Antioxidant and antitumor effects and immunomodulatory activities of crude and purified polyphenol extract from blueberries
Xiaohong Kou, Lihua Han, Xingyuan Li, Zhaohui Xue, Fengjuan Zhou
Antioxidant and antitumor effects and immunomodulatory activities of crude and purified polyphenol extract from blueberries
The antioxidant and antitumor effects as well as the immunomodulatory activities of crude and purified polyphenol extract from blueberries were investigated. The antioxidant and antitumor effects of the polyphenol extract were measured both in vitro and in vivo, and their effect on the immune systems of CD-1 tumor-bearing mice were also analyzed. In vitro assays demonstrated that blueberry purified polyphenol extract (BBPP) exhibited higher antioxidant activities than blueberry crude polyphenol extract (BBCP), but the opposite effect was observed in vivo. Both the in vitro and in vivo antitumor activity and the immunity assay showed that BBCP not only inhibited tumor growth, but also significantly improved the immunity of the mice. According to physical and histological studies, the CD-1 tumor-bearing mice treated with the polyphenol extract, especially high doses of BBCP experienced a higher quality of life than the positive control group (treated with cyclophosphamide). These results indicate that BBCP has significant antioxidant and antitumor activities and that it can enhance the immunity of CD-1 tumor-bearing mice.
crude polyphenol extract / purified polyphenol extract / blueberry / antioxidant / antitumor / immunity
[1] |
Cheng A W, Yan H Q, Han C J, Wang W L, Tian Y Q, Chen X Y. Polyphenols from blueberries modulate inflammation cytokines in LPS-induced RAW264.7 macrophages. International Journal of Biological Macromolecules, 2014, 69(6): 382–387
CrossRef
Google scholar
|
[2] |
Leiva-Valenzuela G A, Aguilera J M. Automatic detection of orientation and diseases in blueberries using image analysis to improve their postharvest storage quality. Food Control, 2013, 33(1): 166–173
CrossRef
Google scholar
|
[3] |
Bhullar K S, Rupasinghe H P V. Antioxidant and cytoprotective properties of partridgeberry polyphenols. Food Chemistry, 2015, 168(1): 595–605
CrossRef
Google scholar
|
[4] |
Kim H G, Kim G S, Park S, Lee J H, Seo O N, Lee S J, Kim J H, Shim J H, Abd El-Aty A M, Jin J S, Shin S C, EI-Aty A M A, Jin J S, Shin S C. Flavonoid profiling in three citrus varieties native to the Republic of Korea using liquid chromatography coupled with tandem mass spectrometry: Contribution to overall antioxidant activity. Biomedical Chromatography, 2012, 26(4): 464–470
CrossRef
Google scholar
|
[5] |
Valavanidis A, Vlachogianni T. Studies in Natural Products Chemistry. Holland: Elsevier Press, 2013, 269–295
|
[6] |
Vaithiyanathan V, Mirunalini S. Chemo preventive potential of fruit juice of Phyllanthu emblica Linn. (amla) against mammary cancer by altering oxidant/antioxidant status, lipid profile levels and estrogen/progesterone receptor status in female Sprague-Dawley rats. Biomedicine & Preventive Nutrition, 2013, 3(1): 357–366
CrossRef
Google scholar
|
[7] |
Senkus E, Cardoso F, Pagani O. Time for more optimism in metastatic breast cancer? Cancer Treatment Reviews, 2014, 40(2): 220–229
CrossRef
Google scholar
|
[8] |
Grem J L. 5-Fluorouracil: Forty-plus and still ticking: A review of its preclinical and clinical development. Investigational New Drugs, 2000, 18(4): 299–313
CrossRef
Google scholar
|
[9] |
Siegel R L, Miller K D, Jemal A. Cancer statistics. CA: a Cancer Journal for Clinicians, 2015, 65(1): 5–29
CrossRef
Google scholar
|
[10] |
Xue Z H, Gao J, Zhang Z J, Yu W C, Wang H, Kou X H. Antihyperlipidemic and antitumor effects of chickpea albumin hydrolysate. Plant Foods for Human Nutrition (Dordrecht, Netherlands), 2012, 67(4): 393–400
CrossRef
Google scholar
|
[11] |
Rodriguez-Mateos A, Cifuentes-Gomez T, George T W, Spencer J P E. Impact of cooking, proving, and baking on the (poly)phenol content of wild blueberry. Journal of Agricultural and Food Chemistry, 2014, 62(18): 3979–3986
CrossRef
Google scholar
|
[12] |
Cordova F M, Watson R R. Food and supplement polyphenols action in cancer recurrence. San Diego: Academic Press, 2014, 191–195
|
[13] |
Zhu L C, Liu X, Tan J, Wang B C. Influence of harvest season on antioxidant activity and constituents of rabbiteye blueberry (Vaccinium ashei) leaves. Journal of Agricultural and Food Chemistry, 2013, 61(8): 11477–11483
CrossRef
Google scholar
|
[14] |
Li C Y, Feng J, Huang W Y, An X T. Composition of polyphenols and antioxidant activity of Rabbiteye blueberry (Vaccinium ashei) in Nanjing. Journal of Agricultural and Food Chemistry, 2013, 61(3): 523–531
CrossRef
Google scholar
|
[15] |
Lau F C, Bielinski D F, Joseph J A. Inhibitory effects of blueberry extract on the production of inflammatory mediators in lipopolysaccharide-activated BV2 microglia. Journal of Neuroscience Research, 2007, 85(5): 1010–1017
CrossRef
Google scholar
|
[16] |
Dai J, Mumper R J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules (Basel, Switzerland), 2010, 15(10): 7313–7352
CrossRef
Google scholar
|
[17] |
Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients, 2010, 2(12): 1231–1246
CrossRef
Google scholar
|
[18] |
Buran T J, Sandhu A K, Li Z, Rock C R, Yang W W, Gu L. Adsorption/desorption characteristics and separation of anthocyanins and polyphenols from blueberries using macroporous adsorbent resins. Journal of Food Engineering, 2014, 128(1): 167–168
CrossRef
Google scholar
|
[19] |
Papandreou M A, Dimakopoulou A, Linardaki Z I, Cordopatis P, Zacas D K, Margarity M, Lamari F N. Effect of a polyphenol-rich wild blueberry extract on cognitive performance of mice, brain antioxidant markers and acetylcholinesterase activity. Behavioural Brain Research, 2009, 198(2): 352–358
CrossRef
Google scholar
|
[20] |
Ozgen M, Reese R N, Tulio A Z, Scheerens J C, Miller A R. Modified 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfnic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) methods. Journal of Agricultural and Food Chemistry, 2006, 54(1): 1151–1157
CrossRef
Google scholar
|
[21] |
Yang G Y, Yue J, Gong X C, Qian B J, Wang H J, Deng Y, Zhao Y Y. Blueberry leaf extract incorporated chitosan coatings for preserving postharvest quality of fresh blueberries. Postharvest Biology and Technology, 2014, 92(1): 46–53
CrossRef
Google scholar
|
[22] |
Cao L, Liu X Z, Qian T X, Sun G B, Guo Y, Chang F J, Zhou S M, Sun X B. Antitumor and immunomodulatory activity of arabinoxylans: A major constituent of wheat bran. International Journal of Biological Macromolecules, 2011, 48(1): 160–164
CrossRef
Google scholar
|
[23] |
Fan M Z, Li C R, Li Z Z, Lv Z M, Shi G Y, Chen X X. Evaluation on immunity function of “strong” cordyceps mecylium capsules. Microbiology-Sgm, 2000, 27(1): 19–22
|
[24] |
Ignat I, Volf I, Popa V I. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chemistry, 2011, 126(1): 1821–1835
CrossRef
Google scholar
|
[25] |
Oszmianski J, Wojdylo A, Gorzelany J, Kapusta I. Identification and characterization of low molecular weight polyphenols in berry leaf by HPLC-DAD and LC-ESI/MS. Journal of Agricultural and Food Chemistry, 2011, 59(24): 12830–12835
CrossRef
Google scholar
|
[26] |
Chun O K, Kim D O, Lee C Y. Superoxide radical scavenging activity of the major polyphenols in fresh plums. Journal of Agricultural and Food Chemistry, 2003, 51(27): 8067–8072
CrossRef
Google scholar
|
[27] |
Chun O K, Kim D O, Moon H Y, Kang H G, Lee C Y. Contribution of individual polyphenolics to total antioxidant capacity of plums. Journal of Agricultural and Food Chemistry, 2003, 51(25): 7240–7245
CrossRef
Google scholar
|
[28] |
Khanal R, Howard L R, Prior R L. Urinary excretion of phenolic acids in rats fed cranberry, blueberry, or Black Raspberry Powder. Journal of Agricultural and Food Chemistry, 2014, 62(18): 3987–3996
CrossRef
Google scholar
|
[29] |
Giovanelli G, Buratti S. Comparison of polyphenolic composition and antioxidant activity of wild Italian blueberries and some cultivated varieties. Food Chemistry, 2009, 112(4): 903–908
CrossRef
Google scholar
|
[30] |
Hwang J Y, Shue Y S, Chang H M. Antioxidative activity of roasted and defatted peanut kernels. Food Research International, 2001, 34(7): 639–647
CrossRef
Google scholar
|
[31] |
Shon M Y, Kim T H, Sung N J. Antioxidant and free radical scavenging activity of Phellinus baumii (phellinus of hymenochaetaceae) extract. Food Chemistry, 2003, 82(4): 593–597
CrossRef
Google scholar
|
[32] |
Niki E.
|
[33] |
Malik U U, Siddiqui I A, Hashim Z, Zatina S. Measurement of serum paraoxonase activity and MDA concentrations in patients suffering with oral squamous cell carcinoma. Clinica Chimica Acta, 2014, 430(1): 38–42
CrossRef
Google scholar
|
[34] |
Ji P, Wei Y M, Xue W X, Hua Y L, Zhang M, Sun H G, Song Z X, Zhang L, Li J X, Zhao H F, Zhang W Q. Characterization and antioxidative activities of polysaccharide in Chinese angelica and its processed products. International Journal of Biological Macromolecules, 2014, 67(3): 195–200
CrossRef
Google scholar
|
[35] |
Francis C L, James A J, Jane E M, Wilhelmina K. Attenuation of iNOS and COX2 by blueberry polyphenols is mediated through the suppression of NF-kB activation. Journal of Functional Foods, 2009, 1(1): 274–283
|
[36] |
Sun T, Chen Q Y, Wu L J, Yao X M, Sun X J. Antitumor and antimetastatic activities of grape skin polyphenols in a murine model of breast cancer. Food and Chemical Toxicology, 2012, 50(10): 3462–3467
CrossRef
Google scholar
|
[37] |
Wang D, Sun S Q, Wu W Z, Yang S L, Tan J M. Characterization of a water-soluble polysaccharide from Boletus edulis and its antitumor and immunomodulatory activities on renal cancer in mice. Carbohydrate Polymers, 2014, 105(1): 127–134
CrossRef
Google scholar
|
[38] |
Xu H S, Wu Y W, Xu S F, Sun H X, Che F Y, Yao L. Antitumor and immunomodulatory activity of polysaccharides from the roots of Actinidia eriantha. Journal of Ethnopharmacology, 2009, 125(2): 310–317
CrossRef
Google scholar
|
[39] |
Cheng A W, Yan H Q, Han C J, Wang W L, Tian Y Q, Chen Y Q. Polyphenols from blueberries modulate inflammation cytokines in LPS-induced RAW264.7 macrophages. International Journal of Biological Macromolecules, 2014, 69(1): 382–387
CrossRef
Google scholar
|
[40] |
Sun X, Gao R L, Xiong Y K, Huang Q C, Xu M. Antitumor and immunomodulatory effects of a water-soluble polysaccharide from Lilii Bulbus in mice. Carbohydrate Polymers, 2014, 102(16): 543–549
CrossRef
Google scholar
|
[41] |
Roopchand D E, Kuhn P, Rojo L E, Lila M A, Raskin L. Blueberry polyphenol-enriched soybean flour reduces hyperglycemia, body weight gain and serum cholesterol in mice. Pharmacological Research, 2013, 68(1): 59–67
CrossRef
Google scholar
|
[42] |
Tang X H, Yan L F, Gao J, Yang X L, Xu Y X, Ge H Y, Yang H D. Antitumor and immunomodulatory activity of polysaccharides from the root of limonium sinense kuntze. International Journal of Biological Macromolecules, 2012, 51(5): 1134–1139
CrossRef
Google scholar
|
/
〈 | 〉 |