REVIEW ARTICLE

Overcoming oral insulin delivery barriers: application of cell penetrating peptide and silica-based nanoporous composites

  • Huining HE 1,4,5 ,
  • Junxiao YE 1 ,
  • Jianyong SHENG 2 ,
  • Jianxin WANG 2 ,
  • Yongzhuo HUANG 2,3 ,
  • Guanyi CHEN 4 ,
  • Jingkang WANG , 1 ,
  • Victor C YANG , 5,6
Expand
  • 1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
  • 2. Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, Shanghai 201203, China
  • 3. Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
  • 4. School of Environmental Science and Engineering, State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
  • 5. Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
  • 6. Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Michigan 48109-1065, USA

Received date: 01 Dec 2012

Accepted date: 19 Dec 2012

Published date: 05 Mar 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Oral insulin delivery has received the most attention in insulin formulations due to its high patient compliance and, more importantly, to its potential to mimic the physiologic insulin secretion seen in non-diabetic individuals. However, oral insulin delivery has two major limitations: the enzymatic barrier that leads to rapid insulin degradation, and the mucosal barrier that limits insulin’s bioavailability. Several approaches have been actively pursued to circumvent the enzyme barrier, with some of them receiving promising results. Yet, thus far there has been no major success in overcoming the mucosal barrier, which is the main cause in undercutting insulin’s oral bioavailability. In this review of our group’s research, an innovative silica-based, mucoadhesive oral insulin formulation with encapsulated-insulin/cell penetrating peptide (CPP) to overcome both enzyme and mucosal barriers is discussed, and the preliminary and convincing results to confirm the plausibility of this oral insulin delivery system are reviewed. In vitro studies demonstrated that the CPP-insulin conjugates could facilitate cellular uptake of insulin while keeping insulin’s biologic functions intact. It was also confirmed that low molecular weight protamine (LMWP) behaves like a CPP peptide, with a cell translocation potency equivalent to that of the widely studied TAT. The mucoadhesive properties of the produced silica-chitosan composites could be controlled by varying both the pH and composition; the composite consisting of chitosan (25 wt-%) and silica (75 wt-%) exhibited the greatest mucoadhesion at gastric pH. Furthermore, drug release from the composite network could also be regulated by altering the chitosan content. Overall, the universal applicability of those technologies could lead to development of a generic platform for oral delivery of many other bioactive compounds, especially for peptide or protein drugs which inevitably encounter the poor bioavailability issues.

Cite this article

Huining HE , Junxiao YE , Jianyong SHENG , Jianxin WANG , Yongzhuo HUANG , Guanyi CHEN , Jingkang WANG , Victor C YANG . Overcoming oral insulin delivery barriers: application of cell penetrating peptide and silica-based nanoporous composites[J]. Frontiers of Chemical Science and Engineering, 2013 , 7(1) : 9 -19 . DOI: 10.1007/s11705-013-1306-9

Acknowledgments

This work was sponsored by Grant R31-2008-000-10103-01 from the World Class University (WCU) project of South Korea. Victor C. Yang is currently a participating faculty member in the Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Korea. It was also partially supported by the National Key Basic Research Program of China (2013CB932502), School of Pharmacy, Fudan University and The Open Project Program of Key Laboratory of Smart Drug Delivery, Fudan University, MOE & PLA, China (SDD2011-02).
1
Capaldi B. Treatments and devices for future diabetes management. Nursing Times, 2005, 101(18): 30–32

2
Cobble M E. Initiating and intensifying insulin therapy for type 2 diabetes: why, when, and how. American Journal of Therapeutics, 2009, 16(1): 56–64

DOI

3
Prevention Cf DCa. National diabetes fact sheet general information and national estimates on diabetes in the United States. Centers for Disease Control and Prevention, 2003

4
Heinemann L. New ways of insulin delivery. International Journal of Clinical Practice. Supplement, 2011, 65(170): 31–46

DOI

5
Gordon Still J. Development of oral insulin: progress and current status. Diabetes/Metabolism Research and Reviews, 2002, 18(S1): S29–S37

DOI

6
Heinemann L. New ways of insulin delivery. International Journal of Clinical Practice. Supplement, 2010, 64: 29–40

DOI

7
Reis C P, Damge C. Nanotechnology as a promising strategy for alternative routes of insulin delivery. Methods in Enzymology, 2012, 508: 271–294

DOI

8
Fonte P, Andrade F, Araujo F, Andrade C, Neves J, Sarmento B. Chitosan-coated solid lipid nanoparticles for insulin delivery. Methods in Enzymology, 2012, 508: 295–314

DOI

9
Card J W, Magnuson B A. A review of the efficacy and safety of nanoparticle-based oral insulin delivery systems. American Journal of Physiology. Gastrointestinal and Liver Physiology, 2011, 301(6): G956–G967

DOI

10
He P, Tang Z, Lin L, Deng M, Pang X, Zhuang X, Chen X. Novel biodegradable and pH-sensitive poly(ester amide) microspheres for oral insulin delivery. Macromolecular Bioscience, 2012, 12(4): 547–556

DOI

11
Cefalu W T. Concept, strategies, and feasibility of noninvasive insulin delivery. Diabetes Care, 2004, 27(1): 239–246

DOI

12
Krishnankutty R K, Mathew A, Sedimbi S K, Suryanarayan S, Sanjeevi C B. Alternative routes of insulin delivery. Zhong Nan Da Xue Xue Bao. Yi Xue Ban, 2009, 34(10): 933–948

13
Bellary S, Barnett A H. Inhaled insulin: new technology, new possibilities. International Journal of Clinical Practice, 2006, 60(6): 728–734

DOI

14
Cefalu W T. Evolving strategies for insulin delivery and therapy. Drugs, 2004, 64(11): 1149–1161

DOI

15
Sajeesh S, Bouchemal K, Marsaud V, Vauthier C, Sharma C P. Cyclodextrin complexed insulin encapsulated hydrogel microparticles: An oral delivery system for insulin. Journal of Controlled Release, 2010, 147(3): 377–384

DOI

16
Yadav N, Morris G, Harding S E, Ang S, Adams G G. Various non-injectable delivery systems for the treatment of diabetes mellitus. Endocrine, Metabolic & Immune Disorders Drug Targets, 2009, 9(1): 1–13

DOI

17
Banting F G, Best C H, Collip J B, Campbell W R, Fletcher A A. Pancreatic extracts in the treatment of diabetes mellitus. Canadian Medical Association Journal, 1922, 7: 6

18
Del Curto M D, Maroni A, Palugan L, Zema L, Gazzaniga A, Sangalli M E. Oral delivery system for two-pulse colonic release of protein drugs and protease inhibitor/absorption enhancer compounds. Journal of Pharmaceutical Sciences, 2011, 100(8): 3251–3259

DOI

19
Jelvehgari M, Milani P Z, Siahi-Shadbad M R, Monajjemzadeh F, Nokhodchi A, Azari Z, Valizadeh H. In vitro and in vivo evaluation of insulin microspheres containing protease inhibitor. Arzneimittel-Forschung, 2011, 61(1): 14–22

DOI

20
Su F Y, Lin K J, Sonaje K, Wey S P, Yen T C, Ho Y C, Panda N, Chuang E Y, Maiti B, Sung H W. Protease inhibition and absorption enhancement by functional nanoparticles for effective oral insulin delivery. Biomaterials, 2012, 33(9): 2801–2811

DOI

21
Marschutz M K, Bernkop-Schnurch A. Oral peptide drug delivery: polymer-inhibitor conjugates protecting insulin from enzymatic degradation in vitro. Biomaterials, 2000, 21(14): 1499–1507

DOI

22
Saudek C D. Novel forms of insulin delivery. Endocrinology and Metabolism Clinics of North America, 1997, 26(3): 599–610

DOI

23
Avadi M R, Sadeghi A M, Mohammadpour N, Abedin S, Atyabi F, Dinarvand R, Rafiee-Tehrani M. Preparation and characterization of insulin nanoparticles using chitosan and Arabic gum with ionic gelation method. Nanomedicine; Nanotechnology, Biology, and Medicine, 2010, 6(1): 58–63

DOI

24
Cui F, He C, He M, Tang C, Yin L, Qian F, Yin C. Preparation and evaluation of chitosan-ethylenediaminetetraacetic acid hydrogel films for the mucoadhesive transbuccal delivery of insulin. Journal of Biomedical Materials Research. Part A, 2009, 89A(4): 1063–1071

DOI

25
Cui F, Qian F, Zhao Z, Yin L, Tang C, Yin C. Preparation, characterization, and oral delivery of insulin loaded carboxylated chitosan grafted poly(methyl methacrylate) nanoparticles. Biomacromolecules, 2009, 10(5): 1253–1258

DOI

26
Schilling R, Mitra A. Degradation of insulin by trypsin and alpha-chymotrypsin. Pharmaceutical Research, 1991, 8(6): 721–727

DOI

27
Nishihata T, Rytting J H, Kamada A, Higuchi T. Enhanced intestinal absorption of insulin in rats in the presence of sodium 5-methoxysalicylate. Diabetes, 1981, 30(12): 1065–1067

DOI

28
Cui C Y, Lu W L, Xiao L, Zhang S Q, Huang Y B, Li S L, Zhang R J, Wang G L, Zhang X, Zhang Q. Sublingual delivery of insulin: effects of enhancers on the mucosal lipid fluidity and protein conformation, transport, and in vivo hypoglycemic activity. Biological & Pharmaceutical Bulletin, 2005, 28(12): 2279–2288

DOI

29
Muranishi S. Delivery system design for improvement of intestinal absorption of peptide drugs. Yakugaku Zasshi, 1997, 117(7): 394–414

30
Chung S W, Hil-lal T A, Byun Y. Strategies for non-invasive delivery of biologics. Journal of Drug Targeting, 2012, 20(6): 481–501

DOI

31
Schwarze S R, Ho A, Vocero-Akbani A, Dowdy S F. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science, 1999, 285(5433): 1569–1572

DOI

32
Schwarze S R, Dowdy S F. In vivo protein transduction: intracellular delivery of biologically active proteins, compounds and DNA. Trends in Pharmacological Sciences, 2000, 21(2): 45–48

DOI

33
Cooper I, Sasson K, Teichberg V I, Schnaider-Beeri M, Fridkin M, Shechter Y. Peptide derived from HIV-1 TAT protein, destabilizes a monolayer of endothelial cells in an in vitro model of the blood-brain barrier, and allows permeation of high molecular weight proteins. Journal of Biological Chemistry, 2012, •••:

DOI

34
Yu R, Zeng Z, Guo X, Zhang H, Liu X, Ding Y, Chen J. The TAT peptide endows PACAP with an enhanced ability to traverse bio-barriers. Neuroscience Letters, 2012, 527(1): 1–5

DOI

35
Elliott G, O'Hare P. Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell, 1997, 88(2): 223–233

DOI

36
Min S H, Kim D M, Kim M N, Ge J, Lee D C, Park I Y, Park K C, Hwang J S, Cho C W, Yeom Y I. Gene delivery using a derivative of the protein transduction domain peptide, K-Antp. Biomaterials, 2010, 31(7): 1858–1864

DOI

37
Derossi D, Joliot A H, Chassaing G, Prochiantz A. The third helix of the antennapedia homeodomain translocates through biological membranes. Journal of Biological Chemistry, 1994, 269(14): 10444–10450

38
Jin G S, Zhu G D, Zhao Z G, Liu F S. VP22 enhances the expression of glucocerebrosidase in human Gaucher II fibroblast cells mediated by lentiviral vectors. Clinical and Experimental Medicine, 2012, 12(3): 135–143

DOI

39
Tanaka M, Kato A, Satoh Y, Ide T, Sagou K, Kimura K, Hasegawa H, Kawaguchi Y. Herpes simplex virus 1 VP22 regulates translocation of multiple viral and cellular proteins and promotes neurovirulence. Journal of Virology, 2012, 86(9): 5264–5277

DOI

40
Chang L C, Lee H F, Yang Z, Yang V. Low molecular weight protamine (LMWP) as nontoxic heparin/low molecular weight heparin antidote (I): Preparation and characterization. AAPS PharmSci, 2001, 3(3): 7–14

DOI

41
Chang L C, Liang J, Lee H F, Lee L, Yang V. Low molecular weight protamine (LMWP) as nontoxic heparin/low molecular weight heparin antidote (II): In vitro evaluation of efficacy and toxicity. AAPS PharmSci, 2001, 3(3): 15–23

DOI

42
Chang L C, Wrobleski S, Wakefield T, Lee L, Yang V. Low molecular weight protamine as nontoxic heparin/low molecular weight heparin antidote (III): Preliminary in vivo evaluation of efficacy and toxicity using a canine model. AAPS PharmSci, 2001, 3(3): 24–31

DOI

43
Park Y J, Chang L C, Liang J F, Moon C, Chung C P, Yang V C. Nontoxic membrane translocation peptide from protamine, low molecular weight protamine (LMWP), for enhanced intracellular protein delivery: in vitro and in vivo study. FASEB Journal, 2005, 19(11): 1555–1557

44
Xia H, Gao X, Gu G, Liu Z, Zeng N, Hu Q, Song Q, Yao L, Pang Z, Jiang X, Chen J, Chen H. Low molecular weight protamine-functionalized nanoparticles for drug delivery to the brain after intranasal administration. Biomaterials, 2011, 32(36): 9888–9898

DOI

45
Ramadas M W P, Dileep K J, Ramadas M, Anitha Y, Sharma C P, 0. Lipoinsulin encapsulated alginate-chitosan capsules: intestinal delivery in diabetic rats. Journal of Microencapsulation, 2000, 17(4): 405–411

DOI

46
Kimura T, Sato K, Sugimoto K, Tao R, Murakami T, Kurosaki Y, Nakayama T. Oral administration of insulin as poly(vinyl alcohol)-gel spheres in diabetic rats. Biological & Pharmaceutical Bulletin, 1996, 19(6): 897–900

DOI

47
Mitchell D J, Steinman L, Kim D T, Fathman C G, Rothbard J B. Polyarginine enters cells more efficiently than other polycationic homopolymers. Journal of Peptide Research, 2000, 56(5): 318–325

DOI

48
Futaki S, Nakase I, Suzuki T, Zhang, Sugiura Y. Translocation of branched-chain arginine peptides through cell membranes: flexibility in the spatial disposition of positive charges in membrane-permeable peptides. Biochemistry, 2002, 41(25): 7925–7930

DOI

49
Wong T W. Chitosan and its use in design of insulin delivery system. Recent Patents on Drug Delivery & Formulation, 2009, 3(1): 8–25

DOI

50
Damge C, Maincent P, Ubrich N. Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats. Journal of Controlled Release, 2007, 117(2): 163–170

DOI

51
Sarmento B, Ribeiro A, Veiga F, Sampaio P, Neufeld R, Ferreira D. Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharmaceutical Research, 2007, 24(12): 2198–2206

DOI

52
Liang J F, Zhen L, Chang L C, Yang V C. A less toxic heparin antagonist—low molecular weight protamine. Biochemistry. Biokhimiia, 2003, 68(1): 116–120

DOI

53
Tsui B, Singh V K, Liang J F, Yang V C. Reduced reactivity towards anti-protamine antibodies of a low molecular weight protamine analogue. Thrombosis Research, 2001, 101(5): 417–420

DOI

54
Carlsson J, Drevin H, Axén R. Protein thiolation and reversible protein-protein conjugation.N-Succinimidyl 3-(2-pyridyldithio)propionate, a new heterobifunctional reagent. Biochemical Journal, 1978, 173(3): 723–737

55
Chickering D E, Mathiowitz E. Bioadhesive microspheres I. A novel electrobalance-based method to study adhesive interactions between individual microspheres and intestinal mucosa. Journal of Controlled Release, 1995, 34(3): 251–262

DOI

56
Sudhakar Y, Kuotsu K, Bandyopadhyay A K. Buccal bioadhesive drug delivery—a promising option for orally less efficient drugs. Journal of Controlled Release, 2006, 114(1): 15–40

DOI

Outlines

/