Amine-functionalized metal-organic frameworks loaded with Ag nanoparticles for cycloaddition of CO2 to epoxides
Received date: 26 Mar 2024
Accepted date: 05 May 2024
Copyright
With the advantages of low raw material cost and 100% atom utilization, the synthesis of high value-added chemical product cyclic carbonates by the cycloaddition of CO2 to epoxides has become one of the most prospective approaches to achieve the industrial utilization of CO2. In the reported catalytic systems, the complexity of the catalyst synthesis process, high cost, separation difficulties, and low CO2 capture limit the catalytic efficiency and its large-scale application. In this paper, Ag nanoparticles loaded on polyethyleneimine (PEI)-modified UiO-66-NH2 (Ag/PEI@UiO-66-NH2) are successfully synthesized by in situ immersion reduction. The Ag nanoparticles and the amino groups on the surfaces of PEI@UiO-66-NH2 contribute to the adsorption of CO2 and polarization of C–O bonds in epoxides, thereby boosting the conversion capability for the CO2 cycloaddition reaction. At the amount of propylene oxide of 0.25 mol and the catalyst dosage of 1% of the substrate, the yield and selectivity of propylene carbonate are up to 99%. In addition, the stability and recyclability of Ag/PEI@UiO-66-NH2 catalyst are attained. The Ag/PEI@UiO-66-NH2 catalyst also demonstrates a wide range of activity and distinctive selectivity toward cyclo-carbonates in the cycloaddition of CO2 to epoxides. This work provides a guide to designing a highly efficient catalyst for in situ capture and high-value utilization of CO2 in industrial applications.
Huiyu Fu , Jiewen Wu , Changhai Liang , Xiao Chen . Amine-functionalized metal-organic frameworks loaded with Ag nanoparticles for cycloaddition of CO2 to epoxides[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(11) : 126 . DOI: 10.1007/s11705-024-2477-2
1 |
He M , Sun Y , Han B . Green carbon science: efficient carbon resource processing, utilization, and recycling towards carbon neutrality. Angewandte Chemie International Edition, 2022, 61(15): e202112835
|
2 |
Burkart M D , Hazari N , Tway C L , Zeitler E L . Opportunities and challenges for catalysis in carbon dioxide utilization. ACS Catalysis, 2019, 9(9): 7937–7956
|
3 |
Chen Q , Lv M , Tang Z , Wang H , Wei W , Sun Y . Opportunities of integrated systems with CO2 utilization technologies for green fuel & chemicals production in a carbon-constrained society. Journal of CO2 Utilization, 2016, 14: 1–9
|
4 |
Chen Z , Zhi Y , Li W , Li S , Liu Y , Tang X , Hu T , Shi L , Shan S . One-step synthesis of nitrogen-rich organic polymers for efficient catalysis of CO2 cycloaddition. Environmental Science and Pollution Research International, 2023, 30(25): 67290–67302
|
5 |
Pescarmona P P . Cyclic carbonates synthesised from CO2: applications, challenges and recent research trends. Current Opinion in Green and Sustainable Chemistry, 2021, 29: 100457
|
6 |
Zhang J , Wang L , Liu S , Li Z . Synthesis of diverse polycarbonates by organocatalytic copolymerization of CO2 and epoxides: from high pressure and temperature to ambient conditions. Angewandte Chemie International Edition, 2022, 61(4): e202111197
|
7 |
Zhang F , Wang Y , Zhang X , Zhang X , Liu H , Han B . Recent advances in the coupling of CO2 and epoxides into cyclic carbonates under halogen-free condition. Green Chemical Engineering, 2020, 1(2): 82–93
|
8 |
Ecochard Y , Leroux J , Boutevin B , Auvergne R , Caillol S . From multi-functional siloxane-based cyclic carbonates to hybrid polyhydroxyurethane thermosets. European Polymer Journal, 2019, 120: 109280
|
9 |
Martín C , Fiorani G , Kleij A W . Recent advances in the catalytic preparation of cyclic organic carbonates. ACS Catalysis, 2015, 5(2): 1353–1370
|
10 |
Della Monica F , Maity B , Pehl T , Buonerba A , De Nisi A , Monari M , Grassi A , Rieger B , Cavallo L , Capacchione C . [OSSO]-type iron(III) complexes for the low-pressure reaction of carbon dioxide with epoxides: catalytic activity, reaction kinetics, and computational study. ACS Catalysis, 2018, 8(8): 6882–6893
|
11 |
Comerford J W , Ingram I D V , North M , Wu X . Sustainable metal-based catalysts for the synthesis of cyclic carbonates containing five-membered rings. Green Chemistry, 2015, 17(4): 1966–1987
|
12 |
Zhong S , Liang L , Liu B , Sun J . ZnBr2/DMF as simple and highly active Lewis acid-base catalysts for the cycloaddition of CO2 to propylene oxide. Journal of CO2 Utilization, 2014, 6: 75–79
|
13 |
Belinchón A , Santiago R , Hernández E , Moya C , Navarro P , Palomar J . Reaction-extraction platforms towards CO2-derived cyclic carbonates catalyzed by ionic liquids. Journal of Cleaner Production, 2022, 368: 133189
|
14 |
Wang J Q , Cheng W G , Sun J , Shi T Y , Zhang X P , Zhang S J . Efficient fixation of CO2 into organic carbonates catalyzed by 2-hydroxymethyl-functionalized ionic liquids. RSC Advances, 2013, 4(5): 2360–2367
|
15 |
Alassmy Y A , Pescarmona P P . The role of water revisited and enhanced: a sustainable catalytic system for the conversion of CO2 into cyclic carbonates under mild conditions. ChemSusChem, 2019, 12(16): 3856–3863
|
16 |
Noh J , Kim Y , Park H , Lee J , Yoon M , Park M H , Kim Y , Kim M . Functional group effects on a metal-organic framework catalyst for CO2 cycloaddition. Journal of Industrial and Engineering Chemistry, 2018, 64: 478–483
|
17 |
Yamaguchi K , Ebitani K , Yoshida T , Yoshida H , Kaneda K . Mg-Al mixed oxides as highly active acid-base catalysts for cycloaddition of carbon dioxide to epoxides. Journal of the American Chemical Society, 1999, 121(18): 4526–4527
|
18 |
Masoom Nataj S M , Kaliaguine S , Fontaine F G . Highly efficient catalysts for CO2 fixation using guanidinium-functionalized Zr-MOFs. ChemCatChem, 2023, 15(10): e202300079
|
19 |
Liu S , Gao M L , Li C N , Liu L , Han Z B . Superhydrophobic MOFs with enhanced catalytic activity for chemical fixation of CO2. Dalton Transactions, 2023, 52(40): 14319–14323
|
20 |
Xu A , Chen Z , Jin L , Chu B , Lu J , He X , Yao Y , Li B , Dong L , Fan M . Quaternary ammonium salt functionalized MIL-101-NH2(Cr) as a bifunctional catalyst for the cycloaddition of CO2 with epoxides to produce cyclic carbonates. Applied Catalysis A, General, 2021, 624: 118307
|
21 |
Jiang Y , Tan P , Qi S C , Liu X Q , Yan J H , Fan F , Sun L B . Metal-organic frameworks with target-specific active sites switched by photoresponsive motifs: efficient adsorbents for tailorable CO2 capture. Angewandte Chemie International Edition, 2019, 58(20): 6600–6604
|
22 |
Bahamon D , Anlu W , Builes S , Khaleel M , Vega L F . Effect of amine functionalization of MOF adsorbents for enhanced CO2 capture and separation: a molecular simulation study. Frontiers in Chemistry, 2021, 8: 574622
|
23 |
Yan S , Li W , He D , He G , Chen H . Recent research progress of metal-organic frameworks (MOFs) based catalysts for CO2 cycloaddition reaction. Molecular Catalysis, 2023, 550: 113608
|
24 |
Taşcı Z , Kunduracıoğlu A , Kani İ , Çetinkaya B . A new application area for Ag-NHCs: CO2 fixation catalyst. ChemCatChem, 2012, 4(6): 831–835
|
25 |
Gao C Y , Mao C , Yang Y , Xu N , Liu J , Chen X , Liu J , Duan L . Epoxide activation by a silver phosphonate for heterogeneous catalysis of CO2 cycloaddition. CrystEngComm, 2022, 25(1): 108–113
|
26 |
Wu D , Lu X , Tang Y , Gao F , Yang G , Wang Y Y . Light-assisted CO2 cycloaddition over a nanochannel cadmium-organic framework loaded with silver nanoparticles. ACS Applied Nano Materials, 2023, 6(7): 6197–6207
|
27 |
Liu X , Hu C , Wu J , Zhu H , Li Y , Cui P , Wei F . The assembly of novel Ag-based NP@MOFs mesoporous spherical composites and their enhanced catalytic performance in photodegradation and chemical conversion of CO2 with epoxide. Journal of Solid State Chemistry, 2021, 296: 121889
|
28 |
Li G , Sui X , Cai X , Hu W , Liu X , Chen M , Zhu Y . Precisely constructed silver active sites in gold nanoclusters for chemical fixation of CO2. Angewandte Chemie International Edition, 2021, 60(19): 10573–10576
|
29 |
Li S , Feng F , Chen S , Zhang X , Liang Y , Shan S . Preparation of UiO-66-NH2 and UiO-66-NH2/sponge for adsorption of 2,4-dichlorophenoxyacetic acid in water. Ecotoxicology and Environmental Safety, 2020, 194: 110440
|
30 |
Hu S Z , Huang T , Zhang N , Lei Y Z , Wang Y . Enhanced removal of lead ions and methyl orange from wastewater using polyethyleneimine grafted UiO-66-NH2 nanoparticles. Separation and Purification Technology, 2022, 297: 121470
|
31 |
Li K , Jiang J , Yan F , Tian S , Chen X . The influence of polyethyleneimine type and molecular weight on the CO2 capture performance of PEI-nano silica adsorbents. Applied Energy, 2014, 136: 750–755
|
32 |
Lemaire P C , Lee D T , Zhao J , Parsons G N . Reversible low-temperature metal node distortion during atomic layer deposition of Al2O3 and TiO2 on UiO-66-NH2 metal-organic framework crystal surfaces. ACS Applied Materials & Interfaces, 2017, 9(26): 22042–22054
|
33 |
Zeng H , Yu Z , Shao L , Li X , Zhu M , Liu Y , Feng X , Zhu X . A novel strategy for enhancing the performance of membranes for dyes separation: embedding PAA@UiO-66-NH2 between graphene oxide sheets. Chemical Engineering Journal, 2021, 403: 126281
|
34 |
Pankajakshan A , Sinha M , Ojha A A , Mandal S . Water-stable nanoscale zirconium-based metal-organic frameworks for the effective removal of glyphosate from aqueous media. ACS Omega, 2018, 3(7): 7832–7839
|
35 |
Ji Z , Sun H , Zhu Y , Zhang D , Wang L , Dai F , Zhao Y , Chen L . Enhanced selective removal of lead ions using a functionalized PAMAM@UiO-66-NH2 nanocomposite: experiment and mechanism. Microporous and Mesoporous Materials, 2021, 328: 111433
|
36 |
Xiao W Z , Xiao L P , Yang Y Q , Zhai S R , Sun R C . Catalytic degradation of organic pollutants for water remediation over Ag nanoparticles immobilized on amine-functionalized metal-organic frameworks. Nano Research, 2022, 15(9): 7887–7895
|
37 |
Jin J , Xue J , Wu D , Yang G , Wang Y . Improved performance of the pyrimidine-modified porous In-MOF and an in situ prepared composite Ag@In-MOF material. Chemical Communications, 2022, 58(56): 7749–7752
|
38 |
Zhang X , Liu H , Shi Y , Han J , Yang Z , Zhang Y , Long C , Guo J , Zhu Y , Qiu X .
|
39 |
Wu Z , Liu Q , Yang X , Ye X , Duan H , Zhang J , Zhao B , Huang Y . Knitting aryl network polymers-incorporated Ag nanoparticles: a mild and efficient catalyst for the fixation of CO2 as carboxylic acid. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 9634–9639
|
40 |
Lan X , Li Q , Cao L , Du C , Ricardez Sandoval L , Bai G . Rebuilding supramolecular aggregates to porous hollow N-doped carbon tube inlaid with ultrasmall Ag nanoparticles: a highly efficient catalyst for CO2 conversion. Applied Surface Science, 2020, 508: 145220
|
41 |
Isaeva V I , Timofeeva M N , Lukoyanov I A , Gerasimov E Y , Panchenko V N , Chernyshev V V , Glukhov L M , Kustov L M . Novel MOF catalysts based on calix[4]arene for the synthesis of propylene carbonate from propylene oxide and CO2. Journal of CO2 Utilization, 2022, 66: 102262
|
42 |
El Aouni N , López Redondo C , Yeamin M B , Aghmiz A , Reguero M , Masdeu-Bultó A M . Influence of structural properties of zinc complexes with N-donor ligands on the catalyzed cycloaddition of CO2 to epoxides into cyclic carbonates. Molecular Catalysis, 2023, 538: 112992
|
43 |
Lan D H , Yang F M , Luo S L , Au C T , Yin S F . Water-tolerant graphene oxide as a high-efficiency catalyst for the synthesis of propylene carbonate from propylene oxide and carbon dioxide. Carbon, 2014, 73: 351–360
|
44 |
Patra R , Sarma D . A thiol-containing zirconium MOF functionalized with silver nanoparticles for synergistic CO2 cycloaddition reactions. Dalton Transactions, 2023, 52(31): 10795–10804
|
/
〈 | 〉 |