RESEARCH ARTICLE

H2 production by ethanol decomposition with a gliding arc discharge plasma reactor

  • Baowei WANG ,
  • Wenjie GE ,
  • Yijun LÜ ,
  • Wenjuan YAN
Expand
  • Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China

Received date: 30 Nov 2012

Accepted date: 26 Feb 2013

Published date: 05 Jun 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

A gliding arc discharge (GRD) reactor was used to decompose ethanol into primarily H2 and CO with small amounts of CH4, C2H2, C2H4, and C2H6. The ethanol concentration, electrode gap, input voltage and Ar flow rate all affected the conversion of ethanol with results ranging from 40.7% to 58.0%. Interestingly, for all experimental conditions the SH2/SCO selectivity ratio was quite stable at around 1.03. The mechanism for the decomposition of ethanol is also described.

Cite this article

Baowei WANG , Wenjie GE , Yijun LÜ , Wenjuan YAN . H2 production by ethanol decomposition with a gliding arc discharge plasma reactor[J]. Frontiers of Chemical Science and Engineering, 2013 , 7(2) : 145 -153 . DOI: 10.1007/s11705-013-1327-4

Acknowledgments

This work has been supported by the National Natural Science Foundation of China (Grant Nos. 21176175, 20606023)
1
Joensen F, Jens R, Nielsen R. Conversion of hydrocarbons and alcohols for fuel cells. Journal of Power Sources, 2002, 105(2): 195-201

DOI

2
Navarro R, Peña M, Fierro J. Hydrogen production reactions from carbon feedstocks: fossil fuels and biomass. Chemical Reviews, 2007, 107(10): 3952-3991

DOI

3
Haryanto A, Fernando S, Murali N, Adhikari S. Current status of hydrogen production techniques by steam reforming of ethanol: a review. Energy & Fuels, 2005, 19(5): 2098-2106

DOI

4
Goltsov V, Veziroglu T, Goltsova L. Hydrogen civilization of the future—A new conception of the IAHE. International Journal of Hydrogen Energy, 2006, 31(2): 153-159

DOI

5
Meng N, Michael L, Sumathy K, Dennis L. Potential of renewable hydrogen production for energy supply in HongKong. International Journal of Hydrogen Energy, 2006, 31(10): 1401-1412

DOI

6
Meng N, Dennis L, Michael L, Sumathy K. An overview of hydrogen production from biomass. Fuel Processing Technology, 2006, 87(5): 461-472

DOI

7
Meng N, Dennis L, Michael L. A review on reforming bio-ethanol for hydrogen production. International Journal of Hydrogen Energy, 2007, 32(15): 3238-3247

DOI

8
Li J, Kazakov A, Dryer F. Experimental and numerical studies of ethanol decomposition reactions. Journal of Physical Chemistry A, 2004, 108(38): 7671-7680

DOI

9
Diagne C, Idriss H, Kiennemann A. Hydrogen production by ethanol reforming over Rh/CeO2-ZrO2 catalysts. Catalysis Communications, 2002, 3(12): 565-571

DOI

10
Toshiya N, Tomoaki M, Hiroyoshi K, Kazunori U, Yasuyuki M, Shen W, Seiichiro I. Catalytic steam reforming of ethanol to produce hydrogen and acetone. Applied Catalysis A, General, 2005, 279(1-2): 273-277

DOI

11
Fishtik I, Alexander A, Datta R, Geana D. A thermodynamic analysis of hydrogen production by steam reforming of ethanol via response reactions. International Journal of Hydrogen Energy, 2000, 25(1): 31-45

DOI

12
Fierro V, Klouz V, Akdim O, Mirodatos C. Oxidative reforming of biomass derived ethanol for hydrogen production in fuel cell applications. Catalysis Today, 2002, 75(1-4): 141-144

DOI

13
Cavallaro S, Chiodo V, Vita A, Freni S. Hydrogen production by auto-thermal reforming of ethanol on Rh/Al2O3 catalyst. Journal of Power Sources, 2003, 123(1): 10-16

DOI

14
Matsumura Y, Nakamori T. Steam reforming of methane over nickel catalysts at low reaction temperature. Applied Catalysis A, General, 2004, 258(1): 107-114

DOI

15
Petitpasa G, Rollier J, Darmon A, Gonzalez-Aguilar J, Metkemeijer R, Fulcheri L. A comparative study of non-thermal plasma assisted reforming technologies. International Journal of Hydrogen Energy, 2007, 32(14): 2848-2867

DOI

16
Aubry O, Met C, Khacef A, Cormier J. On the use of a non-thermal plasma reactor for ethanol steam reforming. Chemical Engineering Journal, 2005, 106(3): 241-247

DOI

17
Zheng B, Yan J, Li X, Chi Y, Cen K. Plasma assisted dry methane reforming using gliding arc gas discharge: effect of feed gases proportion. International Journal of Hydrogen Energy, 2008, 33(20): 5545-5553

DOI

18
Yang Y, Lee B, Chun Y. Characteristics of methane reforming using gliding arc reactor. Energy, 2009, 34(2): 172-177

DOI

19
Rueangjitt N, Sreethawonga T, Chavadej S, Sekiguchi H. Plasma-catalytic reforming of methane in AC microsized gliding arc discharge: effects of input power, reactor thickness, and catalyst existence. Chemical Engineering Journal, 2009, 155(3): 874-880

DOI

20
Burlica R, Shih K, Hnatiuc B, Locke B. Hydrogen generation by pulsed gliding arc discharge plasma with sprays of alcohol solutions. Industrial & Engineering Chemistry Research, 2011, 50(15): 9466-9470

DOI

21
Yanguas-Gil A, Hueso J, Cotrino J, Caballero A, González-Elipe A. Reforming of ethanol in a microwave surface-wave plasma discharge. Applied Physics Letters, 2004, 85(18): 4004-4006

DOI

22
Tanabe S, Matsuguma H, Okitsu K, Matsumoto H. Generation of hydrogen from methanol in a dielectric-barrier discharge-plasma system. Chemistry Letters, 2000, 29(10): 1116-1117

DOI

23
Wang B, Lv Y, Zhang X, Hu S. Hydrogen generation from steam reforming of ethanol in dielectric barrier discharge. Journal of Natural Gas Chemistry, 2011, 20(2): 151-154

DOI

24
Henriques J, Bundaleska N, Tatarova E, Dias F, Ferreira C. Microwave plasma torches driven by surface wave applied for hydrogen production. International Journal of Hydrogen Energy, 2011, 36(1): 345-354

DOI

25
Petitpas G, José G, Adeline D, Laurent F. Ethanol and E85 reforming assisted by a non-thermal arc discharge. Energy & Fuels, 2011, 24(4): 2607-2613

DOI

26
Du C, Li H, Zhang L, Wang J, Huang D, Xiao M, Cai J, Chen Y, Yan H, Xiong Y, Xiong Y. Hydrogen production by steam-oxidative reforming of bio-ethanol assisted by Laval nozzle arc discharge. International Journal of Hydrogen Energy, 2012, 37(10): 8318-8329

DOI

Outlines

/