of-the-art of SD research.

    Yan ZHANG, His-Hsien WEI, Dong ZHAO, Yilong HAN, Jiayu CHEN

    Innovation and knowledge diffusion in megaprojects is one of the most complicated issues in project management. Compared with conventional projects, megaprojects typically entail large-scale investments, long construction periods, and conflicting stakeholder interests, which result in a distinctive pattern of innovation diffusion. However, traditional investigation of innovation diffusion relies on subjective feedback from experts and frequently neglects inter-organizational knowledge creation, which frequently emerges in megaprojects. Therefore, this study adopted project network theory and modeled innovation diffusion in megaprojects as intra- and inter-organizational learning processes. In addition, system dynamics and fuzzy systems were combined to interpret experts’ subject options as quantitative coefficients of the project network model. This integrated model will assist in developing an insightful understanding of the mechanisms of innovation diffusion in megaprojects. Three typical network structures, namely, a traditional megaproject procurement organization (TMO), the environ megaproject organization (EMO), and an integrated megaproject organization (IMO), were examined under six management scenarios to verify the proposed analytic paradigm. Assessment of project network productivity suggested that the projectivity of the TMO was insensitive to technical and administrative innovations, the EMO could achieve substantial improvement from technical innovations, and the IMO trended incompatibly with administrative innovations. Thus, industry practitioners and project managers can design and reform agile project coordination by using the proposed quantitative model to encourage innovation adoption and reduce productivity loss at the start of newly established collaborations.

    Jinbo SONG, Chen QIAN, Zhuo FENG, Liang MA

    Residents’ concerns and feelings play pivotal roles in smoothly promoting urban redevelopment. Anxiety, as an intuitive feeling toward uncertainties, generally exists among residents who are confronted with redevelopment, and this feeling has gradually attracted scholars’ attention. However, relatively few studies have focused on the multidimensional view of this concept and its influencing factors. Drawing upon a large-scale questionnaire survey conducted in 13 pilot areas in China, this study refines and verifies five prominent dimensions of anxiety, namely, housing conditions, monetary compensation, public services, life adaptation, and public participation level, through factor analysis and one-sample t-test. The finding contributes to achieving a complete understanding of anxiety, and the scales developed for measuring these dimensions lay the foundation for further empirical studies on anxiety. The individual and collective effects of age, job, and region variables on anxiety dimensions are demonstrated via independent-sample t-test and analysis of variance, which clarifies the formation process of anxiety and highlights the importance of these contextual variables. Tailored strategies for policymaking and engineering management, including establishing reasonable compensation standards, providing equal public services, and delivering high-quality housing, are proposed to relieve residents’ anxiety. These strategies are expected to consider further the sensitive group, such as the elderly, farmers, and casual workers.

    Mingyue LI, Zhuoling MA, Xi TANG

    The integration of building information modeling (BIM) and lean construction (LC) provides a solution for the management of megaprojects. Previous studies have generally focused on the theoretical or empirical adoption of BIM and LC. Moreover, only a few studies have examined the approach of simultaneously using BIM and LC in megaprojects. Therefore, an intensive study on the application of BIM and LC in megaprojects, particularly to explore considerably effective integrated application modes of BIM and LC in megaprojects, will substantially promote the management efficiency of megaprojects. The current study describes a method that integrates owner-dominated BIM and LC that was developed in a case study. The proposed method provides a framework for all stakeholders to use BIM and LC in a megaproject dominated by the owner. The interactional relations among the owner, BIM, and LC were analyzed and positive interactions were identified. These positive interactions served as a basis for the implementation of this integrated approach in a case study and could be applied to other megaprojects. The megaproject (i.e., airport construction project) was examined to verify the performance of the developed method. Results showed that the integration of BIM and LC dominated by the owner can improve management performance and achieve high quality standard.

    Chinemelu J. ANUMBA, Abiola AKANMU, Xiao YUAN, Congwen KAN

    Cyber–physical systems (CPS) are intended to facilitate the tight coupling of the cyber and physical worlds. Their potential for enhancing the delivery and management of constructed facilities is now becoming understood. In these systems, it is vital to ensure bi-directional consistency between construction components and their digital replicas. This paper introduces the key features of CPS and describes why they are ideally suited for addressing a number of problems in the delivery of construction projects. It draws on examples of research prototypes developed using surveys, field experiments, and prototyping methodologies, to outline the key features and benefits of CPS for construction applications and the approach to their development. In addition, it outlines the lessons learned from developing various systems for the design, construction and management of constructed facilities, which include building component placement and tracking, temporary structures monitoring, and mobile crane safety. The paper concludes that the construction industry stands to reap numerous benefits from the adoption of CPS. It states that the future direction of CPS in construction will be driven by technological developments and the extent to which CPS is deployed in new application areas.

    Pengfei ZHANG, Samuel T. ARIARATNAM

    Areas that are covered with natural vegetation have been converted into asphalt, concrete, or roofed structures and have increased surface impermeability and decreased natural drainage capability. Conventional drainage systems were built to mimic natural drainage patterns to prevent the occurrence of waterlogging in developed sites. These drainage systems consist of two major components: 1) a stormwater conduit system, and 2) a runoff storage system. Runoff storage systems contain retention basins and drywells that are used to store and percolate runoff, whereas conduit systems are combination of catch basins and conduit pipes used to collect and transport runoff. The construction of these drainage systems is costly and may cause significant environmental disturbance. In this study, low impact development (LID) methods that consist of extensive green roofs (GRs) and permeable interlocking concrete pavements (PICPs) are applied in real-world construction projects. Construction project documents were reviewed, and related cost information was gathered through the accepted bidding proposals and interviews of specialty contractors in the metropolitan area of Phoenix, Arizona. Results indicate that the application of both LID methods to existing projects can save an average of 27.2% in life cycle costs (LCC) for a 50-year service life and 18.7% in LCC for a 25-year service life on the proposed drainage system, respectively.


    Cities are incorporating smart and green infrastructure components in their urban design policies, adapting existing and new infrastructure systems to integrate technological advances to mitigate extreme weather due to climate change. Research has illustrated that smart green infrastructure (SGI) provides not only climate change resilience but also many health and wellbeing benefits that improve the quality of life of citizens. With the growing demand for smart technology, a series of problems and challenges, including governance, privacy, and security, must be addressed. This paper explores the potential to transition from grey, green, or smart silos to work with nature-based solutions and smart technology to help change cities to achieve considerable environmental and socio-economic benefits. The concepts of grey, green, and smart infrastructure are presented, and the needs, benefits, and applications are investigated. Moreover, the advantages of using integrated smart, green nature-based solutions are discussed. A comprehensive literature review is undertaken with keyword searches, including journal papers, stakeholder and case study reports, and local authority action plans. The methodology adopts multimethod qualitative information review, including literature, case studies, expert interviews, and documentary analysis. Published data and information are analysed to capture the key concepts in implementing SGI systems, such as storm-water control, flood and coastal defense, urban waste management, transportation, recreation, and asset management. The paper investigates the elimination of silo approaches and the alleviation of the destructions caused by extreme weather events using these interdependent SGI systems supported by novel data-driven platforms to provide nature-based solutions to boost the health and wellbeing of the residents.

    Zhe SUN, Cheng ZHANG, Pingbo TANG

    Handoff processes during civil infrastructure operations are transitions between sequential tasks. Typical handoffs constantly involve cognitive and communication activities among operations personnel, as well as traveling activities. Large civil infrastructures, such as nuclear power plants (NPPs), provide critical services to modern cities but require regular or unexpected shutdowns (i.e., outage) for maintenance. Handoffs during such an outage contain interwoven workflows and communication activities that pose challenges to the cognitive and communication skills of handoff participants and constantly result in delays. Traveling time and changing field conditions bring additional challenges to effective coordination among multiple groups of people. Historical NPP records studied in this research indicate that even meticulous planning that takes six months before each outage could hardly guarantee sufficient back-up plans for handling various unexpected events. Consequently, delays frequently occur in NPP outages and bring significant socioeconomic losses. A synthesis of previous studies on the delay analysis of accelerated maintenance schedules revealed the importance and challenges of handoff modeling. However, existing schedule representation methods could hardly represent the interwoven communication, cognitive, traveling, and working processes of multiple participants collaborating on completing scheduled tasks. Moreover, the lack of formal models that capture how cognitive, waiting, traveling, and communication issues affect outage workflows force managers to rely on personal experiences in diagnosing delays and coordinating multiple teams involved in outages. This study aims to establish formal models through agent-based simulation to support the analytical assessment of outage schedules with full consideration of cognitive and communication factors involved in handoffs within the NPP outage workflows. Simulation results indicate that the proposed handoff modeling can help predict the impact of cognitive and communication issues on delays propagating throughout outage schedules. Moreover, various activities are fully considered, including traveling between workspaces and waiting. Such delay prediction capability paves the path toward predictive and resilience outage control of NPPs.

    Xinzheng LU, Qingle CHENG, Zhen XU, Chen XIONG

    Strong aftershocks generally occur following a significant earthquake. Aftershocks further damage buildings weakened by mainshocks. Thus, the accurate and efficient prediction of aftershock-induced damage to buildings on a regional scale is crucial for decision making for post-earthquake rescue and emergency response. A framework to predict regional seismic damage of buildings under a mainshock–aftershock (MS–AS) sequence is proposed in this study based on city-scale nonlinear time-history analysis (THA). Specifically, an MS–AS sequence-generation method is proposed to generate a potential MS–AS sequence that can account for the amplification, spectrum, duration, magnitude, and site condition of a target area. Moreover, city-scale nonlinear THA is adopted to predict building seismic damage subjected to MS–AS sequences. The accuracy and reliability of city-scale nonlinear THA for an MS–AS sequence are validated by as-recorded seismic responses of buildings and simulation results in published literature. The town of Longtoushan, which was damaged during the Ludian earthquake, is used as a case study to illustrate the detailed procedure and advantages of the proposed framework. The primary conclusions are as follows. (1) Regional seismic damage of buildings under an MS–AS sequence can be predicted reasonably and accurately by city-scale nonlinear THA. (2) An MS–AS sequence can be generated reasonably by the proposed MS–AS sequence-generation method. (3) Regional seismic damage of buildings under different MS–AS scenarios can be provided efficiently by the proposed framework, which in turn can provide a useful reference for earthquake emergency response and scientific decision making for earthquake disaster relief.

    Shu CHEN, Menghan SHANG, Jianping WANG

    Vertical ship lifts (VSLs) are widely used in navigation facilities worldwide because of their efficiency and low cost. Although several researchers have investigated fire evacuation strategies for reducing potential safety hazards in VSLs, an effective and integrated application of stairs and elevators when a fire occurs in a VSL is necessary. Several evacuation routes were analyzed according to VSL structure and evacuation times in this study. Objective function corresponding to the minimum vertical evacuation time and related simulation model was subsequently developed to obtain a cooperative evacuation plan considering different numbers of evacuees. The Three Gorges ship lift was used as an example, and simulation results indicate that number of evacuees and exit selection are the main influencing factors of the total evacuation time in the stair- and elevator-coordinated evacuation mode. Furthermore, the distance between people trapped in ship reception chamber and evacuation exits affects evacuees’ choice of exits. The proposed model can provide a theoretical reference for evacuation research during initial fire events in VSLs.

    Geoffrey Qiping SHEN, Jin XUE
    Jun DU, Fangwen WENG