Computational catalysis on the conversion of CO2 to methane—an update
Received date: 11 Mar 2024
Accepted date: 13 May 2024
Copyright
The reliance on fossil fuels intensifies CO2 emissions, worsening political and environmental challenges. CO2 capture and conversion present a promising solution, influenced by industrialization and urbanization. In recent times, catalytic conversion of CO2 into fuels and chemical precursors, particularly methane, are gaining traction for establishing a sustainable, carbon-neutral economy due to methane’s advantages in renewable energy applications. Though homogeneous and heterogeneous catalysts are available for the conversion of CO2 to methane, the efficiency is found to be higher in heterogeneous catalysts. Therefore, this review focuses only on the heterogeneous catalysts. In this context, the efficient heterogeneous catalysts with optimum utility are yet to be obtained. Therefore, the quest for suitable catalyst for the catalytic conversion of CO2 to CH4 is still continuing and designing efficient catalysts requires assessing their synthetic feasibility, often achieved through computational methods like density functional theory simulations, providing insights into reaction mechanisms, rate-limiting steps, catalytic cycle, activation of C=O bonds and enhancing understanding while lowering costs. In this context, this review examines the conversion of CO2 to CH4 using seven distinct types of catalysts, including single and double atom catalysts, metal organic frameworks, metalloporphyrins, graphdiyne and graphitic carbon nitrite and alloys with some case studies. The main focus of this review is to offer a detailed and extensive examination of diverse catalyst design approaches and their utilization in CH4 production, with a specific emphasis on computational aspects. It explores the array of design methodologies used to identify reaction pathways and investigates the critical role of computational tools in their refinement and enhancement. We believe this review will help budding researchers to explore the possibilities of designing catalysts for the CO2 to CH4 conversion from computational framework.
Prince Joby , Yesaiyan Manojkumar , Antony Rajendran , Rajadurai Vijay Solomon . Computational catalysis on the conversion of CO2 to methane—an update[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(11) : 132 . DOI: 10.1007/s11705-024-2484-3
1 |
Takata T , Jiang J , Sakata Y , Nakabayashi M , Shibata N , Nandal V , Seki K , Hisatomi T , Domen K . Photocatalytic water splitting with a quantum efficiency of almost unity. Nature, 2020, 581(7809): 411–414
|
2 |
Albo J , Alvarez-Guerra M , Castaño P , Irabien A . Towards the electrochemical conversion of carbon dioxide into methanol. Green Chemistry, 2015, 17(4): 2304–2324
|
3 |
Zhao S , Jin R , Jin R . Opportunities and challenges in CO2 reduction by gold-and silver-based electrocatalysts: from bulk metals to nanoparticles and atomically precise nanoclusters. ACS Energy Letters, 2018, 3(2): 452–462
|
4 |
Shi R , Wang Z , Zhao Y , Waterhouse G I , Li Z , Zhang B , Sun Z , Xia C , Wang H , Zhang T . Room-temperature electrochemical acetylene reduction to ethylene with high conversion and selectivity. Nature Catalysis, 2021, 4(7): 565–574
|
5 |
Sun Z , Ma T , Tao H , Fan Q , Han B . Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials. Chem, 2017, 3(4): 560–587
|
6 |
Ahmad T , Zhang D . A critical review of comparative global historical energy consumption and future demand: the story told so far. Energy Reports, 2020, 6: 1973–1991
|
7 |
SmolinkaTOjongE TGarcheJ. Hydrogen production from renewable energies—electrolyzer technologies, in electrochemical energy storage for renewable sources and grid balancing. Elsevier, 2015, 103–128
|
8 |
Yu Z Y , Duan Y , Feng X Y , Yu X , Gao M R , Yu S H . Clean and affordable hydrogen fuel from alkaline water splitting: past, recent progress, and future prospects. Advanced Materials, 2021, 33(31): 2007100
|
9 |
Woldu A R , Huang Z , Zhao P , Hu L , Astruc D . Electrochemical CO2 reduction (CO2RR) to multi-carbon products over copper-based catalysts. Coordination Chemistry Reviews, 2022, 454: 214340
|
10 |
DziejarskiBSerafinJAnderssonKKrzyżyńskaR. CO2 capture materials: a review of current trends and future challenges. Materials Today Sustainability, 2023: 100483
|
11 |
Koerner B , Klopatek J . Anthropogenic and natural CO2 emission sources in an arid urban environment. Environmental Pollution, 2002, 116: S45–S51
|
12 |
Zha W , Liu D , Ma Z , Wang Y , Wei Y , Ma X , Wang L , Zhang Q , Lou B , Yuan R .
|
13 |
Li Y , Sun Q . Recent advances in breaking scaling relations for effective electrochemical conversion of CO2. Advanced Energy Materials, 2016, 6(17): 1600463
|
14 |
Tian Y , Wang Y , Yan L , Zhao J , Su Z . Electrochemical reduction of carbon dioxide on the two-dimensional M3(hexaiminotriphenylene)2 sheet: a computational study. Applied Surface Science, 2019, 467-468: 98–103
|
15 |
Wagner A , Sahm C D , Reisner E . Towards molecular understanding of local chemical environment effects in electro-and photocatalytic CO2 reduction. Nature Catalysis, 2020, 3(10): 775–786
|
16 |
Todorova T K , Schreiber M W , Fontecave M . Mechanistic understanding of CO2 reduction reaction (CO2RR) toward multicarbon products by heterogeneous copper-based catalysts. ACS Catalysis, 2020, 10(3): 1754–1768
|
17 |
Spigarelli B P , Kawatra S K . Opportunities and challenges in carbon dioxide capture. Journal of CO2 Utilization, 2013, 1: 69–87
|
18 |
Zhang S , Chen C , Ahn W S . Recent progress on CO2 capture using amine-functionalized silica. Current Opinion in Green and Sustainable Chemistry, 2019, 16: 26–32
|
19 |
Kumar S , Srivastava R , Koh J . Utilization of zeolites as CO2 capturing agents: advances and future perspectives. Journal of CO2 Utilization, 2020, 41: 101251
|
20 |
Zhou Z , Qi Y , Xie M , Cheng Z , Yuan W . Synthesis of CaO-based sorbents through incorporation of alumina/aluminate and their CO2 capture performance. Chemical Engineering Science, 2012, 74: 172–180
|
21 |
Didas S A , Choi S , Chaikittisilp W , Jones C W . Amine-oxide hybrid materials for CO2 capture from ambient air. Accounts of Chemical Research, 2015, 48(10): 2680–2687
|
22 |
Veerabhadrappa M G , Maroto-Valer M M , Chen Y , Garcia S . Layered double hydroxides-based mixed metal oxides: development of novel structured sorbents for CO2 capture applications. ACS Applied Materials & Interfaces, 2021, 13(10): 11805–11813
|
23 |
Avci G , Velioglu S , Keskin S . High-throughput screening of MOF adsorbents and membranes for H2 purification and CO2 capture. ACS Applied Materials & Interfaces, 2018, 10(39): 33693–33706
|
24 |
Ji Y , Zhang M , Guan K , Zhao J , Liu G , Jin W . High-performance CO2 capture through polymer-based ultrathin membranes. Advanced Functional Materials, 2019, 29(33): 1900735
|
25 |
Abuelnoor N , AlHajaj A , Khaleel M , Vega L F , Abu-Zahra M R . Activated carbons from biomass-based sources for CO2 capture applications. Chemosphere, 2021, 282: 131111
|
26 |
Yang Y , Liu W , Hu Y , Sun J , Tong X , Chen Q , Li Q . One-step synthesis of porous Li4SiO4-based adsorbent pellets via graphite moulding method for cyclic CO2 capture. Chemical Engineering Journal, 2018, 353: 92–99
|
27 |
An L , Liu S , Wang L , Wu J , Wu Z , Ma C , Yu Q , Hu X . Novel nitrogen-doped porous carbons derived from graphene for effective CO2 capture. Industrial & Engineering Chemistry Research, 2019, 58(8): 3349–3358
|
28 |
Dong H , Lin B , Gilmore K , Hou T , Lee S T , Li Y . B40 fullerene: an efficient material for CO2 capture, storage and separation. Current Applied Physics, 2015, 15(9): 1084–1089
|
29 |
Ngoy J M , Wagner N , Riboldi L , Bolland O A . CO2 capture technology using multi-walled carbon nanotubes with polyaspartamide surfactant. Energy Procedia, 2014, 63: 2230–2248
|
30 |
Jung S , Park Y K , Kwon E E . Strategic use of biochar for CO2 capture and sequestration. Journal of CO2 Utilization, 2019, 32: 128–139
|
31 |
Fagnani H M , da Silva C T , Pereira M M , Rinaldi A W , Arroyo P A , de Barros M A . CO2 adsorption in hydrochar produced from waste biomass. SN Applied Sciences, 2019, 1(9): 1031
|
32 |
MarshHReinosoF R. Activated Carbon. Elsevier, 2006
|
33 |
Hu X , Radosz M , Cychosz K A , Thommes M . CO2-filling capacity and selectivity of carbon nanopores: synthesis, texture, and pore-size distribution from quenched-solid density functional theory (QSDFT). Environmental Science & Technology, 2011, 45(16): 7068–7074
|
34 |
Drage T C , Blackman J M , Pevida C , Snape C E . Evaluation of activated carbon adsorbents for CO2 capture in gasification. Energy & Fuels, 2009, 23(5): 2790–2796
|
35 |
Akten E D , Siriwardane R , Sholl D S . Monte Carlo simulation of single- and binary-component adsorption of CO2, N2, and H2 in zeolite Na-4A. Energy & Fuels, 2003, 17(4): 977–983
|
36 |
Harlick P J , Sayari A . Applications of pore-expanded mesoporous silica. 5. Triamine grafted material with exceptional CO2 dynamic and equilibrium adsorption performance. Industrial & Engineering Chemistry Research, 2007, 46(2): 446–458
|
37 |
Franchi R S , Harlick P J , Sayari A . Applications of pore-expanded mesoporous silica. 2. Development of a high-capacity, water-tolerant adsorbent for CO2. Industrial & Engineering Chemistry Research, 2005, 44(21): 8007–8013
|
38 |
Jiménez V , Ramírez-Lucas A , Díaz J A , Sánchez P , Romero A . CO2 capture in different carbon materials. Environmental Science & Technology, 2012, 46(13): 7407–7414
|
39 |
Cui S , Cheng W , Shen X , Fan M , Russell A T , Wu Z , Yi X . Mesoporous amine-modified SiO2 aerogel: a potential CO2 sorbent. Energy & Environmental Science, 2011, 4(6): 2070–2074
|
40 |
Rogelj J , Den Elzen M , Höhne N , Fransen T , Fekete H , Winkler H , Schaeffer R , Sha F , Riahi K , Meinshausen M . Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature, 2016, 534(7609): 631–639
|
41 |
Ye R P , Ding J , Gong W , Argyle M D , Zhong Q , Wang Y , Russell C K , Xu Z , Russell A G , Li Q .
|
42 |
Wang H H , Hou L , Li Y Z , Jiang C Y , Wang Y Y , Zhu Z . Porous MOF with highly efficient selectivity and chemical conversion for CO2. ACS Applied Materials & Interfaces, 2017, 9(21): 17969–17976
|
43 |
Lee J C , Kim J H , Chang W S , Pak D . Biological conversion of CO2 to CH4 using hydrogenotrophic methanogen in a fixed bed reactor. Journal of Chemical Technology and Biotechnology, 2012, 87(6): 844–847
|
44 |
Tu W , Zhou Y , Zou Z . Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects. Advanced Materials, 2014, 26(27): 4607–4626
|
45 |
Genovese C , Ampelli C , Perathoner S , Centi G . Electrocatalytic conversion of CO2 to liquid fuels using nanocarbon-based electrodes. Journal of Energy Chemistry, 2013, 22(2): 202–213
|
46 |
Li M , Wang H , Luo W , Sherrell P C , Chen J , Yang J . Heterogeneous single-atom catalysts for electrochemical CO2 reduction reaction. Advanced Materials, 2020, 32(34): 2001848
|
47 |
Lim R J , Xie M , Sk M A , Lee J M , Fisher A , Wang X , Lim K H . A review on the electrochemical reduction of CO2 in fuel cells, metal electrodes and molecular catalysts. Catalysis Today, 2014, 233: 169–180
|
48 |
Lu Q , Rosen J , Jiao F . Nanostructured metallic electrocatalysts for carbon dioxide reduction. ChemCatChem, 2015, 7(1): 38–47
|
49 |
Yaashikaa P , Kumar P S , Varjani S J , Saravanan A . A review on photochemical, biochemical and electrochemical transformation of CO2 into value-added products. Journal of CO2 Utilization, 2019, 33: 131–147
|
50 |
Huo S , Weng Z , Wu Z , Zhong Y , Wu Y , Fang J , Wang H . Coupled metal/oxide catalysts with tunable product selectivity for electrocatalytic CO2 reduction. ACS Applied Materials & Interfaces, 2017, 9(34): 28519–28526
|
51 |
Kortlever R , Shen J , Schouten K J P , Calle-Vallejo F , Koper M T . Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. Journal of Physical Chemistry Letters, 2015, 6(20): 4073–4082
|
52 |
Prabhu P , Jose V , Lee J M . Heterostructured catalysts for electrocatalytic and photocatalytic carbon dioxide reduction. Advanced Functional Materials, 2020, 30(24): 1910768
|
53 |
Roy S C , Varghese O K , Paulose M , Grimes C A . Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano, 2010, 4(3): 1259–1278
|
54 |
Das S , Daud W W . A review on advances in photocatalysts towards CO2 conversion. RSC Advances, 2014, 4(40): 20856–20893
|
55 |
Tahir M , Amin N S . Recycling of carbon dioxide to renewable fuels by photocatalysis: prospects and challenges. Renewable & Sustainable Energy Reviews, 2013, 25: 560–579
|
56 |
Wang G , Chen J , Ding Y , Cai P , Yi L , Li Y , Tu C , Hou Y , Wen Z , Dai L . Electrocatalysis for CO2 conversion: from fundamentals to value-added products. Chemical Society Reviews, 2021, 50(8): 4993–5061
|
57 |
Gao D , Liu T , Wang G , Bao X . Structure sensitivity in single-atom catalysis toward CO2 electroreduction. ACS Energy Letters, 2021, 6(2): 713–727
|
58 |
Liu X , Wang Z , Tian Y , Zhao J . Graphdiyne-supported single iron atom: a promising electrocatalyst for carbon dioxide electroreduction into methane and ethanol. Journal of Physical Chemistry C, 2020, 124(6): 3722–3730
|
59 |
Ting L R L , Pique O , Lim S Y , Tanhaei M , Calle-Vallejo F , Yeo B S . Enhancing CO2 electroreduction to ethanol on copper-silver composites by opening an alternative catalytic pathway. ACS Catalysis, 2020, 10(7): 4059–4069
|
60 |
Wang Y , Pham T N , Tian Y , Morikawa Y , Yan L . Density functional theory study on a nitrogen-rich carbon nitride material C3N5 as photocatalyst for CO2 reduction to C1 and C2 products. Journal of Colloid and Interface Science, 2021, 585: 740–749
|
61 |
Yan Y , Dai Y , He H , Yu Y , Yang Y . A novel W-doped Ni-Mg mixed oxide catalyst for CO2 methanation. Applied Catalysis B: Environmental, 2016, 196: 108–116
|
62 |
Kothandaraman J , Goeppert A , Czaun M , Olah G A , Prakash G S . Conversion of CO2 from air into methanol using a polyamine and a homogeneous ruthenium catalyst. Journal of the American Chemical Society, 2016, 138(3): 778–781
|
63 |
Hidalgo D , Martín-Marroquín J . Power-to-methane, coupling CO2 capture with fuel production: an overview. Renewable & Sustainable Energy Reviews, 2020, 132: 110057
|
64 |
Sun Y , Lin Z , Peng S H , Sage V , Sun Z . A critical perspective on CO2 conversions into chemicals and fuels. Journal of Nanoscience and Nanotechnology, 2019, 19(6): 3097–3109
|
65 |
Ulmer U , Dingle T , Duchesne P N , Morris R H , Tavasoli A , Wood T , Ozin G A . Fundamentals and applications of photocatalytic CO2 methanation. Nature Communications, 2019, 10(1): 3169
|
66 |
Al-Fatesh A , Singh S K , Kanade G , Atia H , Fakeeha A H , Ibrahim A A , El-Toni A M , Labhasetwar N K . Rh promoted and ZrO2/Al2O3 supported Ni/Co based catalysts: high activity for CO2 reforming, steam-CO2 reforming and oxy-CO2 reforming of CH4. International Journal of Hydrogen Energy, 2018, 43(27): 12069–12080
|
67 |
Bremer J , Sundmacher K . Operation range extension via hot-spot control for catalytic CO2 methanation reactors. Reaction Chemistry & Engineering, 2019, 4(6): 1019–1037
|
68 |
Panagiotopoulou P , Kondarides D I , Verykios X E . Selective methanation of CO over supported Ru catalysts. Applied Catalysis B: Environmental, 2009, 88(3–4): 470–478
|
69 |
Podrojková N , Sans V , Oriňak A , Oriňaková R . Recent developments in the modelling of heterogeneous catalysts for CO2 conversion to chemicals. ChemCatChem, 2020, 12(7): 1802–1825
|
70 |
Zhang S , Fan Q , Xia R , Meyer T J . CO2 reduction: from homogeneous to heterogeneous electrocatalysis. Accounts of Chemical Research, 2020, 53(1): 255–264
|
71 |
Nganga J K , Wolf L M , Mullick K , Reinheimer E , Saucedo C , Wilson M E , Grice K A , Ertem M Z , Angeles-Boza A M . Methane generation from CO2 with a molecular rhenium catalyst. Inorganic Chemistry, 2021, 60(6): 3572–3584
|
72 |
Sun L , Reddu V , Fisher A C , Wang X . Electrocatalytic reduction of carbon dioxide: opportunities with heterogeneous molecular catalysts. Energy & Environmental Science, 2020, 13(2): 374–403
|
73 |
Tian Z , Priest C , Chen L . Recent progress in the theoretical investigation of electrocatalytic reduction of CO2. Advanced Theory and Simulations, 2018, 1(5): 1800004
|
74 |
Xu S , Carter E A . Theoretical insights into heterogeneous (photo) electrochemical CO2 reduction. Chemical Reviews, 2019, 119(11): 6631–6669
|
75 |
Zhu X , Li Y . Review of two-dimensional materials for electrochemical CO2 reduction from a theoretical perspective. WIREs Computational Molecular Science, 2019, 9(6): e1416
|
76 |
Han M , Fu X , Cao A , Guo C , Chu W , Xiao J . Toward computational design of catalysts for CO2 selective reduction via reaction phase diagram analysis. Advanced Theory and Simulations, 2019, 2(3): 1800200
|
77 |
Kibria M G , Edwards J P , Gabardo C M , Dinh C T , Seifitokaldani A , Sinton D , Sargent E H . Electrochemical CO2 reduction into chemical feedstocks: from mechanistic electrocatalysis models to system design. Advanced Materials, 2019, 31(31): 1807166
|
78 |
Kovačič Z , Likozar B , Hus M . Photocatalytic CO2 reduction: a review of ab initio mechanism, kinetics, and multiscale modeling simulations. ACS Catalysis, 2020, 10(24): 14984–15007
|
79 |
Morales-García Á , Viñes F , Gomes J R , Illas F . Concepts, models, and methods in computational heterogeneous catalysis illustrated through CO2 conversion. WIREs Computational Molecular Science, 2021, 11(4): e1530
|
80 |
Masdeu-Bultó A M , Reguero M , Claver C . Mechanistic insights of photocatalytic CO2 reduction: experimental versus computational studies. European Journal of Inorganic Chemistry, 2022, (14): e202100975
|
81 |
HussainSYangXYangJLiQ. Theoretical insights into the mechanism of photocatalytic reduction of CO2 and water splitting over II–VI zinc chalcogenide semiconductor. Materials Today Sustainability, 2024: 100686
|
82 |
Alli Y A , Oladoye P O , Onawole A T , Anuar H , Adewuyi S , Ogunbiyi O D , Philippot K . Photocatalysts for CO2 reduction and computational insights. Fuel, 2023, 344: 128101
|
83 |
AliS ASadiqIAhmadT. Deep insight of CO2 reduction reaction mechanism through experimental and theoretical anticipations. Materials Today Sustainability, 2023: 100587
|
84 |
AmayaSuárez JRemesalE RPlataJ JMárquezA MFernándezSanz J. Computational modeling of carbon dioxide catalytic conversion. Engineering Solutions for CO2 Conversion, 2021: 85–103
|
85 |
Li Y , Chan S H , Sun Q . Heterogeneous catalytic conversion of CO2: a comprehensive theoretical review. Nanoscale, 2015, 7(19): 8663–8683
|
86 |
Weijing D , Weihong Z , Xiaodong Z , Baofeng Z , Lei C , Laizhi S , Shuangxia Y , Haibin G , Guanyi C , Liang Z .
|
87 |
Cheng D , Negreiros F R , Aprà E , Fortunelli A . Computational approaches to the chemical conversion of carbon dioxide. ChemSusChem, 2013, 6(6): 944–965
|
88 |
Hohenberg P , Kohn W . Inhomogeneous electron gas. Physical Review, 1964, 136(3B): B864–B871
|
89 |
Kohn W , Sham L J . Self-consistent equations including exchange and correlation effects. Physical Review, 1965, 140(4A): A1133–A1138
|
90 |
Kresse G , Furthmüller J . Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 1996, 6(1): 15–50
|
91 |
Kresse G , Joubert D . From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B: Condensed Matter, 1999, 59(3): 1758–1775
|
92 |
Delley B . An all-electron numerical method for solving the local density functional for polyatomic molecules. Journal of Chemical Physics, 1990, 92(1): 508–517
|
93 |
Delley B . From molecules to solids with the DMol3 approach. Journal of Chemical Physics, 2000, 113(18): 7756–7764
|
94 |
Nørskov J K , Rossmeisl J , Logadottir A , Lindqvist L , Kitchin J R , Bligaard T , Jonsson H . Origin of the overpotential for oxygen reduction at a fuel-cell cathode. Journal of Physical Chemistry B, 2004, 108(46): 17886–17892
|
95 |
Dao X Y , Guo J H , Zhang X Y , Wang S Q , Cheng X M , Sun W Y . Structure-dependent iron-based metal-organic frameworks for selective CO2-to-CH4 photocatalytic reduction. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(48): 25850–25856
|
96 |
Wang Y L , Tian Y , Lang Z L , Guan W , Yan L K . A highly efficient Z-scheme B-doped g-C3N4/SnS2 photocatalyst for CO2 reduction reaction: a computational study. Journal of Materials Chemistry. A, 2018, 6(42): 21056–21063
|
97 |
Qiao B , Wang A , Yang X , Allard L F , Jiang Z , Cui Y , Liu J , Li J , Zhang T . Single-atom catalysis of CO oxidation using Pt1/FeOx. Nature Chemistry, 2011, 3(8): 634–641
|
98 |
Thomas J M , Saghi Z , Gai P L . Can a single atom serve as the active site in some heterogeneous catalysts?. Topics in Catalysis, 2011, 54(10–12): 588–594
|
99 |
Ranocchiari M , Lothschütz C , Grolimund D , van Bokhoven J A . Single-atom active sites on metal-organic frameworks. Proceedings of Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 468(2143): 1985–1999
|
100 |
Yang X F , Wang A , Qiao B , Li J , Liu J , Zhang T . Single-atom catalysts: a new frontier in heterogeneous catalysis. Accounts of Chemical Research, 2013, 46(8): 1740–1748
|
101 |
Cheng N , Zhang L , Doyle-Davis K , Sun X . Single-atom catalysts: from design to application. Electrochemical Energy Reviews, 2019, 2(4): 539–573
|
102 |
Chen Q , Ke Q , Zhao X , Chen X . Ruthenium-doped boron nitride nanotubes as promising electrocatalysts for carbon dioxide reduction to methane. Diamond and Related Materials, 2023, 136: 109942
|
103 |
Zhang Y , Zeng Z , Li H . Design of 3d transition metal anchored B5N3 catalysts for electrochemical CO2 reduction to methane. Journal of Materials Chemistry A, 2022, 10(17): 9737–9745
|
104 |
Lu S , Huynh H L , Lou F , Guo M , Yu Z . Electrochemical reduction of CO2 to CH4 over transition metal atom embedded antimonene: first-principles study. Journal of CO2 Utilization, 2021, 51: 101645
|
105 |
Wang Y , Su H , He Y , Li L , Zhu S , Shen H , Xie P , Fu X , Zhou G , Feng C .
|
106 |
Yang Y , Liu J , Wu D , Ding J , Xiong B . Two-dimensional pyrite supported transition metal for highly-efficient electrochemical CO2 reduction: a theoretical screening study. Chemical Engineering Journal, 2021, 424: 130541
|
107 |
Fu L , Wang R , Zhao C , Huo J , He C , Kim K H , Zhang W . Construction of Cr-embedded graphyne electrocatalyst for highly selective reduction of CO2 to CH4: a DFT study. Chemical Engineering Journal, 2021, 414: 128857
|
108 |
Chen C , Tang C , Xu W , Li Y , Xu L . Design of iron atom modified thiophene-linked metalloporphyrin 2D conjugated microporous polymer as CO2 reduction photocatalyst. Physical Chemistry Chemical Physics, 2018, 20(14): 9536–9542
|
109 |
Chen Y Z , Zhang R , Jiao L , Jiang H L . Metal-organic framework-derived porous materials for catalysis. Coordination Chemistry Reviews, 2018, 362: 1–23
|
110 |
Lee J , Farha O K , Roberts J , Scheidt K A , Nguyen S T , Hupp J T . Metal-organic framework materials as catalysts. Chemical Society Reviews, 2009, 38(5): 1450–1459
|
111 |
Yi J D , Xie R , Xie Z L , Chai G L , Liu T F , Chen R P , Huang Y B , Cao R . Highly selective CO2 electroreduction to CH4 by in situ generated Cu2O single-type sites on a conductive MOF: stabilizing key intermediates with hydrogen bonding. Angewandte Chemie, 2020, 132(52): 23849–23856
|
112 |
Liu Y , Li S , Dai L , Li J , Lv J , Zhu Z , Yin A , Li P , Wang B . The synthesis of hexaazatrinaphthylene-based 2D conjugated copper metal-organic framework for highly selective and stable electroreduction of CO2 to methane. Angewandte Chemie, 2021, 133(30): 16545–16551
|
113 |
Li J , Huang H , Xue W , Sun K , Song X , Wu C , Nie L , Li Y , Liu C , Pan Y .
|
114 |
Tian Y , Zhu C , Yan L , Zhao J , Su Z . Two-dimensional π-conjugated metal bis(dithiolene) nanosheets as promising electrocatalysts for carbon dioxide reduction: a computational study. Journal of Materials Chemistry A, 2019, 7(25): 15341–15346
|
115 |
Xing G , Cheng L , Li K , Gao Y , Tang H , Wang Y , Wu Z . Efficient electroreduction of CO2 by single-atom catalysts two-dimensional metal hexahydroxybenzene frameworks: a theoretical study. Applied Surface Science, 2021, 550: 149389
|
116 |
Cove H , Toroz D , Di Tommaso D . The effect of the oxidation state of the metal center in metalloporphyrins on the electrocatalytic CO2-to-CO conversion: a density functional theory study. Molecular Catalysis, 2020, 498: 111248
|
117 |
Zou L , Sa R , Lv H , Zhong H , Wang R . Recent advances on metalloporphyrin-based materials for visible-light-driven CO2 reduction. ChemSusChem, 2020, 13(23): 6124–6140
|
118 |
Zhang R , Warren J J . Recent developments in metalloporphyrin electrocatalysts for reduction of small molecules: strategies for managing electron and proton transfer reactions. ChemSusChem, 2021, 14(1): 293–302
|
119 |
Kumar S , Wani M Y , Arranja C T , e Silva J A , Avula B , Sobral A J F N . Porphyrins as nanoreactors in the carbon dioxide capture and conversion: a review. Journal of Materials Chemistry A, 2015, 3(39): 19615–19637
|
120 |
Gotico P , Halime Z , Aukauloo A . Recent advances in metalloporphyrin-based catalyst design towards carbon dioxide reduction: from bio-inspired second coordination sphere modifications to hierarchical architectures. Dalton Transactions, 2020, 49(8): 2381–2396
|
121 |
Szkaradek K , Buzar K , Pidko E A , Szyja B M . Supported Ru metalloporphyrins for electrocatalytic CO2 conversion. ChemCatChem, 2018, 10(8): 1814–1820
|
122 |
Gao W Y , Tsai C Y , Wojtas L , Thiounn T , Lin C C , Ma S . Interpenetrating metal-metalloporphyrin framework for selective CO2 uptake and chemical transformation of CO2. Inorganic Chemistry, 2016, 55(15): 7291–7294
|
123 |
Ifraemov R , Mukhopadhyay S , Hod I . Photo-assisted electrochemical CO2 reduction to CH4 using a Co-porphyrin-based metal-organic framework. Solar RRL, 2023, 7(5): 2201068
|
124 |
Wang C , Liu X M , Zhang M , Geng Y , Zhao L , Li Y G , Su Z M . Two-dimensional cobaltporphyrin-based cobalt-organic framework as an efficient photocatalyst for CO2 reduction reaction: a computational study. ACS Sustainable Chemistry & Engineering, 2019, 7(16): 14102–14110
|
125 |
Wang X , Maeda K , Thomas A , Takanabe K , Xin G , Carlsson J M , Domen K , Antonietti M . A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Materials, 2009, 8(1): 76–80
|
126 |
Masih D , Ma Y , Rohani S . Graphitic C3N4 based noble-metal-free photocatalyst systems: a review. Applied Catalysis B: Environmental, 2017, 206: 556–588
|
127 |
Wen J , Xie J , Chen X , Li X . A review on g-C3N4-based photocatalysts. Applied Surface Science, 2017, 391: 72–123
|
128 |
Fu J , Yu J , Jiang C , Cheng B . g-C3N4-based heterostructured photocatalysts. Advanced Energy Materials, 2018, 8(3): 1701503
|
129 |
Ismael M . A review on graphitic carbon nitride (g-C3N4) based nanocomposites: synthesis, categories, and their application in photocatalysis. Journal of Alloys and Compounds, 2020, 846: 156446
|
130 |
Liu R , Chen Z , Yao Y , Li Y , Cheema W A , Wang D , Zhu S . Recent advancements in g-C3N4-based photocatalysts for photocatalytic CO2 reduction: a mini review. RSC Advances, 2020, 10(49): 29408–29418
|
131 |
Ghosh U , Majumdar A , Pal A . Photocatalytic CO2 reduction over g-C3N4 based heterostructures: recent progress and prospects. Journal of Environmental Chemical Engineering, 2021, 9(1): 104631
|
132 |
Ao C , Feng B , Qian S , Wang L , Zhao W , Zhai Y , Zhang L . Theoretical study of transition metals supported on g-C3N4 as electrochemical catalysts for CO2 reduction to CH3OH and CH4. Journal of CO2 Utilization, 2020, 36: 116–123
|
133 |
Sun N , Zhu Y , Li M , Zhang J , Qin J , Li Y , Wang C . Thermal coupled photocatalysis over Pt/g-C3N4 for selectively reducing CO2 to CH4 via cooperation of the electronic metal-support interaction effect and the oxidation state of Pt. Applied Catalysis B: Environmental, 2021, 298: 120565
|
134 |
Li H , Gao Y , Xiong Z , Liao C , Shih K . Enhanced selective photocatalytic reduction of CO2 to CH4 over plasmonic Au modified g-C3N4 photocatalyst under UV-vis light irradiation. Applied Surface Science, 2018, 439: 552–559
|
135 |
Guo C , Zhang T , Deng X , Liang X , Guo W , Lu X , Wu C M L . Electrochemical CO2 reduction to C1 products on single nickel/cobalt/iron-doped graphitic carbon nitride: a DFT study. ChemSusChem, 2019, 12(23): 5126–5132
|
136 |
Wu T , Sun M , Huang B . Graphdiyne based catalysts for energy applications. Materials Chemistry Frontiers, 2021, 5(20): 7369–7383
|
137 |
Gao X , Liu H , Wang D , Zhang J . Graphdiyne: synthesis, properties, and applications. Chemical Society Reviews, 2019, 48(3): 908–936
|
138 |
Song B , Chen M , Zeng G , Gong J , Shen M , Xiong W , Zhou C , Tang X , Yang Y , Wang W . Using graphdiyne (GDY) as a catalyst support for enhanced performance in organic pollutant degradation and hydrogen production: a review. Journal of Hazardous Materials, 2020, 398: 122957
|
139 |
Wu S , Ji Y , Wang L , Wu X , Xu H . Selective CO2-to-CH4 photoconversion in aqueous solutions catalyzed by atomically dispersed copper sites anchored on ultrathin graphdiyne oxide nanosheets. Solar RRL, 2021, 5(7): 2100200
|
140 |
Zhao J , Chen Z , Zhao J . Metal-free graphdiyne doped with sp-hybridized boron and nitrogen atoms at acetylenic sites for high-efficiency electroreduction of CO2 to CH4 and C2H4. Journal of Materials Chemistry A, 2019, 7(8): 4026–4035
|
141 |
Feng Z , Tang Y , Ma Y , Li Y , Dai Y , Ding H , Su G , Dai X . Theoretical investigation of CO2 electroreduction on N(B)-doped graphdiyne mononlayer supported single copper atom. Applied Surface Science, 2021, 538: 148145
|
142 |
Zhang W , Chao Y , Zhang W , Zhou J , Lv F , Wang K , Lin F , Luo H , Li J , Tong M , Wang E , Guo S . Emerging dual-atomic-site catalysts for efficient energy catalysis. Advanced Materials, 2021, 33(36): 2102576
|
143 |
Ying Y , Luo X , Qiao J , Huang H . “More is different:” synergistic effect and structural engineering in double-atom catalysts. Advanced Functional Materials, 2021, 31(3): 2007423
|
144 |
Zhang J , Huang Q A , Wang J , Wang J , Zhang J , Zhao Y . Supported dual-atom catalysts: preparation, characterization, and potential applications. Chinese Journal of Catalysis, 2020, 41(5): 783–798
|
145 |
Lin L , Li H , Yan C , Li H , Si R , Li M , Xiao J , Wang G , Bao X . Synergistic catalysis over iron-nitrogen sites anchored with cobalt phthalocyanine for efficient CO2 electroreduction. Advanced Materials, 2019, 31(41): 1903470
|
146 |
Pei J , Wang T , Sui R , Zhang X , Zhou D , Qin F , Zhao X , Liu Q , Yan W , Dong J .
|
147 |
Jiao J , Yuan Q , Tan M , Han X , Gao M , Zhang C , Yang X , Shi Z , Ma Y , Xiao H .
|
148 |
Yang J , Liu X , Yuan H , Sun J , Li L , Goh K E J , Yu Z G , Xue J , Wang J , Zhang Y W . Beyond single-atom catalysts: exploration of Cu dimer and trimer for CO2 reduction to methane. Applied Catalysis A: General, 2022, 642: 118708
|
149 |
Liu H , Huang Q , An W , Wang Y , Men Y , Liu S . Dual-atom active sites embedded in two-dimensional C2N for efficient CO2 electroreduction: a computational study. Journal of Energy Chemistry, 2021, 61: 507–516
|
150 |
Huang B , Wu Y , Luo Y , Zhou N . Double atom-anchored defective boron nitride catalyst for efficient electroreduction of CO2 to CH4: a first principles study. Chemical Physics Letters, 2020, 756: 137852
|
151 |
Kim C , Dionigi F , Beermann V , Wang X , Möller T , Strasser P . Alloy nanocatalysts for the electrochemical oxygen reduction (ORR) and the direct electrochemical carbon dioxide reduction reaction (CO2RR). Advanced Materials, 2019, 31(31): 1805617
|
152 |
Liu J , Zhang T , Waterhouse G I . Complex alloy nanostructures as advanced catalysts for oxygen electrocatalysis: from materials design to applications. Journal of Materials Chemistry A, 2020, 8(44): 23142–23161
|
153 |
Da Y , Jiang R , Tian Z , Han X , Chen W , Hu W . The applications of single-atom alloys in electrocatalysis: progress and challenges. SmartMat, 2023, 4(1): e1136
|
154 |
Greeley J , Mavrikakis M . Near-surface alloys for hydrogen fuel cell applications. Catalysis Today, 2006, 111(1–2): 52–58
|
155 |
Huynh H L , Tucho W M , Yu X , Yu Z . Synthetic natural gas production from CO2 and renewable H2: towards large-scale production of Ni-Fe alloy catalysts for commercialization. Journal of Cleaner Production, 2020, 264: 121720
|
156 |
Zhao Z , Lu G . Computational screening of near-surface alloys for CO2 electroreduction. ACS Catalysis, 2018, 8(5): 3885–3894
|
157 |
Mohan O , Xu R , Mushrif S H . Novel nickel-based single-atom alloy catalyst for CO2 conversion reactions: computational screening and reaction mechanism analysis. Journal of Physical Chemistry C, 2021, 125(7): 4041–4055
|
158 |
Nasalevich M , Van der Veen M , Kapteijn F , Gascon J . Metal-organic frameworks as heterogeneous photocatalysts: advantages and challenges. CrystEngComm, 2014, 16(23): 4919–4926
|
159 |
Mahmood A , Guo W , Tabassum H , Zou R . Metal-organic framework-based nanomaterials for electrocatalysis. Advanced Energy Materials, 2016, 6(17): 1600423
|
160 |
Guo C C , Chu M F , Liu Q , Liu Y , Guo D C , Liu X Q . Effective catalysis of simple metalloporphyrins for cyclohexane oxidation with air in the absence of additives and solvents. Applied Catalysis A: General, 2003, 246(2): 303–309
|
161 |
Yu H , Xue Y , Li Y . Graphdiyne and its assembly architectures: synthesis, functionalization, and applications. Advanced Materials, 2019, 31(42): 1803101
|
162 |
Giannakakis G , Flytzani-Stephanopoulos M , Sykes E C H . Single-atom alloys as a reductionist approach to the rational design of heterogeneous catalysts. Accounts of Chemical Research, 2019, 52(1): 237–247
|
163 |
Zafeiratos S , Piccinin S , Teschner D . Alloys in catalysis: phase separation and surface segregation phenomena in response to the reactive environment. Catalysis Science & Technology, 2012, 2(9): 1787–1801
|
164 |
Chen B W , Xu L , Mavrikakis M . Computational methods in heterogeneous catalysis. Chemical Reviews, 2021, 121(2): 1007–1048
|
165 |
Sun Z , Yin H , Liu K , Cheng S , Li G K , Kawi S , Zhao H , Jia G , Yin Z . Machine learning accelerated calculation and design of electrocatalysts for CO2 reduction. SmartMat, 2022, 3(1): 68–83
|
166 |
Mou L H , Han T , Smith P E , Sharman E , Jiang J . Machine learning descriptors for data-driven catalysis study. Advanced Science, 2023, 10(22): 2301020
|
167 |
Guo Y , He X , Su Y , Dai Y , Xie M , Yang S , Chen J , Wang K , Zhou D , Wang C . Machine-learning-guided discovery and optimization of additives in preparing Cu catalysts for CO2 reduction. Journal of the American Chemical Society, 2021, 143(15): 5755–5762
|
168 |
Chen A , Zhang X , Chen L , Yao S , Zhou Z . A machine learning model on simple features for CO2 reduction electrocatalysts. Journal of Physical Chemistry C, 2020, 124(41): 22471–22478
|
/
〈 |
|
〉 |