Conversion of syngas into lower olefins over a hybrid catalyst system
Received date: 06 Jan 2024
Accepted date: 11 Apr 2024
Copyright
Lower olefins, produced from syngas through Fischer-Tropsch synthesis, has been gaining worldwide attention as a non-petroleum route. However, the process demonstrates limited selectivity for target products. Herein, a hybrid catalyst system utilizing Fe-based catalyst and SAPO-34 was shown to enhance the selectivity toward lower olefins. A comprehensive study was conducted to examine the impact of various operating conditions on catalytic performance, such as space velocity, pressure, and temperature, as well as catalyst combinations, including loading pattern, and mass ratio of metal and zeolite. The findings indicated that the addition of SAPO-34 was beneficial for enhancing catalytic activity. Furthermore, compared with AlPO-34 zeolite, the strong-acid site on SAPO-34 was identified to crack the long-chain hydrocarbons, thus contributing to the lower olefin formation. Nevertheless, an excess of strong-acid sites was found to detrimentally impact the selectivity of lower olefins, attributed to the increased aromatization and polymerization of lower olefins. The detailed analysis of a hybrid catalyst in Fischer-Tropsch synthesis provides a practical strategy for improving lower olefins selectivity, and has broader implications for the application of hybrid catalyst in diverse catalytic systems.
Qiao Zhao , Hongyu Wang , Haoting Liang , Xiaoxue Han , Chongyang Wei , Shiwei Wang , Yue Wang , Shouying Huang , Xinbin Ma . Conversion of syngas into lower olefins over a hybrid catalyst system[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(10) : 116 . DOI: 10.1007/s11705-024-2467-4
1 |
Torres Galvis H M , de Jong K P . Catalysts for production of lower olefins from synthesis gas: a review. ACS Catalysis, 2013, 3(9): 2130–2149
|
2 |
Zhai P , Li Y , Wang M , Liu J , Cao Z , Zhang J , Xu Y , Liu X , Li Y W , Zhu Q .
|
3 |
Torres Galvis H M , Bitter J H , Khare C B , Ruitenbeek M , Dugulan A I , de Jong K P . Supported iron nanoparticles as catalysts for sustainable production of lower olefins. Science, 2012, 335(6070): 835–838
|
4 |
Zhou J , Chu W , Zhang H , Xu H , Zhang T . Effect of Fe content on FeMn catalysts for light alkenes synthesis. Frontiers of Chemical Engineering in China, 2008, 2(3): 315–318
|
5 |
Zhou W , Cheng K , Kang J , Zhou C , Subramanian V , Zhang Q , Wang Y . New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels. Chemical Society Reviews, 2019, 48(12): 3193–3228
|
6 |
Zhang Q , Kang J , Wang Y . Development of novel catalysts for Fischer-Tropsch synthesis: tuning the product selectivity. ChemCatChem, 2010, 2(9): 1030–1058
|
7 |
Wan H J , Wu B S , Zhang C H , Xiang H W , Li Y W , Xu B F , Yi F . Study on Fe-Al2O3 interaction over precipitated iron catalyst for Fischer-Tropsch synthesis. Catalysis Communications, 2007, 8(10): 1538–1545
|
8 |
Torshizi H O , Nakhaei Pour A , Mohammadi A , Zamani Y , Kamali Shahri S M . Fischer-Tropsch synthesis by reduced graphene oxide nanosheets supported cobalt catalysts: role of support and metal nanoparticle size on catalyst activity and products selectivity. Frontiers of Chemical Science and Engineering, 2020, 15(2): 299–309
|
9 |
Yuan Y , Huang S , Wang H , Wang Y , Wang J , Lv J , Li Z , Ma X . Monodisperse nano-Fe3O4 on α-Al2O3 catalysts for Fischer-Tropsch synthesis to lower olefins: promoter and size effects. ChemCatChem, 2017, 9(16): 3144–3152
|
10 |
Yang X , Yang J , Wang Y , Zhao T , Ben H , Li X , Holmen A , Huang Y , Chen D . Promotional effects of sodium and sulfur on light olefins synthesis from syngas over iron-manganese catalyst. Applied Catalysis B: Environmental, 2022, 300: 120716–120723
|
11 |
Liu S , Zhao Q , Han X , Wei C , Liang H , Wang Y , Huang S , Ma X . Proximity effect of Fe-Zn bimetallic catalysts on CO2 hydrogenation performance. Transactions of Tianjin University, 2023, 29(4): 293–303
|
12 |
Zhao Q , Huang S , Han X , Chen J , Wang J , Rykov A , Wang Y , Wang M , Lv J , Ma X . Highly active and controllable MOF-derived carbon nanosheets supported iron catalysts for Fischer-Tropsch synthesis. Carbon, 2021, 173: 364–375
|
13 |
Wang Y , Huang S , Teng X , Wang H , Wang J , Zhao Q , Wang Y , Ma X . Controllable Fe/HCS catalysts in the Fischer-Tropsch synthesis: effects of crystallization time. Frontiers of Chemical Science and Engineering, 2020, 14(5): 802–812
|
14 |
Ramirez A , Gong X , Caglayan M , Nastase S F , Abou-Hamad E , Gevers L , Cavallo L , Dutta Chowdhury A , Gascon J . Selectivity descriptors for the direct hydrogenation of CO2 to hydrocarbons during zeolite-mediated bifunctional catalysis. Nature Communications, 2021, 12(1): 5914–5926
|
15 |
Sun Q , Wang N , Yu J . Advances in catalytic applications of zeolite-supported metal catalysts. Advanced Materials, 2021, 33(51): 2104442–2104478
|
16 |
Yang L , Wang C , Zhang L , Dai W , Chu Y , Xu J , Wu G , Gao M , Liu W , Xu Z .
|
17 |
Pan X , Jiao F , Miao D , Bao X . Oxide-zeolite-based composite catalyst concept that enables syngas chemistry beyond Fischer-Tropsch synthesis. Chemical Reviews, 2021, 121(11): 6588–6609
|
18 |
Qiu T , Wang L , Lv S , Sun B , Zhang Y , Liu Z , Yang W , Li J . SAPO-34 zeolite encapsulated Fe3C nanoparticles as highly selective Fischer-Tropsch catalysts for the production of light olefins. Fuel, 2017, 203: 811–816
|
19 |
Přech J , Strossi Pedrolo D R , Marcilio N R , Gu B , Peregudova A S , Mazur M , Ordomsky V V , Valtchev V , Khodakov A Y . Core-shell metal zeolite composite catalysts for in situ processing of Fischer-Tropsch hydrocarbons to gasoline type fuels. ACS Catalysis, 2020, 10(4): 2544–2555
|
20 |
Dai W , Cao G , Yang L , Wu G , Dyballa M , Hunger M , Guan N , Li L . Insights into the catalytic cycle and activity of methanol-to-olefin conversion over low-silica AlPO-34 zeolites with controllable Brønsted acid density. Catalysis Science & Technology, 2017, 7(3): 607–618
|
21 |
Xu L , Du A , Wei Y , Wang Y , Yu Z , He Y , Zhang X , Liu Z . Synthesis of SAPO-34 with only Si(4Al) species: effect of Si contents on Si incorporation mechanism and Si coordination environment of SAPO-34. Microporous and Mesoporous Materials, 2008, 115(3): 332–337
|
22 |
Liu X , Zhou W , Yang Y , Cheng K , Kang J , Zhang L , Zhang G , Min X , Zhang Q , Wang Y . Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanol/dimethyl ether intermediates. Chemical Science, 2018, 9(20): 4708–4718
|
23 |
Assen A H , Virdis T , De Moor W , Moussa A , Eddaoudi M , Baron G , Denayer J F M , Belmabkhout Y . Kinetic separation of C4 olefins using Y-fum-fcu-MOF with ultra-fine-tuned aperture size. Chemical Engineering Journal, 2021, 413: 127388–127395
|
24 |
Nasser A H , Guo L , ELnaggar H , Wang Y , Guo X , AbdelMoneim A , Tsubaki N . Mn-Fe nanoparticles on a reduced graphene oxide catalyst for enhanced olefin production from syngas in a slurry reactor. RSC Advances, 2018, 8(27): 14854–14863
|
25 |
Xu Y , Liu D , Liu X . Conversion of syngas toward aromatics over hybrid Fe-based Fischer-Tropsch catalysts and HZSM-5 zeolites. Applied Catalysis A, General, 2018, 552: 168–183
|
26 |
Kim J H , Rhim G B , Choi N , Youn M H , Chun D H , Heo S . A hybrid modeling framework for efficient development of Fischer-Tropsch kinetic models. Journal of Industrial and Engineering Chemistry, 2023, 118: 318–329
|
27 |
Todic B , Nowicki L , Nikacevic N , Bukur D B . Fischer-Tropsch synthesis product selectivity over an industrial iron-based catalyst: effect of process conditions. Catalysis Today, 2016, 261: 28–39
|
28 |
Wu L , Liu Z , Xia L , Qiu M , Liu X , Zhu H , Sun Y . Effect of SAPO-34 molecular sieve morphology on methanol to olefins performance. Chinese Journal of Catalysis, 2013, 34(7): 1348–1356
|
29 |
Thiessen J , Rose A , Meyer J , Jess A , Curulla-Ferré D . Effects of manganese and reduction promoters on carbon nanotube supported cobalt catalysts in Fischer-Tropsch synthesis. Microporous and Mesoporous Materials, 2012, 164: 199–206
|
30 |
Zhang Q , Cheng K , Kang J , Deng W , Wang Y . Fischer-Tropsch catalysts for the production of hydrocarbon fuels with high selectivity. ChemSusChem, 2014, 7(5): 1251–1264
|
31 |
Wang Y N , Ma W P , Lu Y J , Yang J , Xu Y Y , Xiang H W , Li Y W , Zhao Y L , Zhang B J . Kinetics modelling of Fischer-Tropsch synthesis over an industrial Fe-Cu-K catalyst. Fuel, 2003, 82(2): 195–213
|
32 |
Li Y , Wang M , Liu S , Wu F , Zhang Q , Zhang S , Cheng K , Wang Y . Distance for communication between metal and acid sites for syngas conversion. ACS Catalysis, 2022, 12(15): 8793–8801
|
33 |
Amoo C C , Xing C , Tsubaki N , Sun J . Tandem reactions over zeolite-based catalysts in syngas conversion. ACS Central Science, 2022, 8(8): 1047–1062
|
34 |
Gao P , Dang S , Li S , Bu X , Liu Z , Qiu M , Yang C , Wang H , Zhong L , Han Y .
|
35 |
Wei J , Yao R , Ge Q , Wen Z , Ji X , Fang C , Zhang J , Xu H , Sun J . Catalytic hydrogenation of CO2 to isoparaffins over Fe-based multifunctional catalysts. ACS Catalysis, 2018, 8(11): 9958–9967
|
36 |
Zhu Y , Pan X , Jiao F , Li J , Yang J , Ding M , Han Y , Liu Z , Bao X . Role of manganese oxide in syngas conversion to light olefins. ACS Catalysis, 2017, 7(4): 2800–2804
|
37 |
Rahimi N , Karimzadeh R . Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: a review. Applied Catalysis A, General, 2011, 398(1-2): 1–17
|
38 |
Huang Q , Tang Y , Wang S , Chi Y , Yan J . Effect of cellulose and polyvinyl chloride interactions on the catalytic cracking of tar contained in syngas. Energy & Fuels, 2016, 30(6): 4888–4894
|
39 |
Weber J L , Dugulan I , de Jongh P E , de Jong K P . Bifunctional catalysis for the conversion of synthesis gas to olefins and aromatics. ChemCatChem, 2018, 10(5): 1107–1112
|
40 |
Xu Y , Liu J , Ma G , Wang J , Wang Q , Lin J , Wang H , Zhang C , Ding M . Synthesis of aromatics from syngas over FeMnK/SiO2 and HZSM-5 tandem catalysts. Molecular Catalysis, 2018, 454: 104–113
|
41 |
Wang T , Xu Y , Shi C , Jiang F , Liu B , Liu X . Direct production of aromatics from syngas over a hybrid FeMn Fischer-Tropsch catalyst and HZSM-5 zeolite: local environment effect and mechanism-directed tuning of the aromatic selectivity. Catalysis Science & Technology, 2019, 9(15): 3933–3946
|
42 |
Wu L , Liu Z , Qiu M , Yang C , Xia L , Liu X , Sun Y . Morphology control of SAPO-34 by microwave synthesis and their performance in the methanol to olefins reaction. Reaction Kinetics, Mechanisms and Catalysis, 2013, 111(1): 319–334
|
43 |
Sun C , Wang Y , Wang Z , Chen H , Wang X , Li H , Sun L , Fan C , Wang C , Zhang X . Fabrication of hierarchical ZnSAPO-34 by alkali treatment with improved catalytic performance in the methanol-to-olefin reaction. Comptes Rendus Chimie, 2018, 21(1): 61–70
|
44 |
KimH DSongH TFazeliAAlizadeh EslamiANohY SGhaffari SaeidabadNLeeK YMoonD J. CO/CO2 hydrogenation for the production of lighter hydrocarbons over SAPO-34 modified hybrid FTS catalysts. Catalysis Today, 2022, 388–389: 410–416
|
/
〈 | 〉 |