RESEARCH ARTICLE

Sulfate digestion process for high purity TiO2 from titania slag

  • T. A. LASHEEN
Expand
  • Researches Sector, Nuclear Materials Authority, P. O. Box 530 El Maadi, Cairo, Egypt

Received date: 31 Oct 2008

Accepted date: 12 Jan 2009

Published date: 05 Jun 2009

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

A titania slag product of Rosetta ilmenite assaying 72% TiO2 is treated by the sulfate process option of the pigmentary TiO2 manufacture. The relevant factors of acid concentration, particle size, slag/acid ratio besides the reaction temperature, and time have been studied. After dissolving the cured mass in dilute acid and clarification, the obtained solution was subjected to hydrolysis of its titanium content. The final product was bleached under reducing conditions to redissolve the residual coloring impurities before being dewatered and calcinated. The obtained results indicated that a leaching efficiency of about 92% was realized due to the presence of some refractory components in the working slag material, namely, rutile and magnesium iron titanate. The obtained white pigment assay attained up to 99.85% TiO2, while the analyzed impurities involve 77 ppm Mn and only 14 and 7 ppm of total iron and V, respectively.

Cite this article

T. A. LASHEEN . Sulfate digestion process for high purity TiO2 from titania slag[J]. Frontiers of Chemical Science and Engineering, 2009 , 3(2) : 155 -160 . DOI: 10.1007/s11705-009-0005-z

1
Harben P W. The Industrial Minerals HandyBook, 3rd Edition, London, UK. 1999, 216-223

2
Becher R G, Canning R G, Goodheart B A, Uusna S. A new process for upgrading ilmenite minerals sands. Proc. Australas. Inst. Min. Metall. 1965, 21: 1261-1283

3
Chen James H, Tex C C. US Patent, <patent>3825419</patent>, 1974

4
Schoukens A F S, Morris D J, Stephen MC. US Patent, <patent>6733561 B2</patent>, 2004

5
Sahu K K, Alex T C, Mishra D, Agrawal A. An overview on the production of pigment grade titania from titania-rich slag. Waste Manage Res, 2006, 24: 74-79

DOI

6
Mackey T S. Upgrading ilmenite into a high-grade synthetic rutile. Journal of Metals, 1994, April: 59-64

7
Gueguin M. US Patent, <patent>4078039</patent>, 1978

8
Gueguin M. US Patent, <patent>4933153</patent>, 1990

9
Gueguin M. US Patent, <patent>5063032</patent>, 1991

10
Gueguin M. US Patent, <patent>5389355</patent>, 1995

11
Elger G W, Kirby D E. US Patent, <patent>3996332</patent>, 1976

12
Jarish B. US Patent,<patent> 4038363</patent>, 1977

13
Van Dyk J P, Vegter N M, Visser C P, De lange T, Winter J D, Walpole E A, Nell J. US Patent, <patent>6803024 B1</patent>, 2004

14
Borowiec K, Grau A E, Gueguin M, Turgeon J F. US Patent, <patent>5830420</patent>, 1998

15
Elger G W, Holmes R A. US Patent, <patent>4362557</patent>, 1982

16
Borowiec K. Sulphidization of solid titania slag. Scandinavian journal of metallurgy, 1991, 20: 198-204

17
Liang B, Li C, Zhang C, Zhang Y. Leaching kinetics of Panzhihua ilmenite in sulfuric acid. Hydrometallurgy, 2005, 76: 173-179

DOI

18
Han K N, Rubcumintara T, Fuerstenau M C. Leaching behavior of ilmenite with sulfuric acid. Metall Trans, B, Process Metall, 1986, 18B: 325-330

19
Sinha H N. Solubility of titanium minerals. In: Preprints-International Conference on “Advances in Chemical Metallurgy” Bhabha Atomic Research Center. Bombay, India, 1979, 2: paper 35

20
Johnsson M, Pettersson P, Nygren M. Thermal decomposition of fibrous TiOSO4·2H2O to TiO2. Thermochimica Acta. 1997, 298: 47-54

DOI

Outlines

/