Dispersion of “guava-like” silica/polyacrylate nanocomposite particles in polyacrylate matrix

Expand
  • 1.Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University;State Key Laboratory of Chemical Engineering, Zhejiang University; 2.Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University; 3.State Key Laboratory of Chemical Engineering, Zhejiang University

Published date: 05 Jun 2008

Abstract

A series of “guava-like” silica/polyacrylate nanocomposite particles with close silica content and different grafting degrees were prepared via mini-emulsion polymerization using 3-(trimethoxysilyl)propyl methacrylate (TSPM) modified silica/acrylate dispersion. The silica/polyacrylate composite particles were melt-mixed with unfilled polyacrylate (PA) resin to prepare corresponding silica/polyacrylate molded composites and the dispersion mechanism of these silica particles from the “guava-like” composite particles into polyacrylate matrix was studied. It was calculated that about 110 silica particles were accumulated in the bulk of every silica/polyacrylate composite latex particle. Both the solubility tests of silica/polyacrylate composite latex particles in tetrahydrofuran (THF) and the section transmission electron microscope (TEM) micrographs of silica/polyacrylate molded composites indicated that the grafting degree of silica particles played a crucial role in the dispersion of silica/polyacrylate composite particles into the polyacrylate matrix. When the grafting degree of polyacrylate onto silica was in a moderate range (ca. 20%–70%), almost all of silica particles in these “guava-like” composite particles were dispersed into the polyacrylate matrix in a primary-particle-level. However, at a lower grafting degree, massive silica aggregations were found in molded composites because of the lack of steric protection. At a greater grafting degree (i.e., 200%), a cross-linked network was formed in the silica/polyacrylate composite particles, which prevented the dispersion of composite particles in THF and polyacrylate matrix as primary particles.

Cite this article

QI Dongming, YANG Lei, WU Minghua, SHAO Jianzhong, BAO Yongzhong . Dispersion of “guava-like” silica/polyacrylate nanocomposite particles in polyacrylate matrix[J]. Frontiers of Chemical Science and Engineering, 2008 , 2(2) : 127 -134 . DOI: 10.1007/s11705-008-0033-0

References

1. Fröhlich J Niedermeier W Luginsland H D The effect of filler/filler and filler/elastomer interactionon rubber reinforcementComposites, ApplS 2005 36449460. doi:10.1016/j.compositesa.2004.10.004
2. Abhijit B Mousumi D S Anil K B Effect of reaction parameters on the structure and propertiesof acrylic rubber/silica hybrid nanocomposites prepared by sol-geltechniqueJ Appl Poly Sci 2005 9514181429. doi:10.1002/app.21382
3. Odegard G M Clancy T C Gates T S Modeling of the mechanical properties of nanoparticle/polymercompositesPolymer 2005 46553563. doi:10.1016/j.polymer.2004.11.022
4. Ragostaa G Abbatea M Mustoa P Scarinzia G Mascia L Epoxy-silica particulate nanocomposites:chemical interactions, reinforcement and fracture toughnessPolymer 2005 461050610516. doi:10.1016/j.polymer.2005.08.028
5. Zheng K Chen L Li Y Cui P Preparation andthermal properties of silica-graft acrylonitrile-butadiene-styrenenanocompositesPolym Eng Sci 2004 4410771082. doi:10.1002/pen.20100
6. Chiang C L Ma C C M Synthesis, characterization,thermal properties and flame retardance of novel phenolic resin/silicananocompositesPolym Degrad Stabil 2004 83207214. doi:10.1016/S0141‐3910(03)00262‐3
7. Wang Y W Yen C T Chen W C Photosensitive polyimide/silica hybrid optical materials:synthesis, properties, and patterningPolymer 2005 4669596967. doi:10.1016/j.polymer.2005.06.026
8. Wu S Phasestructure and adhesion in polymer blends: a criterion for rubber tougheningPolymer 1985 2618551863. doi:10.1016/0032‐3861(85)90015‐1
9. Rong M Z Zhang M Q Zheng Y X Zeng H M Friedrich K Improvement of tensile properties of nano-SiO2/PP composites in relation to percolation mechanismPolymer 2001 4233013304. doi:10.1016/S0032‐3861(00)00741‐2
10. Chen S G Hu J W Zhang M Q Rong M Z Zheng Q Time dependent percolation of carbon blackfilled polymer composites in response to solvent vaporJ Mater Sci 2005 40(8)20652068. doi:10.1007/s10853‐005‐1236‐0
11. Yin J Zhang Y Zhang Y X Deformation mechanism of polypropylene composites filledwith magnesium hydroxideJ App Polym Sci 2005 9719221930. doi:10.1002/app.21934
12. Bourgeat-Lami E Lang J Encapsulation of inorganicparticles by dispersion polymerization in polar media: 1. Silica nanoparticlesencapsulated by polystyreneJ Colloid InterfaceSci 1998 197293308; 2. Effect of silica sizeand concentration on the morphology of silica–polystyrene compositeparticles. J Colloid Interface Sci, 1999, 201: 281–289. doi:10.1006/jcis.1997.5265
13. Zhang S W Zhou S X Weng Y M Wu L M Synthesis ofSiO2/polystyrene nanocomposite particles viaminiemulsion polymerizationLangmuir 2005 2121242128. doi:10.1021/la047652b
14. Zhou J Zhang S G Qiao X G Li X Q Wu L M Synthesis of SiO2/poly(styrene-co-butyl acrylate) nanocomposite microspheres via miniemulsionpolymerizationJ Polym Sci, Polymr Chem 2006 4432023209. doi:10.1002/pola.21434
15. Tamaki W Kuniaki I Tadashi U Properties of organic-inorganic composite materials preparedfrom acrylic resin emulsions and colloidal silicasJ Appl Polym Sci 2006 10120512056. doi:10.1002/app.23776
16. Li H You B Gu G X Wu L M Chen G D Particle size and morphology of poly[styrene-co-(butylacrylate)]/nano-silica composite latexPolymInt 2005 54191197. doi:10.1002/pi.1677
17. Percy M J Barthet C Lobb J C Khan M A Lascelles S F Vamvakaki M Armes S P Synthesis andcharacterization of vinyl polymer-silica colloidal nanocompositesLangmuir 2000 1669136920. doi:10.1021/la0004294
18. Cheng X J Chen M Zhou S X Wu L M Preparationof SiO2/PMMA composite particles via conventionalemulsion polymerizationJ Polym Sci, PolymChem 2006 4438073816. doi:10.1002/pola.21472
19. Luna-Xavier J L Guyot A Bourgeat-Lami E Synthesis and characterization of silica/poly (methyl methacrylate)nanocomposite latex particles through emulsion polymerization usinga cationic azo initiatorJ Colloid InterfaceSci 2002 2508292. doi:10.1006/jcis.2002.8310
20. Qi D M Bao Y Z Huang Z M Weng Z X Synthesis andcharacterization of poly(butyl acrylate)/silica and poly(butyl acrylate)/silica/poly(methylmethacrylate) composite particlesJ ApplPolym Sci 2006 9934253432. doi:10.1002/app.22968
21. Chen M Zhou S X You B Wu L M A Novel preparationmethod of raspberry-like PMMA/SiO2 hybrid microspheresMacromolecules 2005 3864116417. doi:10.1021/ma050132i
22. Tiarks F Landfester K Antonietti M Silica nanoparticles as surfactants and fillers for latexesmade by miniemulsion polymerizationLangmuir 2001 1757755780. doi:10.1021/la010445g
23. Amalvy J I Percy M J Armes S P Characterization of the nanomorphology of polymer-silicacolloidal nanocomposites using electron spectroscopy imagingLangmuir 2005 2111751179. doi:10.1021/la047535g
24. Qi D M Bao Y Z Huang Z M Weng Z X Preparationof acrylate polymer/silica nanocomposite particles with high silicaencapsulation efficiency via miniemulsion polymerizationPolymer 2006 474622. doi: 10.1016/j.polymer.2006.04.024
25. Liu W F Guo Z X Yu J Preparation of crosslinked composite nanoparticlesJ Appl Polym Sci 2005 9715381544. doi:10.1002/app.21910
26. Amalvy J I Percy M J Armes S P Synthesis and characterization of novel film-forming vinylpolymer/silica colloidal nanocompositesLangmuir 2001 1747704780. doi:10.1021/la010138a
27. Tamaki W Kuniaki I Tadashi U Properties of organic-inorganic composite materials preparedfrom acrylic resin emulsions and colloidal silicasJ Appl Poly Sci 2006 10120512056. doi:10.1002/app.23776
Outlines

/