Frontiers of Chemical Science and Engineering >
H2 production by ethanol decomposition with a gliding arc discharge plasma reactor
Received date: 30 Nov 2012
Accepted date: 26 Feb 2013
Published date: 05 Jun 2013
Copyright
A gliding arc discharge (GRD) reactor was used to decompose ethanol into primarily H2 and CO with small amounts of CH4, C2H2, C2H4, and C2H6. The ethanol concentration, electrode gap, input voltage and Ar flow rate all affected the conversion of ethanol with results ranging from 40.7% to 58.0%. Interestingly, for all experimental conditions the SH2/SCO selectivity ratio was quite stable at around 1.03. The mechanism for the decomposition of ethanol is also described.
Key words: gliding arc discharge; ethanol; hydrogen; decomposition; plasma
Baowei WANG , Wenjie GE , Yijun LÜ , Wenjuan YAN . H2 production by ethanol decomposition with a gliding arc discharge plasma reactor[J]. Frontiers of Chemical Science and Engineering, 2013 , 7(2) : 145 -153 . DOI: 10.1007/s11705-013-1327-4
1 |
Joensen F, Jens R, Nielsen R. Conversion of hydrocarbons and alcohols for fuel cells. Journal of Power Sources, 2002, 105(2): 195-201
|
2 |
Navarro R, Peña M, Fierro J. Hydrogen production reactions from carbon feedstocks: fossil fuels and biomass. Chemical Reviews, 2007, 107(10): 3952-3991
|
3 |
Haryanto A, Fernando S, Murali N, Adhikari S. Current status of hydrogen production techniques by steam reforming of ethanol: a review. Energy & Fuels, 2005, 19(5): 2098-2106
|
4 |
Goltsov V, Veziroglu T, Goltsova L. Hydrogen civilization of the future—A new conception of the IAHE. International Journal of Hydrogen Energy, 2006, 31(2): 153-159
|
5 |
Meng N, Michael L, Sumathy K, Dennis L. Potential of renewable hydrogen production for energy supply in HongKong. International Journal of Hydrogen Energy, 2006, 31(10): 1401-1412
|
6 |
Meng N, Dennis L, Michael L, Sumathy K. An overview of hydrogen production from biomass. Fuel Processing Technology, 2006, 87(5): 461-472
|
7 |
Meng N, Dennis L, Michael L. A review on reforming bio-ethanol for hydrogen production. International Journal of Hydrogen Energy, 2007, 32(15): 3238-3247
|
8 |
Li J, Kazakov A, Dryer F. Experimental and numerical studies of ethanol decomposition reactions. Journal of Physical Chemistry A, 2004, 108(38): 7671-7680
|
9 |
Diagne C, Idriss H, Kiennemann A. Hydrogen production by ethanol reforming over Rh/CeO2-ZrO2 catalysts. Catalysis Communications, 2002, 3(12): 565-571
|
10 |
Toshiya N, Tomoaki M, Hiroyoshi K, Kazunori U, Yasuyuki M, Shen W, Seiichiro I. Catalytic steam reforming of ethanol to produce hydrogen and acetone. Applied Catalysis A, General, 2005, 279(1-2): 273-277
|
11 |
Fishtik I, Alexander A, Datta R, Geana D. A thermodynamic analysis of hydrogen production by steam reforming of ethanol via response reactions. International Journal of Hydrogen Energy, 2000, 25(1): 31-45
|
12 |
Fierro V, Klouz V, Akdim O, Mirodatos C. Oxidative reforming of biomass derived ethanol for hydrogen production in fuel cell applications. Catalysis Today, 2002, 75(1-4): 141-144
|
13 |
Cavallaro S, Chiodo V, Vita A, Freni S. Hydrogen production by auto-thermal reforming of ethanol on Rh/Al2O3 catalyst. Journal of Power Sources, 2003, 123(1): 10-16
|
14 |
Matsumura Y, Nakamori T. Steam reforming of methane over nickel catalysts at low reaction temperature. Applied Catalysis A, General, 2004, 258(1): 107-114
|
15 |
Petitpasa G, Rollier J, Darmon A, Gonzalez-Aguilar J, Metkemeijer R, Fulcheri L. A comparative study of non-thermal plasma assisted reforming technologies. International Journal of Hydrogen Energy, 2007, 32(14): 2848-2867
|
16 |
Aubry O, Met C, Khacef A, Cormier J. On the use of a non-thermal plasma reactor for ethanol steam reforming. Chemical Engineering Journal, 2005, 106(3): 241-247
|
17 |
Zheng B, Yan J, Li X, Chi Y, Cen K. Plasma assisted dry methane reforming using gliding arc gas discharge: effect of feed gases proportion. International Journal of Hydrogen Energy, 2008, 33(20): 5545-5553
|
18 |
Yang Y, Lee B, Chun Y. Characteristics of methane reforming using gliding arc reactor. Energy, 2009, 34(2): 172-177
|
19 |
Rueangjitt N, Sreethawonga T, Chavadej S, Sekiguchi H. Plasma-catalytic reforming of methane in AC microsized gliding arc discharge: effects of input power, reactor thickness, and catalyst existence. Chemical Engineering Journal, 2009, 155(3): 874-880
|
20 |
Burlica R, Shih K, Hnatiuc B, Locke B. Hydrogen generation by pulsed gliding arc discharge plasma with sprays of alcohol solutions. Industrial & Engineering Chemistry Research, 2011, 50(15): 9466-9470
|
21 |
Yanguas-Gil A, Hueso J, Cotrino J, Caballero A, González-Elipe A. Reforming of ethanol in a microwave surface-wave plasma discharge. Applied Physics Letters, 2004, 85(18): 4004-4006
|
22 |
Tanabe S, Matsuguma H, Okitsu K, Matsumoto H. Generation of hydrogen from methanol in a dielectric-barrier discharge-plasma system. Chemistry Letters, 2000, 29(10): 1116-1117
|
23 |
Wang B, Lv Y, Zhang X, Hu S. Hydrogen generation from steam reforming of ethanol in dielectric barrier discharge. Journal of Natural Gas Chemistry, 2011, 20(2): 151-154
|
24 |
Henriques J, Bundaleska N, Tatarova E, Dias F, Ferreira C. Microwave plasma torches driven by surface wave applied for hydrogen production. International Journal of Hydrogen Energy, 2011, 36(1): 345-354
|
25 |
Petitpas G, José G, Adeline D, Laurent F. Ethanol and E85 reforming assisted by a non-thermal arc discharge. Energy & Fuels, 2011, 24(4): 2607-2613
|
26 |
Du C, Li H, Zhang L, Wang J, Huang D, Xiao M, Cai J, Chen Y, Yan H, Xiong Y, Xiong Y. Hydrogen production by steam-oxidative reforming of bio-ethanol assisted by Laval nozzle arc discharge. International Journal of Hydrogen Energy, 2012, 37(10): 8318-8329
|
/
〈 | 〉 |