REVIEW ARTICLE

New nanostructured sorbents for desulfurization of natural gas

  • Lifeng WANG ,
  • Ralph T. YANG
Expand
  • Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA

Received date: 06 Dec 2013

Accepted date: 30 Dec 2013

Published date: 05 Mar 2014

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Desulfurization of natural gas is achieved commercially by absorption with liquid amine solutions. Adsorption technology could potentially replace the solvent extraction process, particularly for the emerging shale gas wells with production rates that are generally lower than that from the large conventional reservoirs, if a superior adsorbent (sorbent) is developed. In this review, we focus our discussion on three types of sorbents: metal-oxide based sorbents, Cu/Ag-based and other commercial sorbents, and amine-grafted silicas. The advantages and disadvantages of each type are analyzed. Possible approaches for future developments to further improve these sorbents are suggested, particularly for the most promising amine-grafted silicas.

Cite this article

Lifeng WANG , Ralph T. YANG . New nanostructured sorbents for desulfurization of natural gas[J]. Frontiers of Chemical Science and Engineering, 2014 , 8(1) : 8 -19 . DOI: 10.1007/s11705-014-1411-4

1
Haring H W. Industrial Gas Processing. Weinheim: Wiley-VCH, 2008, 217–238

2
George D L, Bowles E C. Shale gas measurement and associated issues.

3
Posey M L, Tapperson K G, Rochelle G T. A simple model for prediction of acid gas solubilities in alkanolamines. Gas Separation & Purification, 1996, 10(3): 181–186

DOI

4
Pani F, Gaunand A, Richon D, Cadours R, Bouallou C. Absorption of H2S by an aqueous methyldiethanolamine solution at 296 and 343 K. Journal of Chemical & Engineering Data, 1997, 42(5): 865–870

DOI

5
Kohl A L, Nielsen R. Gas Purification. Houston: Gulf Publishing Company, 1997, 40–186

6
Kikkinides E S, Sikavitsas V I, Yang R T. Natural gas desulfurization by adsorption: Feasibility and multiplicity of cyclic steady states. Industrial & Engineering Chemistry Research, 1995, 34(1): 255–262

DOI

7
Yang R T. Gas Separation by Adsorption Processes. London: Imperial College Press, 1997, 201–36

8
Shah V, Quale M. Dow Chemical Company, private communications, June, 2013

9
Yang R T. Adsorbents: Fundamentals and Applications. New York: Wiley, 2003, 131–156

10
Huang H Y, Yang R T, Chinn D, Munson C L. Amine grafted MCM-48 and silica xerogel as superior sorbents for acidic gas (H2S and CO2) removal from natural gas. Industrial & Engineering Chemistry Research, 2003, 42(12): 2427–2433

DOI

11
Ma X, Wang X, Song C. Molecular basket sorbents for separation of CO2 and H2S from various gas streams. Journal of the American Chemical Society, 2009, 131(16): 5777–5783

DOI

12
Belmabkhout Y, Weireld G D, Sayari A. Amine-bearing mesoporous silica for CO2 and H2S removal from natural gas and biogas. Langmuir, 2009, 25(23): 13275–13278

DOI

13
Xue Q, Liu Y S. Removal of minor concentration of H2S on MDEA-modified SBA-15 for gas purification. Journal of Industrial and Engineering Chemistry, 2012, 18(1): 169–173

DOI

14
Hunger B, Matysik S, Heuchel M, Geidel E, Toufar H. Adsorption of water on zeolites of different types. Journal of Thermal Analysis, 1997, 49(1): 553–565

DOI

15
Tanada S, Bok K. Adsorption behavior hydrogen sulfide inside micropores of molecular sieve carbon 5A and molecular sieve zeolite 5A. Bulletin of Environmental Contamination and Toxicology, 1982, 29(5): 624–629

DOI

16
Steuten B, Pasel C, Luckas M, Bathen D. Trace level adsorption of toxic sulfur compounds, carbon dioxide, and water from methane. Journal of Chemical & Engineering Data, 2013, 58(9): 2465–2473

DOI

17
Bagreev A, Bandosz T J. Role of sodium hydroxide in the process of hydrogen sulfide adsorption/oxidation on caustic-impregnated activated carbons. Industrial & Engineering Chemistry Research, 2002, 41(4): 672–679

DOI

18
Bagreev A, Bandosz T J. On the mechanism of hydrogen sulfide removal from moist air on catalytic carbonaceous adsorbents. Industrial & Engineering Chemistry Research, 2005, 44(3): 530–538

DOI

19
Chiang H L, Tsai J H, Tsai C L, Hsu Y I C H U N. Adsorption characteristics of alkaline activated carbon exemplified by water vapor, H2S and CH3SH gas. Separation Science and Technology, 2000, 35(6): 903–918

DOI

20
Bandosz T J. On the adsorption/oxidation of hydrogen sulfide on activated carbons at ambient temperatures. Journal of Colloid and Interface Science, 2002, 246(1): 1–20

DOI

21
Hamon L, Serre C, Devic T, Loiseau T, Millange F, Ferey G, Weireld G D. Comparative study of hydrogen sulfide adsorption in the MIL-53(Al, Cr, Fe), MIL-47(V), MIL-100(Cr), and MIL-101(Cr) metal-organic frameworks at room temperature. Journal of the American Chemical Society, 2009, 131(25): 8775–8777

DOI

22
Li Y, Yang R T. Gas adsorption and storage in metal-organic framework MOF-177. Langmuir, 2007, 23(26): 12937–12944

DOI

23
Wang L, Lachawiec A J Jr, Yang R T. Nanostructured adsorbents for hydrogen storage at ambient temperature: High-pressure measurements and factors influencing hydrogen spillover. RSC Advances, 2013, 3(46): 23935–23952

DOI

24
Han S, Huang Y, Watanabe T, Nair S, Walton K S, Sholl D S, Carson M. MOF stability and gas adsorption as a function of exposure to water, humid air, SO2 and NO2. Microporous and Mesoporous Materials, 2013, 173: 8691

DOI

25
Wang L F, Yang R T. Hydrogen storage on carbon-based adsorbents and storage at ambient temperature by hydrogen spillover. Catalysis Reviews. Science and Engineering, 2010, 52(4): 411461

DOI

26
Westmoreland P R, Harrison D P. Evaluation of candidate solids for high-temperature desulfurization of low-Btu gases. Environmental Science & Technology, 1976, 10(7): 659–661

DOI

27
Xue M, Chitrakar R, Sakane K, Ooi K. Screening of adsorbents for removal of H2S at room temperature. Green Chemistry, 2003, 5(5): 529534

28
Ko T, Chu H, Chaung L. The sorption of hydrogen sulfide from hot syngas by metal oxides over supports. Chemosphere, 2005, 58(4): 467474

DOI

29
Huang C C, Chen C H, Chu S M. Effect of moisture on H2S adsorption by copper impregnated activated carbon. Journal of Hazardous Materials, 2006, 136(3): 866873

DOI

30
Nguyen-Thanh D, Bandosz T J. Effect of transition-metal cations on the adsorption of H2S in modified pillared clays. Journal of Physical Chemistry B, 2003, 107(24): 5812–5817

DOI

31
Garcia C L, Lercher J A. Adsorption of hydrogen sulfide on ZSM-5 zeolites. Journal of Physical Chemistry, 1992, 96(5): 2230–2235

DOI

32
Gasper-Galvin L, Atimtay A T, Gupta R P. Zeolite-supported metal oxide sorbents for hot-gas desulfurization. Industrial & Engineering Chemistry Research, 1998, 37(10): 4157–4166

DOI

33
Kyotani T, Kawashima H, Tomita A, Palmer A, Furimsky E. Removal of H2S from hot gas in the presence of Cu-containing sorbents. Fuel, 1989, 68(1): 74–79

DOI

34
Montes D, Tocuyo E, González E, Rodríguez D, Solano R, Atencio R, Ramos M A,Moronta A. Solano, Atencio R, Ramos M A, Moronta A. Reactive H2S chemisorption on mesoporous silica molecular sieve-supported CuO or ZnO. Microporous and Mesoporous Materials, 2013, 168: 111–120

DOI

35
Ayala R E, Marsh D W. Characterization and long-range reactivity of zinc ferrite in high-temperature desulfurization processes. Industrial & Engineering Chemistry Research, 1991, 30(1): 55–60

DOI

36
Baird T, Denny P J, Hoyle R, Mcmonagle F, Stirling D, Tweedy J. Modified zinc-oxide absorbents for low-temperature gas desulfurization. Journal of the Chemical Society, Faraday Transactions, 1992, 88(22): 3375–3382

DOI

37
Gasper-Galvin L, Atimtay A T, Gupta R P. Zeolite-supported metal oxide sorbents for hot-gas desulfurization. Industrial & Engineering Chemistry Research, 1998, 37(10): 4157–4166

DOI

38
Polychronopoulou K, Fierro J L G, Efstathiou A M. Novel Zn-Ti-based mixed metal oxides for low-temperature adsorption of H2S from industrial gas streams. Applied Catalysis B: Environmental, 2005, 57(2): 125–137

DOI

39
Yang H Y, Tatarchuk B. Novel-doped zinc oxide sorbents for low temperature regenerable desulfurization applications. AIChE Journal. American Institute of Chemical Engineers, 2010, 56(11): 2898–2904

DOI

40
Israelson G. Results of testing various natural gas desulfurization adsorbents. Journal of Materials Engineering and Performance, 2004, 13(3): 282–286

DOI

41
King D L, Birnbaum J C, Singh P. Sulfur removal from pipeline natural gas fuel: Application to fuel cell power generation systems. Pacific Northwest National Laboratory. Fuel Cell Seminar, Palm Springs, CA, November 18–21, 2002

42
Satokawa S, Kobayashi Y, Fujiki H. Adsorptive removal of dimethylsulfide and t-butylmercaptan from pipeline natural gas fuel on Ag zeolites under ambient conditions. Applied Catalysis B: Environmental, 2005, 56(1–2): 51–56

DOI

43
Alptekin G O. Sorbents for desulfurization of natural gas, LPG and transportation Fuels. Sixth Annual SECA Workshop, Pacific Grove, CA, 2004-April-21

44
Crespo D, Qi G, Wang Y, Yang F H, Yang R T. Superior sorbent for natural gas desulfurization. Industrial & Engineering Chemistry Research, 2008, 47(4): 1238–1244

DOI

45
Lasperas M, Llorett T, Chaves L, Rodriguez I, Cauvel A, Brunel D. Amine functions linked to MCM-41-type silicas as a new class of solid base catalysts for condensation reactions. Studies in Surface Science and Catalysis, 1997, 108: 75–82

DOI

46
Angeletti E, Canepa C, Martinetti G, Venturello P. Silica gel functionalized with amino groups as a new catalyst for Knoevenagel condensation under heterogeneous catalysis conditions. Tetrahedron Letters, 1988, 29(18): 2261–2264

DOI

47
Burwell R L, Leal O. Modified silica-gels as selective adsorbents for sulfur-dioxide. Journal of the Chemical Society. Chemical Communications, 1974, 9(9): 342–343

DOI

48
Leal O, Bolivar C, Ovalles C, Garcia J J, Espidel Y. Reversible adsorption of carbon dioxide on amine surface-bonded silica gel. Inorganica Chimica Acta, 1995, 240(1–2): 183–189

DOI

49
Choi S H, Drese J H, Jones C W. Adsorbent materials for CO2 capture from large anthropogenic point sources. ChemSusChem, 2009, 2(9): 796–854

DOI

50
D’Alessandro D M, Smit B, Long J R. Carbon dioxide capture: Prospect for new materials. Angewandte Chemie International Edition, 2010, 49(35): 6058–6082

DOI

51
Bollini P, Didas S A, Jones C W. Amine-oxide hybrid materials for acid gas separations. Journal of Materials Chemistry, 2011, 21(39): 15100–15120

DOI

52
Samanta A, Zhao A, Shimazu G K H, Sarkar P, Gupta R. Post-combustion CO2 capture using solid sorbents: A review. Industrial & Engineering Chemistry Research, 2012, 51(4): 1438–1463

DOI

53
Beck J S, Vartuli J C, Roth W J, Leonowicz M E, Kresge C T, Schmitt K D, Chu C T W, Olson D H, Sheppard E W, McCullen S B, Higgins J B, Schlenker J L. A new family of mesoporous molecular-sieves prepared with liquid-crystal templates. Journal of the American Chemical Society, 1992, 114(27): 10834–10843

DOI

54
Kresge C T, Leonowicz M E, Roth W J, Vartuli J C, Beck J S. Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359(6397): 710–712

DOI

55
Sayari A, Yang Y, Kruk M, Jaroniec M. Expanding the pore size of MCM-41 silicas: Use of amines as expanders in direct synthesis and postsynthesis procedures. Journal of Physical Chemistry B, 1999, 103(18): 3651–3658

DOI

56
Chen Q, Fan F, Long D, Liu X, Liang X, Qiao W, Ling L. Poly(ethyleneimine)-loaded silica monolith with a hierarchical pore structure for H2S adsorptive removal. Industrial & Engineering Chemistry Research, 2010, 49(22): 11408–11414

DOI

57
Wang L, Yang R T. Increasing selective CO2 adsorption on amine-grafted SBA-15 by increasing silanol density. Journal of Physical Chemistry C, 2011, 115(43): 21264–21272

DOI

58
Zhuravlev L T. Surface characterization of amorphous silica—A review of work from the former USSR. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1993, 74(1): 71–90

DOI

59
Perry J B. Infrared study of OH and NH2 groups on the surface of a dry silica aero-gel. 1966. Journal of Physical Chemistry, 1966, 70(9): 2937–2945

DOI

60
Zhuravlev L T. The surface chemistry of amorphous silica. Zhuravlev model. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 173(1–3): 1–38

DOI

61
Zhao D Y, Feng J L, Huo Q S, Melosh N, Fredrickson G H, Chemelka B F, Stucky G D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998, 279(5350): 548–552

DOI

62
Cassiers K, Van Der Voort P, Vansant E F. Synthesis of stable and directly usable hexagonal mesoporous silica by efficient amine extraction in acidified water. Chemical Communications, 2000, 24(24): 2489–2490

DOI

63
Tian B Z, Liu X Y, Yu C Z, Gao F, Luo Q, Xie S H, Tu B, Zhao D Y. Microwave assisted template removal of siliceous porous materials. Chemical Communications, 2002, 11(11): 1186–1187

DOI

Outlines

/