Computational catalysis on the conversion of CO2 to methane—an update

  • Prince Joby 1 ,
  • Yesaiyan Manojkumar 2 ,
  • Antony Rajendran 3 ,
  • Rajadurai Vijay Solomon , 1
Expand
  • 1. Department of Chemistry, Madras Christian College (Autonomous), (Affiliated to the University of Madras), Chennai 600059, “Tamil Nadu”, India
  • 2. Department of Chemistry, Bishop Heber College, Tiruchirappalli 620017, “Tamil Nadu”, India
  • 3. Department of Chemistry, Mepco Schlenk Engineering College (Autonomous), Sivakasi 626005, “Tamil Nadu”, India
vjsolo@gmail.com

Received date: 11 Mar 2024

Accepted date: 13 May 2024

Copyright

2024 Higher Education Press

Abstract

The reliance on fossil fuels intensifies CO2 emissions, worsening political and environmental challenges. CO2 capture and conversion present a promising solution, influenced by industrialization and urbanization. In recent times, catalytic conversion of CO2 into fuels and chemical precursors, particularly methane, are gaining traction for establishing a sustainable, carbon-neutral economy due to methane’s advantages in renewable energy applications. Though homogeneous and heterogeneous catalysts are available for the conversion of CO2 to methane, the efficiency is found to be higher in heterogeneous catalysts. Therefore, this review focuses only on the heterogeneous catalysts. In this context, the efficient heterogeneous catalysts with optimum utility are yet to be obtained. Therefore, the quest for suitable catalyst for the catalytic conversion of CO2 to CH4 is still continuing and designing efficient catalysts requires assessing their synthetic feasibility, often achieved through computational methods like density functional theory simulations, providing insights into reaction mechanisms, rate-limiting steps, catalytic cycle, activation of C=O bonds and enhancing understanding while lowering costs. In this context, this review examines the conversion of CO2 to CH4 using seven distinct types of catalysts, including single and double atom catalysts, metal organic frameworks, metalloporphyrins, graphdiyne and graphitic carbon nitrite and alloys with some case studies. The main focus of this review is to offer a detailed and extensive examination of diverse catalyst design approaches and their utilization in CH4 production, with a specific emphasis on computational aspects. It explores the array of design methodologies used to identify reaction pathways and investigates the critical role of computational tools in their refinement and enhancement. We believe this review will help budding researchers to explore the possibilities of designing catalysts for the CO2 to CH4 conversion from computational framework.

Cite this article

Prince Joby , Yesaiyan Manojkumar , Antony Rajendran , Rajadurai Vijay Solomon . Computational catalysis on the conversion of CO2 to methane—an update[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(11) : 132 . DOI: 10.1007/s11705-024-2484-3

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

The authors (YMK, AR & RVS) dedicate this review to their esteemed professor, Dr. J. Princy Merlin, Principal of Bishop Heber College, Tiruchirappalli, whose three decades of selfless service have inspired thousands of students. Prince Joby, of 2nd M. Sc. Chemistry, has done this work at DST-FIST Sponsored Professor Edward Barnes Computation and Instrumentation Facility (PEBCIF) of the Department of Chemistry, Madras Christian College. Dr. R. Vijay Solomon thanks the Department of Chemistry, MCC for the support and encouragement. Dr. Y. Manojkumar acknowledges the management of Bishop Heber College (Autonomous), Tiruchirappalli-620 017, Tamil Nadu, India, for the support (Ref. No. 18.04.2023 MRP/1005/2023 (BHC)). Dr. Antony Rajendrdan acknowledges the support provided by the National Key Research and Development Program of China (Grant No. 2022YFE0208400).
1
Takata T , Jiang J , Sakata Y , Nakabayashi M , Shibata N , Nandal V , Seki K , Hisatomi T , Domen K . Photocatalytic water splitting with a quantum efficiency of almost unity. Nature, 2020, 581(7809): 411–414

DOI

2
Albo J , Alvarez-Guerra M , Castaño P , Irabien A . Towards the electrochemical conversion of carbon dioxide into methanol. Green Chemistry, 2015, 17(4): 2304–2324

DOI

3
Zhao S , Jin R , Jin R . Opportunities and challenges in CO2 reduction by gold-and silver-based electrocatalysts: from bulk metals to nanoparticles and atomically precise nanoclusters. ACS Energy Letters, 2018, 3(2): 452–462

DOI

4
Shi R , Wang Z , Zhao Y , Waterhouse G I , Li Z , Zhang B , Sun Z , Xia C , Wang H , Zhang T . Room-temperature electrochemical acetylene reduction to ethylene with high conversion and selectivity. Nature Catalysis, 2021, 4(7): 565–574

DOI

5
Sun Z , Ma T , Tao H , Fan Q , Han B . Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials. Chem, 2017, 3(4): 560–587

DOI

6
Ahmad T , Zhang D . A critical review of comparative global historical energy consumption and future demand: the story told so far. Energy Reports, 2020, 6: 1973–1991

DOI

7
SmolinkaTOjongE TGarcheJ. Hydrogen production from renewable energies—electrolyzer technologies, in electrochemical energy storage for renewable sources and grid balancing. Elsevier, 2015, 103–128

8
Yu Z Y , Duan Y , Feng X Y , Yu X , Gao M R , Yu S H . Clean and affordable hydrogen fuel from alkaline water splitting: past, recent progress, and future prospects. Advanced Materials, 2021, 33(31): 2007100

DOI

9
Woldu A R , Huang Z , Zhao P , Hu L , Astruc D . Electrochemical CO2 reduction (CO2RR) to multi-carbon products over copper-based catalysts. Coordination Chemistry Reviews, 2022, 454: 214340

DOI

10
DziejarskiBSerafinJAnderssonKKrzyżyńskaR. CO2 capture materials: a review of current trends and future challenges. Materials Today Sustainability, 2023: 100483

11
Koerner B , Klopatek J . Anthropogenic and natural CO2 emission sources in an arid urban environment. Environmental Pollution, 2002, 116: S45–S51

DOI

12
Zha W , Liu D , Ma Z , Wang Y , Wei Y , Ma X , Wang L , Zhang Q , Lou B , Yuan R . . Efficient electrochemical CO2 reduction on C2N monolayer supported transition metals trimer catalysts: a DFT study. Applied Surface Science, 2021, 564: 150331

DOI

13
Li Y , Sun Q . Recent advances in breaking scaling relations for effective electrochemical conversion of CO2. Advanced Energy Materials, 2016, 6(17): 1600463

DOI

14
Tian Y , Wang Y , Yan L , Zhao J , Su Z . Electrochemical reduction of carbon dioxide on the two-dimensional M3(hexaiminotriphenylene)2 sheet: a computational study. Applied Surface Science, 2019, 467-468: 98–103

DOI

15
Wagner A , Sahm C D , Reisner E . Towards molecular understanding of local chemical environment effects in electro-and photocatalytic CO2 reduction. Nature Catalysis, 2020, 3(10): 775–786

DOI

16
Todorova T K , Schreiber M W , Fontecave M . Mechanistic understanding of CO2 reduction reaction (CO2RR) toward multicarbon products by heterogeneous copper-based catalysts. ACS Catalysis, 2020, 10(3): 1754–1768

DOI

17
Spigarelli B P , Kawatra S K . Opportunities and challenges in carbon dioxide capture. Journal of CO2 Utilization, 2013, 1: 69–87

18
Zhang S , Chen C , Ahn W S . Recent progress on CO2 capture using amine-functionalized silica. Current Opinion in Green and Sustainable Chemistry, 2019, 16: 26–32

DOI

19
Kumar S , Srivastava R , Koh J . Utilization of zeolites as CO2 capturing agents: advances and future perspectives. Journal of CO2 Utilization, 2020, 41: 101251

20
Zhou Z , Qi Y , Xie M , Cheng Z , Yuan W . Synthesis of CaO-based sorbents through incorporation of alumina/aluminate and their CO2 capture performance. Chemical Engineering Science, 2012, 74: 172–180

DOI

21
Didas S A , Choi S , Chaikittisilp W , Jones C W . Amine-oxide hybrid materials for CO2 capture from ambient air. Accounts of Chemical Research, 2015, 48(10): 2680–2687

DOI

22
Veerabhadrappa M G , Maroto-Valer M M , Chen Y , Garcia S . Layered double hydroxides-based mixed metal oxides: development of novel structured sorbents for CO2 capture applications. ACS Applied Materials & Interfaces, 2021, 13(10): 11805–11813

DOI

23
Avci G , Velioglu S , Keskin S . High-throughput screening of MOF adsorbents and membranes for H2 purification and CO2 capture. ACS Applied Materials & Interfaces, 2018, 10(39): 33693–33706

DOI

24
Ji Y , Zhang M , Guan K , Zhao J , Liu G , Jin W . High-performance CO2 capture through polymer-based ultrathin membranes. Advanced Functional Materials, 2019, 29(33): 1900735

DOI

25
Abuelnoor N , AlHajaj A , Khaleel M , Vega L F , Abu-Zahra M R . Activated carbons from biomass-based sources for CO2 capture applications. Chemosphere, 2021, 282: 131111

DOI

26
Yang Y , Liu W , Hu Y , Sun J , Tong X , Chen Q , Li Q . One-step synthesis of porous Li4SiO4-based adsorbent pellets via graphite moulding method for cyclic CO2 capture. Chemical Engineering Journal, 2018, 353: 92–99

DOI

27
An L , Liu S , Wang L , Wu J , Wu Z , Ma C , Yu Q , Hu X . Novel nitrogen-doped porous carbons derived from graphene for effective CO2 capture. Industrial & Engineering Chemistry Research, 2019, 58(8): 3349–3358

DOI

28
Dong H , Lin B , Gilmore K , Hou T , Lee S T , Li Y . B40 fullerene: an efficient material for CO2 capture, storage and separation. Current Applied Physics, 2015, 15(9): 1084–1089

DOI

29
Ngoy J M , Wagner N , Riboldi L , Bolland O A . CO2 capture technology using multi-walled carbon nanotubes with polyaspartamide surfactant. Energy Procedia, 2014, 63: 2230–2248

DOI

30
Jung S , Park Y K , Kwon E E . Strategic use of biochar for CO2 capture and sequestration. Journal of CO2 Utilization, 2019, 32: 128–139

31
Fagnani H M , da Silva C T , Pereira M M , Rinaldi A W , Arroyo P A , de Barros M A . CO2 adsorption in hydrochar produced from waste biomass. SN Applied Sciences, 2019, 1(9): 1031

DOI

32
MarshHReinosoF R. Activated Carbon. Elsevier, 2006

33
Hu X , Radosz M , Cychosz K A , Thommes M . CO2-filling capacity and selectivity of carbon nanopores: synthesis, texture, and pore-size distribution from quenched-solid density functional theory (QSDFT). Environmental Science & Technology, 2011, 45(16): 7068–7074

DOI

34
Drage T C , Blackman J M , Pevida C , Snape C E . Evaluation of activated carbon adsorbents for CO2 capture in gasification. Energy & Fuels, 2009, 23(5): 2790–2796

DOI

35
Akten E D , Siriwardane R , Sholl D S . Monte Carlo simulation of single- and binary-component adsorption of CO2, N2, and H2 in zeolite Na-4A. Energy & Fuels, 2003, 17(4): 977–983

DOI

36
Harlick P J , Sayari A . Applications of pore-expanded mesoporous silica. 5. Triamine grafted material with exceptional CO2 dynamic and equilibrium adsorption performance. Industrial & Engineering Chemistry Research, 2007, 46(2): 446–458

DOI

37
Franchi R S , Harlick P J , Sayari A . Applications of pore-expanded mesoporous silica. 2. Development of a high-capacity, water-tolerant adsorbent for CO2. Industrial & Engineering Chemistry Research, 2005, 44(21): 8007–8013

DOI

38
Jiménez V , Ramírez-Lucas A , Díaz J A , Sánchez P , Romero A . CO2 capture in different carbon materials. Environmental Science & Technology, 2012, 46(13): 7407–7414

DOI

39
Cui S , Cheng W , Shen X , Fan M , Russell A T , Wu Z , Yi X . Mesoporous amine-modified SiO2 aerogel: a potential CO2 sorbent. Energy & Environmental Science, 2011, 4(6): 2070–2074

DOI

40
Rogelj J , Den Elzen M , Höhne N , Fransen T , Fekete H , Winkler H , Schaeffer R , Sha F , Riahi K , Meinshausen M . Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature, 2016, 534(7609): 631–639

DOI

41
Ye R P , Ding J , Gong W , Argyle M D , Zhong Q , Wang Y , Russell C K , Xu Z , Russell A G , Li Q . . CO2 hydrogenation to high-value products via heterogeneous catalysis. Nature Communications, 2019, 10(1): 5698

DOI

42
Wang H H , Hou L , Li Y Z , Jiang C Y , Wang Y Y , Zhu Z . Porous MOF with highly efficient selectivity and chemical conversion for CO2. ACS Applied Materials & Interfaces, 2017, 9(21): 17969–17976

DOI

43
Lee J C , Kim J H , Chang W S , Pak D . Biological conversion of CO2 to CH4 using hydrogenotrophic methanogen in a fixed bed reactor. Journal of Chemical Technology and Biotechnology, 2012, 87(6): 844–847

DOI

44
Tu W , Zhou Y , Zou Z . Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects. Advanced Materials, 2014, 26(27): 4607–4626

DOI

45
Genovese C , Ampelli C , Perathoner S , Centi G . Electrocatalytic conversion of CO2 to liquid fuels using nanocarbon-based electrodes. Journal of Energy Chemistry, 2013, 22(2): 202–213

DOI

46
Li M , Wang H , Luo W , Sherrell P C , Chen J , Yang J . Heterogeneous single-atom catalysts for electrochemical CO2 reduction reaction. Advanced Materials, 2020, 32(34): 2001848

DOI

47
Lim R J , Xie M , Sk M A , Lee J M , Fisher A , Wang X , Lim K H . A review on the electrochemical reduction of CO2 in fuel cells, metal electrodes and molecular catalysts. Catalysis Today, 2014, 233: 169–180

DOI

48
Lu Q , Rosen J , Jiao F . Nanostructured metallic electrocatalysts for carbon dioxide reduction. ChemCatChem, 2015, 7(1): 38–47

DOI

49
Yaashikaa P , Kumar P S , Varjani S J , Saravanan A . A review on photochemical, biochemical and electrochemical transformation of CO2 into value-added products. Journal of CO2 Utilization, 2019, 33: 131–147

50
Huo S , Weng Z , Wu Z , Zhong Y , Wu Y , Fang J , Wang H . Coupled metal/oxide catalysts with tunable product selectivity for electrocatalytic CO2 reduction. ACS Applied Materials & Interfaces, 2017, 9(34): 28519–28526

DOI

51
Kortlever R , Shen J , Schouten K J P , Calle-Vallejo F , Koper M T . Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. Journal of Physical Chemistry Letters, 2015, 6(20): 4073–4082

DOI

52
Prabhu P , Jose V , Lee J M . Heterostructured catalysts for electrocatalytic and photocatalytic carbon dioxide reduction. Advanced Functional Materials, 2020, 30(24): 1910768

DOI

53
Roy S C , Varghese O K , Paulose M , Grimes C A . Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano, 2010, 4(3): 1259–1278

DOI

54
Das S , Daud W W . A review on advances in photocatalysts towards CO2 conversion. RSC Advances, 2014, 4(40): 20856–20893

DOI

55
Tahir M , Amin N S . Recycling of carbon dioxide to renewable fuels by photocatalysis: prospects and challenges. Renewable & Sustainable Energy Reviews, 2013, 25: 560–579

DOI

56
Wang G , Chen J , Ding Y , Cai P , Yi L , Li Y , Tu C , Hou Y , Wen Z , Dai L . Electrocatalysis for CO2 conversion: from fundamentals to value-added products. Chemical Society Reviews, 2021, 50(8): 4993–5061

DOI

57
Gao D , Liu T , Wang G , Bao X . Structure sensitivity in single-atom catalysis toward CO2 electroreduction. ACS Energy Letters, 2021, 6(2): 713–727

DOI

58
Liu X , Wang Z , Tian Y , Zhao J . Graphdiyne-supported single iron atom: a promising electrocatalyst for carbon dioxide electroreduction into methane and ethanol. Journal of Physical Chemistry C, 2020, 124(6): 3722–3730

DOI

59
Ting L R L , Pique O , Lim S Y , Tanhaei M , Calle-Vallejo F , Yeo B S . Enhancing CO2 electroreduction to ethanol on copper-silver composites by opening an alternative catalytic pathway. ACS Catalysis, 2020, 10(7): 4059–4069

DOI

60
Wang Y , Pham T N , Tian Y , Morikawa Y , Yan L . Density functional theory study on a nitrogen-rich carbon nitride material C3N5 as photocatalyst for CO2 reduction to C1 and C2 products. Journal of Colloid and Interface Science, 2021, 585: 740–749

DOI

61
Yan Y , Dai Y , He H , Yu Y , Yang Y . A novel W-doped Ni-Mg mixed oxide catalyst for CO2 methanation. Applied Catalysis B: Environmental, 2016, 196: 108–116

DOI

62
Kothandaraman J , Goeppert A , Czaun M , Olah G A , Prakash G S . Conversion of CO2 from air into methanol using a polyamine and a homogeneous ruthenium catalyst. Journal of the American Chemical Society, 2016, 138(3): 778–781

DOI

63
Hidalgo D , Martín-Marroquín J . Power-to-methane, coupling CO2 capture with fuel production: an overview. Renewable & Sustainable Energy Reviews, 2020, 132: 110057

DOI

64
Sun Y , Lin Z , Peng S H , Sage V , Sun Z . A critical perspective on CO2 conversions into chemicals and fuels. Journal of Nanoscience and Nanotechnology, 2019, 19(6): 3097–3109

DOI

65
Ulmer U , Dingle T , Duchesne P N , Morris R H , Tavasoli A , Wood T , Ozin G A . Fundamentals and applications of photocatalytic CO2 methanation. Nature Communications, 2019, 10(1): 3169

DOI

66
Al-Fatesh A , Singh S K , Kanade G , Atia H , Fakeeha A H , Ibrahim A A , El-Toni A M , Labhasetwar N K . Rh promoted and ZrO2/Al2O3 supported Ni/Co based catalysts: high activity for CO2 reforming, steam-CO2 reforming and oxy-CO2 reforming of CH4. International Journal of Hydrogen Energy, 2018, 43(27): 12069–12080

DOI

67
Bremer J , Sundmacher K . Operation range extension via hot-spot control for catalytic CO2 methanation reactors. Reaction Chemistry & Engineering, 2019, 4(6): 1019–1037

DOI

68
Panagiotopoulou P , Kondarides D I , Verykios X E . Selective methanation of CO over supported Ru catalysts. Applied Catalysis B: Environmental, 2009, 88(3–4): 470–478

DOI

69
Podrojková N , Sans V , Oriňak A , Oriňaková R . Recent developments in the modelling of heterogeneous catalysts for CO2 conversion to chemicals. ChemCatChem, 2020, 12(7): 1802–1825

DOI

70
Zhang S , Fan Q , Xia R , Meyer T J . CO2 reduction: from homogeneous to heterogeneous electrocatalysis. Accounts of Chemical Research, 2020, 53(1): 255–264

DOI

71
Nganga J K , Wolf L M , Mullick K , Reinheimer E , Saucedo C , Wilson M E , Grice K A , Ertem M Z , Angeles-Boza A M . Methane generation from CO2 with a molecular rhenium catalyst. Inorganic Chemistry, 2021, 60(6): 3572–3584

DOI

72
Sun L , Reddu V , Fisher A C , Wang X . Electrocatalytic reduction of carbon dioxide: opportunities with heterogeneous molecular catalysts. Energy & Environmental Science, 2020, 13(2): 374–403

DOI

73
Tian Z , Priest C , Chen L . Recent progress in the theoretical investigation of electrocatalytic reduction of CO2. Advanced Theory and Simulations, 2018, 1(5): 1800004

DOI

74
Xu S , Carter E A . Theoretical insights into heterogeneous (photo) electrochemical CO2 reduction. Chemical Reviews, 2019, 119(11): 6631–6669

DOI

75
Zhu X , Li Y . Review of two-dimensional materials for electrochemical CO2 reduction from a theoretical perspective. WIREs Computational Molecular Science, 2019, 9(6): e1416

DOI

76
Han M , Fu X , Cao A , Guo C , Chu W , Xiao J . Toward computational design of catalysts for CO2 selective reduction via reaction phase diagram analysis. Advanced Theory and Simulations, 2019, 2(3): 1800200

DOI

77
Kibria M G , Edwards J P , Gabardo C M , Dinh C T , Seifitokaldani A , Sinton D , Sargent E H . Electrochemical CO2 reduction into chemical feedstocks: from mechanistic electrocatalysis models to system design. Advanced Materials, 2019, 31(31): 1807166

DOI

78
Kovačič Z , Likozar B , Hus M . Photocatalytic CO2 reduction: a review of ab initio mechanism, kinetics, and multiscale modeling simulations. ACS Catalysis, 2020, 10(24): 14984–15007

DOI

79
Morales-García Á , Viñes F , Gomes J R , Illas F . Concepts, models, and methods in computational heterogeneous catalysis illustrated through CO2 conversion. WIREs Computational Molecular Science, 2021, 11(4): e1530

DOI

80
Masdeu-Bultó A M , Reguero M , Claver C . Mechanistic insights of photocatalytic CO2 reduction: experimental versus computational studies. European Journal of Inorganic Chemistry, 2022, (14): e202100975

DOI

81
HussainSYangXYangJLiQ. Theoretical insights into the mechanism of photocatalytic reduction of CO2 and water splitting over II–VI zinc chalcogenide semiconductor. Materials Today Sustainability, 2024: 100686

82
Alli Y A , Oladoye P O , Onawole A T , Anuar H , Adewuyi S , Ogunbiyi O D , Philippot K . Photocatalysts for CO2 reduction and computational insights. Fuel, 2023, 344: 128101

DOI

83
AliS ASadiqIAhmadT. Deep insight of CO2 reduction reaction mechanism through experimental and theoretical anticipations. Materials Today Sustainability, 2023: 100587

84
AmayaSuárez JRemesalE RPlataJ JMárquezA MFernándezSanz J. Computational modeling of carbon dioxide catalytic conversion. Engineering Solutions for CO2 Conversion, 2021: 85–103

85
Li Y , Chan S H , Sun Q . Heterogeneous catalytic conversion of CO2: a comprehensive theoretical review. Nanoscale, 2015, 7(19): 8663–8683

DOI

86
Weijing D , Weihong Z , Xiaodong Z , Baofeng Z , Lei C , Laizhi S , Shuangxia Y , Haibin G , Guanyi C , Liang Z . . The application of DFT in catalysis and adsorption reaction system. Energy Procedia, 2018, 152: 997–1002

DOI

87
Cheng D , Negreiros F R , Aprà E , Fortunelli A . Computational approaches to the chemical conversion of carbon dioxide. ChemSusChem, 2013, 6(6): 944–965

DOI

88
Hohenberg P , Kohn W . Inhomogeneous electron gas. Physical Review, 1964, 136(3B): B864–B871

DOI

89
Kohn W , Sham L J . Self-consistent equations including exchange and correlation effects. Physical Review, 1965, 140(4A): A1133–A1138

DOI

90
Kresse G , Furthmüller J . Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 1996, 6(1): 15–50

DOI

91
Kresse G , Joubert D . From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B: Condensed Matter, 1999, 59(3): 1758–1775

DOI

92
Delley B . An all-electron numerical method for solving the local density functional for polyatomic molecules. Journal of Chemical Physics, 1990, 92(1): 508–517

DOI

93
Delley B . From molecules to solids with the DMol3 approach. Journal of Chemical Physics, 2000, 113(18): 7756–7764

DOI

94
Nørskov J K , Rossmeisl J , Logadottir A , Lindqvist L , Kitchin J R , Bligaard T , Jonsson H . Origin of the overpotential for oxygen reduction at a fuel-cell cathode. Journal of Physical Chemistry B, 2004, 108(46): 17886–17892

DOI

95
Dao X Y , Guo J H , Zhang X Y , Wang S Q , Cheng X M , Sun W Y . Structure-dependent iron-based metal-organic frameworks for selective CO2-to-CH4 photocatalytic reduction. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(48): 25850–25856

DOI

96
Wang Y L , Tian Y , Lang Z L , Guan W , Yan L K . A highly efficient Z-scheme B-doped g-C3N4/SnS2 photocatalyst for CO2 reduction reaction: a computational study. Journal of Materials Chemistry. A, 2018, 6(42): 21056–21063

DOI

97
Qiao B , Wang A , Yang X , Allard L F , Jiang Z , Cui Y , Liu J , Li J , Zhang T . Single-atom catalysis of CO oxidation using Pt1/FeOx. Nature Chemistry, 2011, 3(8): 634–641

DOI

98
Thomas J M , Saghi Z , Gai P L . Can a single atom serve as the active site in some heterogeneous catalysts?. Topics in Catalysis, 2011, 54(10–12): 588–594

DOI

99
Ranocchiari M , Lothschütz C , Grolimund D , van Bokhoven J A . Single-atom active sites on metal-organic frameworks. Proceedings of Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 468(2143): 1985–1999

DOI

100
Yang X F , Wang A , Qiao B , Li J , Liu J , Zhang T . Single-atom catalysts: a new frontier in heterogeneous catalysis. Accounts of Chemical Research, 2013, 46(8): 1740–1748

DOI

101
Cheng N , Zhang L , Doyle-Davis K , Sun X . Single-atom catalysts: from design to application. Electrochemical Energy Reviews, 2019, 2(4): 539–573

DOI

102
Chen Q , Ke Q , Zhao X , Chen X . Ruthenium-doped boron nitride nanotubes as promising electrocatalysts for carbon dioxide reduction to methane. Diamond and Related Materials, 2023, 136: 109942

DOI

103
Zhang Y , Zeng Z , Li H . Design of 3d transition metal anchored B5N3 catalysts for electrochemical CO2 reduction to methane. Journal of Materials Chemistry A, 2022, 10(17): 9737–9745

DOI

104
Lu S , Huynh H L , Lou F , Guo M , Yu Z . Electrochemical reduction of CO2 to CH4 over transition metal atom embedded antimonene: first-principles study. Journal of CO2 Utilization, 2021, 51: 101645

105
Wang Y , Su H , He Y , Li L , Zhu S , Shen H , Xie P , Fu X , Zhou G , Feng C . . Advanced electrocatalysts with single-metal-atom active sites. Chemical Reviews, 2020, 120(21): 12217–12314

DOI

106
Yang Y , Liu J , Wu D , Ding J , Xiong B . Two-dimensional pyrite supported transition metal for highly-efficient electrochemical CO2 reduction: a theoretical screening study. Chemical Engineering Journal, 2021, 424: 130541

DOI

107
Fu L , Wang R , Zhao C , Huo J , He C , Kim K H , Zhang W . Construction of Cr-embedded graphyne electrocatalyst for highly selective reduction of CO2 to CH4: a DFT study. Chemical Engineering Journal, 2021, 414: 128857

DOI

108
Chen C , Tang C , Xu W , Li Y , Xu L . Design of iron atom modified thiophene-linked metalloporphyrin 2D conjugated microporous polymer as CO2 reduction photocatalyst. Physical Chemistry Chemical Physics, 2018, 20(14): 9536–9542

DOI

109
Chen Y Z , Zhang R , Jiao L , Jiang H L . Metal-organic framework-derived porous materials for catalysis. Coordination Chemistry Reviews, 2018, 362: 1–23

DOI

110
Lee J , Farha O K , Roberts J , Scheidt K A , Nguyen S T , Hupp J T . Metal-organic framework materials as catalysts. Chemical Society Reviews, 2009, 38(5): 1450–1459

DOI

111
Yi J D , Xie R , Xie Z L , Chai G L , Liu T F , Chen R P , Huang Y B , Cao R . Highly selective CO2 electroreduction to CH4 by in situ generated Cu2O single-type sites on a conductive MOF: stabilizing key intermediates with hydrogen bonding. Angewandte Chemie, 2020, 132(52): 23849–23856

DOI

112
Liu Y , Li S , Dai L , Li J , Lv J , Zhu Z , Yin A , Li P , Wang B . The synthesis of hexaazatrinaphthylene-based 2D conjugated copper metal-organic framework for highly selective and stable electroreduction of CO2 to methane. Angewandte Chemie, 2021, 133(30): 16545–16551

DOI

113
Li J , Huang H , Xue W , Sun K , Song X , Wu C , Nie L , Li Y , Liu C , Pan Y . . Self-adaptive dual-metal-site pairs in metal-organic frameworks for selective CO2 photoreduction to CH4. Nature Catalysis, 2021, 4(8): 719–729

DOI

114
Tian Y , Zhu C , Yan L , Zhao J , Su Z . Two-dimensional π-conjugated metal bis(dithiolene) nanosheets as promising electrocatalysts for carbon dioxide reduction: a computational study. Journal of Materials Chemistry A, 2019, 7(25): 15341–15346

DOI

115
Xing G , Cheng L , Li K , Gao Y , Tang H , Wang Y , Wu Z . Efficient electroreduction of CO2 by single-atom catalysts two-dimensional metal hexahydroxybenzene frameworks: a theoretical study. Applied Surface Science, 2021, 550: 149389

DOI

116
Cove H , Toroz D , Di Tommaso D . The effect of the oxidation state of the metal center in metalloporphyrins on the electrocatalytic CO2-to-CO conversion: a density functional theory study. Molecular Catalysis, 2020, 498: 111248

DOI

117
Zou L , Sa R , Lv H , Zhong H , Wang R . Recent advances on metalloporphyrin-based materials for visible-light-driven CO2 reduction. ChemSusChem, 2020, 13(23): 6124–6140

DOI

118
Zhang R , Warren J J . Recent developments in metalloporphyrin electrocatalysts for reduction of small molecules: strategies for managing electron and proton transfer reactions. ChemSusChem, 2021, 14(1): 293–302

DOI

119
Kumar S , Wani M Y , Arranja C T , e Silva J A , Avula B , Sobral A J F N . Porphyrins as nanoreactors in the carbon dioxide capture and conversion: a review. Journal of Materials Chemistry A, 2015, 3(39): 19615–19637

DOI

120
Gotico P , Halime Z , Aukauloo A . Recent advances in metalloporphyrin-based catalyst design towards carbon dioxide reduction: from bio-inspired second coordination sphere modifications to hierarchical architectures. Dalton Transactions, 2020, 49(8): 2381–2396

DOI

121
Szkaradek K , Buzar K , Pidko E A , Szyja B M . Supported Ru metalloporphyrins for electrocatalytic CO2 conversion. ChemCatChem, 2018, 10(8): 1814–1820

DOI

122
Gao W Y , Tsai C Y , Wojtas L , Thiounn T , Lin C C , Ma S . Interpenetrating metal-metalloporphyrin framework for selective CO2 uptake and chemical transformation of CO2. Inorganic Chemistry, 2016, 55(15): 7291–7294

DOI

123
Ifraemov R , Mukhopadhyay S , Hod I . Photo-assisted electrochemical CO2 reduction to CH4 using a Co-porphyrin-based metal-organic framework. Solar RRL, 2023, 7(5): 2201068

DOI

124
Wang C , Liu X M , Zhang M , Geng Y , Zhao L , Li Y G , Su Z M . Two-dimensional cobaltporphyrin-based cobalt-organic framework as an efficient photocatalyst for CO2 reduction reaction: a computational study. ACS Sustainable Chemistry & Engineering, 2019, 7(16): 14102–14110

DOI

125
Wang X , Maeda K , Thomas A , Takanabe K , Xin G , Carlsson J M , Domen K , Antonietti M . A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Materials, 2009, 8(1): 76–80

DOI

126
Masih D , Ma Y , Rohani S . Graphitic C3N4 based noble-metal-free photocatalyst systems: a review. Applied Catalysis B: Environmental, 2017, 206: 556–588

DOI

127
Wen J , Xie J , Chen X , Li X . A review on g-C3N4-based photocatalysts. Applied Surface Science, 2017, 391: 72–123

DOI

128
Fu J , Yu J , Jiang C , Cheng B . g-C3N4-based heterostructured photocatalysts. Advanced Energy Materials, 2018, 8(3): 1701503

DOI

129
Ismael M . A review on graphitic carbon nitride (g-C3N4) based nanocomposites: synthesis, categories, and their application in photocatalysis. Journal of Alloys and Compounds, 2020, 846: 156446

DOI

130
Liu R , Chen Z , Yao Y , Li Y , Cheema W A , Wang D , Zhu S . Recent advancements in g-C3N4-based photocatalysts for photocatalytic CO2 reduction: a mini review. RSC Advances, 2020, 10(49): 29408–29418

DOI

131
Ghosh U , Majumdar A , Pal A . Photocatalytic CO2 reduction over g-C3N4 based heterostructures: recent progress and prospects. Journal of Environmental Chemical Engineering, 2021, 9(1): 104631

DOI

132
Ao C , Feng B , Qian S , Wang L , Zhao W , Zhai Y , Zhang L . Theoretical study of transition metals supported on g-C3N4 as electrochemical catalysts for CO2 reduction to CH3OH and CH4. Journal of CO2 Utilization, 2020, 36: 116–123

133
Sun N , Zhu Y , Li M , Zhang J , Qin J , Li Y , Wang C . Thermal coupled photocatalysis over Pt/g-C3N4 for selectively reducing CO2 to CH4 via cooperation of the electronic metal-support interaction effect and the oxidation state of Pt. Applied Catalysis B: Environmental, 2021, 298: 120565

DOI

134
Li H , Gao Y , Xiong Z , Liao C , Shih K . Enhanced selective photocatalytic reduction of CO2 to CH4 over plasmonic Au modified g-C3N4 photocatalyst under UV-vis light irradiation. Applied Surface Science, 2018, 439: 552–559

DOI

135
Guo C , Zhang T , Deng X , Liang X , Guo W , Lu X , Wu C M L . Electrochemical CO2 reduction to C1 products on single nickel/cobalt/iron-doped graphitic carbon nitride: a DFT study. ChemSusChem, 2019, 12(23): 5126–5132

DOI

136
Wu T , Sun M , Huang B . Graphdiyne based catalysts for energy applications. Materials Chemistry Frontiers, 2021, 5(20): 7369–7383

DOI

137
Gao X , Liu H , Wang D , Zhang J . Graphdiyne: synthesis, properties, and applications. Chemical Society Reviews, 2019, 48(3): 908–936

DOI

138
Song B , Chen M , Zeng G , Gong J , Shen M , Xiong W , Zhou C , Tang X , Yang Y , Wang W . Using graphdiyne (GDY) as a catalyst support for enhanced performance in organic pollutant degradation and hydrogen production: a review. Journal of Hazardous Materials, 2020, 398: 122957

DOI

139
Wu S , Ji Y , Wang L , Wu X , Xu H . Selective CO2-to-CH4 photoconversion in aqueous solutions catalyzed by atomically dispersed copper sites anchored on ultrathin graphdiyne oxide nanosheets. Solar RRL, 2021, 5(7): 2100200

DOI

140
Zhao J , Chen Z , Zhao J . Metal-free graphdiyne doped with sp-hybridized boron and nitrogen atoms at acetylenic sites for high-efficiency electroreduction of CO2 to CH4 and C2H4. Journal of Materials Chemistry A, 2019, 7(8): 4026–4035

DOI

141
Feng Z , Tang Y , Ma Y , Li Y , Dai Y , Ding H , Su G , Dai X . Theoretical investigation of CO2 electroreduction on N(B)-doped graphdiyne mononlayer supported single copper atom. Applied Surface Science, 2021, 538: 148145

DOI

142
Zhang W , Chao Y , Zhang W , Zhou J , Lv F , Wang K , Lin F , Luo H , Li J , Tong M , Wang E , Guo S . Emerging dual-atomic-site catalysts for efficient energy catalysis. Advanced Materials, 2021, 33(36): 2102576

DOI

143
Ying Y , Luo X , Qiao J , Huang H . “More is different:” synergistic effect and structural engineering in double-atom catalysts. Advanced Functional Materials, 2021, 31(3): 2007423

DOI

144
Zhang J , Huang Q A , Wang J , Wang J , Zhang J , Zhao Y . Supported dual-atom catalysts: preparation, characterization, and potential applications. Chinese Journal of Catalysis, 2020, 41(5): 783–798

DOI

145
Lin L , Li H , Yan C , Li H , Si R , Li M , Xiao J , Wang G , Bao X . Synergistic catalysis over iron-nitrogen sites anchored with cobalt phthalocyanine for efficient CO2 electroreduction. Advanced Materials, 2019, 31(41): 1903470

DOI

146
Pei J , Wang T , Sui R , Zhang X , Zhou D , Qin F , Zhao X , Liu Q , Yan W , Dong J . . N-Bridged Co–N–Ni: new bimetallic sites for promoting electrochemical CO2 reduction. Energy & Environmental Science, 2021, 14(5): 3019–3028

DOI

147
Jiao J , Yuan Q , Tan M , Han X , Gao M , Zhang C , Yang X , Shi Z , Ma Y , Xiao H . . Constructing asymmetric double-atomic sites for synergistic catalysis of electrochemical CO2 reduction. Nature Communications, 2023, 14(1): 6164

DOI

148
Yang J , Liu X , Yuan H , Sun J , Li L , Goh K E J , Yu Z G , Xue J , Wang J , Zhang Y W . Beyond single-atom catalysts: exploration of Cu dimer and trimer for CO2 reduction to methane. Applied Catalysis A: General, 2022, 642: 118708

DOI

149
Liu H , Huang Q , An W , Wang Y , Men Y , Liu S . Dual-atom active sites embedded in two-dimensional C2N for efficient CO2 electroreduction: a computational study. Journal of Energy Chemistry, 2021, 61: 507–516

DOI

150
Huang B , Wu Y , Luo Y , Zhou N . Double atom-anchored defective boron nitride catalyst for efficient electroreduction of CO2 to CH4: a first principles study. Chemical Physics Letters, 2020, 756: 137852

DOI

151
Kim C , Dionigi F , Beermann V , Wang X , Möller T , Strasser P . Alloy nanocatalysts for the electrochemical oxygen reduction (ORR) and the direct electrochemical carbon dioxide reduction reaction (CO2RR). Advanced Materials, 2019, 31(31): 1805617

DOI

152
Liu J , Zhang T , Waterhouse G I . Complex alloy nanostructures as advanced catalysts for oxygen electrocatalysis: from materials design to applications. Journal of Materials Chemistry A, 2020, 8(44): 23142–23161

DOI

153
Da Y , Jiang R , Tian Z , Han X , Chen W , Hu W . The applications of single-atom alloys in electrocatalysis: progress and challenges. SmartMat, 2023, 4(1): e1136

DOI

154
Greeley J , Mavrikakis M . Near-surface alloys for hydrogen fuel cell applications. Catalysis Today, 2006, 111(1–2): 52–58

DOI

155
Huynh H L , Tucho W M , Yu X , Yu Z . Synthetic natural gas production from CO2 and renewable H2: towards large-scale production of Ni-Fe alloy catalysts for commercialization. Journal of Cleaner Production, 2020, 264: 121720

DOI

156
Zhao Z , Lu G . Computational screening of near-surface alloys for CO2 electroreduction. ACS Catalysis, 2018, 8(5): 3885–3894

DOI

157
Mohan O , Xu R , Mushrif S H . Novel nickel-based single-atom alloy catalyst for CO2 conversion reactions: computational screening and reaction mechanism analysis. Journal of Physical Chemistry C, 2021, 125(7): 4041–4055

DOI

158
Nasalevich M , Van der Veen M , Kapteijn F , Gascon J . Metal-organic frameworks as heterogeneous photocatalysts: advantages and challenges. CrystEngComm, 2014, 16(23): 4919–4926

DOI

159
Mahmood A , Guo W , Tabassum H , Zou R . Metal-organic framework-based nanomaterials for electrocatalysis. Advanced Energy Materials, 2016, 6(17): 1600423

DOI

160
Guo C C , Chu M F , Liu Q , Liu Y , Guo D C , Liu X Q . Effective catalysis of simple metalloporphyrins for cyclohexane oxidation with air in the absence of additives and solvents. Applied Catalysis A: General, 2003, 246(2): 303–309

DOI

161
Yu H , Xue Y , Li Y . Graphdiyne and its assembly architectures: synthesis, functionalization, and applications. Advanced Materials, 2019, 31(42): 1803101

DOI

162
Giannakakis G , Flytzani-Stephanopoulos M , Sykes E C H . Single-atom alloys as a reductionist approach to the rational design of heterogeneous catalysts. Accounts of Chemical Research, 2019, 52(1): 237–247

DOI

163
Zafeiratos S , Piccinin S , Teschner D . Alloys in catalysis: phase separation and surface segregation phenomena in response to the reactive environment. Catalysis Science & Technology, 2012, 2(9): 1787–1801

DOI

164
Chen B W , Xu L , Mavrikakis M . Computational methods in heterogeneous catalysis. Chemical Reviews, 2021, 121(2): 1007–1048

DOI

165
Sun Z , Yin H , Liu K , Cheng S , Li G K , Kawi S , Zhao H , Jia G , Yin Z . Machine learning accelerated calculation and design of electrocatalysts for CO2 reduction. SmartMat, 2022, 3(1): 68–83

DOI

166
Mou L H , Han T , Smith P E , Sharman E , Jiang J . Machine learning descriptors for data-driven catalysis study. Advanced Science, 2023, 10(22): 2301020

DOI

167
Guo Y , He X , Su Y , Dai Y , Xie M , Yang S , Chen J , Wang K , Zhou D , Wang C . Machine-learning-guided discovery and optimization of additives in preparing Cu catalysts for CO2 reduction. Journal of the American Chemical Society, 2021, 143(15): 5755–5762

DOI

168
Chen A , Zhang X , Chen L , Yao S , Zhou Z . A machine learning model on simple features for CO2 reduction electrocatalysts. Journal of Physical Chemistry C, 2020, 124(41): 22471–22478

DOI

Outlines

/