Enhanced bioethanol production from sugarcane bagasse: combination of liquid hot water and deep eutectic solvent pretreatment for optimized enzymatic saccharification
Received date: 27 Dec 2023
Accepted date: 23 Feb 2024
Copyright
In the present study, a sustainable pretreatment methodology combining liquid hot water and deep eutectic solvent is proposed for the efficient fractionation of hemicellulose, cellulose, and lignin from sugarcane bagasse, thereby facilitating the comprehensive utilization of both C5 and C6 sugars. The application of this combined pretreatment strategy to sugarcane bagasse led to notable enhancements in enzymatic saccharification and subsequent fermentation. Experiment results demonstrate that liquid hot water-deep eutectic solvent pretreatment yielded 85.05 ± 0.66 g·L–1 of total fermentable sugar (glucose: 60.96 ± 0.21 g·L–1, xylose: 24.09 ± 0.87 g·L–1) through enzymatic saccharification of sugarcane bagasse. Furthermore, fermentation of the pretreated sugarcane bagasse hydrolysate yielded 34.33 ± 3.15 g·L–1 of bioethanol. These findings confirm the effectiveness of liquid hot water-deep eutectic solvent pretreatment in separating lignocellulosic components, thus presenting a sustainable and promising pretreatment method for maximizing the valuable utilization of biomass resources.
Xiaoling Xian , Biying Li , Shiyong Feng , Jiale Huang , Xinyuan Fu , Ting Wu , Xiaoqing Lin . Enhanced bioethanol production from sugarcane bagasse: combination of liquid hot water and deep eutectic solvent pretreatment for optimized enzymatic saccharification[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(8) : 85 . DOI: 10.1007/s11705-024-2438-9
1 |
Gaurav N , Sivasankari S , Kiran G S , Ninawe A , Selvin J . Utilization of bioresources for sustainable biofuels: a review. Renewable & Sustainable Energy Reviews, 2017, 73(7): 205–214
|
2 |
Bórawski P , Bełdycka Bórawska A , Szymańska E J , Jankowski K J , Dubis B , Dunn J W . Development of renewable energy sources market and biofuels in the European Union. Journal of Cleaner Production, 2019, 228: 467–484
|
3 |
Ashby R D , Qureshi N , Strahan G D , Johnston D B , Msanne J , Lin X . Corn stover hydrolysate and levulinic acid: mixed substrates for short-chain polyhydroxyalkanoate production. Biocatalysis and Agricultural Biotechnology, 2022, 43: 102391
|
4 |
De Bhowmick G , Sarmah A K , Sen R . Lignocellulosic biorefinery as a model for sustainable development of biofuels and value added products. Bioresource Technology, 2018, 247: 1144–1154
|
5 |
Osman A I , Qasim U , Jamil F , Al-Muhtaseb A H , Jrai A A , Al-Riyami M , Al-Maawali S , Al-Haj L , Al-Hinai A , Al-Abri M .
|
6 |
Ebadian M , van Dyk S , McMillan J D , Saddler J . Biofuels policies that have encouraged their production and use: an international perspective. Energy Policy, 2020, 147: 111906
|
7 |
Chen J , Zhang B , Luo L , Zhang F , Yi Y , Shan Y , Liu B , Zhou Y , Wang X , Lü X . A review on recycling techniques for bioethanol production from lignocellulosic biomass. Renewable & Sustainable Energy Reviews, 2021, 149: 111370
|
8 |
Rezania S , Oryani B , Cho J , Talaiekhozani A , Sabbagh F , Hashemi B , Rupani P F , Mohammadi A A . Different pretreatment technologies of lignocellulosic biomass for bioethanol production: an overview. Energy, 2020, 199: 117457
|
9 |
Sawhney D , Vaid S , Bangotra R , Sharma S , Dutt H C , Kapoor N , Mahajan R , Bajaj B K . Proficient bioconversion of rice straw biomass to bioethanol using a novel combinatorial pretreatment approach based on deep eutectic solvent, microwave irradiation and laccase. Bioresource Technology, 2023, 375: 128791
|
10 |
Huang J , Khan M T , Perecin D , Coelho S T , Zhang M . Sugarcane for bioethanol production: potential of bagasse in Chinese perspective. Renewable & Sustainable Energy Reviews, 2020, 133: 110296
|
11 |
Vieira S , Barros M V , Sydney A C N , Piekarski C M , de Francisco A C , Vandenberghe L P S , Sydney E B . Sustainability of sugarcane lignocellulosic biomass pretreatment for the production of bioethanol. Bioresource Technology, 2020, 299: 122635
|
12 |
Sun C , Song G , Pan Z , Tu M , Kharaziha M , Zhang X , Show P L , Sun F . Advances in organosolv modified components occurring during the organosolv pretreatment of lignocellulosic biomass. Bioresource Technology, 2023, 368: 128356
|
13 |
Dharmaraja J , Shobana S , Arvindnarayan S , Francis R R , Jeyakumar R B , Saratale R G , Ashokkumar V , Bhatia S K , Kumar V , Kumar G . Lignocellulosic biomass conversion via greener pretreatment methods towards biorefinery applications. Bioresource Technology, 2023, 369: 128328
|
14 |
Zheng X , Xian X , Hu L , Tao S , Zhang X , Liu Y , Lin X . Efficient short-time hydrothermal depolymerization of sugarcane bagasse in one-pot for cellulosic ethanol production without solid-liquid separation, water washing, and detoxification. Bioresource Technology, 2021, 339: 125575
|
15 |
Liu Y , Zheng X , Tao S , Hu L , Zhang X , Lin X . Process optimization for deep eutectic solvent pretreatment and enzymatic hydrolysis of sugar cane bagasse for cellulosic ethanol fermentation. Renewable Energy, 2021, 177: 259–267
|
16 |
Zhao L , Sun Z F , Zhang C C , Nan J , Ren N Q , Lee D J , Chen C . Advances in pretreatment of lignocellulosic biomass for bioenergy production: challenges and perspectives. Bioresource Technology, 2022, 343: 126123
|
17 |
Mankar A R , Pandey A , Modak A , Pant K K . Pretreatment of lignocellulosic biomass: a review on recent advances. Bioresource Technology, 2021, 334: 125235
|
18 |
Basak B , Kumar R , Bharadwaj A , Kim T H , Kim J R , Jang M , Oh S E , Roh H S , Jeon B H . Advances in physicochemical pretreatment strategies for lignocellulose biomass and their effectiveness in bioconversion for biofuel production. Bioresource Technology, 2023, 369: 128413
|
19 |
Wu M , Gong L , Ma C , He Y C . Enhanced enzymatic saccharification of sorghum straw by effective delignification via combined pretreatment with alkali extraction and deep eutectic solvent soaking. Bioresource Technology, 2021, 340: 125695
|
20 |
Xia F , Gong J , Lu J , Cheng Y , Zhai S , An Q , Wang H . Combined liquid hot water with sodium carbonate-oxygen pretreatment to improve enzymatic saccharification of reed. Bioresource Technology, 2020, 297: 122498
|
21 |
Huang C , Zhan Y , Wang J , Cheng J , Meng X , Liang L , Liang F , Deng Y , Fang G , Ragauskas A J . Valorization of bamboo biomass using combinatorial pretreatments. Green Chemistry, 2022, 24(9): 3736–3749
|
22 |
Xian X , Zheng X , Huang J , Qureshi N , Li B , Liu J , Zeng Y , Nichols N N , Lin X . Detoxification of high solid-liquid hydrothermal pretreated sugar cane bagasse by chromatographic adsorption for cellulosic ethanol production. Industrial Crops and Products, 2023, 202: 117048
|
23 |
Xian X , Fang L , Zhou Y , Li B , Zheng X , Liu Y , Lin X . Integrated bioprocess for cellulosic ethanol production from wheat straw: new ternary deep-eutectic-solvent pretreatment, enzymatic saccharification, and fermentation. Fermentation (Basel, Switzerland), 2022, 8(8): 371
|
24 |
SluiterAHamesBRuizRScarlataCSluiterJTempletonDCrockerD. Determination of structural carbohydrates and lignin in biomass. Technical Report NREL/TP-510–42618. 2008
|
25 |
Diaz S , Ortega Z , Benitez A N , Costa D , Carvalheiro F , Fernandes M C , Duarte L C . Assessment of the effect of autohydrolysis treatment in banana’s pseudostem pulp. Waste Management (New York, N.Y.), 2021, 119: 306–314
|
26 |
Ma X J , Cao S L , Lin L , Luo X L , Hu H C , Chen L H , Huang L L . Hydrothermal pretreatment of bamboo and cellulose degradation. Bioresource Technology, 2013, 148: 408–413
|
27 |
Batista G , Souza R B A , Pratto B , Dos Santos-Rocha M S R , Cruz A J G . Effect of severity factor on the hydrothermal pretreatment of sugarcane straw. Bioresource Technology, 2019, 275: 321–327
|
28 |
Zabed H M , Akter S , Yun J , Zhang G , Awad F N , Qi X , Sahu J N . Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production. Renewable & Sustainable Energy Reviews, 2019, 105: 105–128
|
29 |
Shinde S D , Meng X , Kumar R , Ragauskas A J . Recent advances in understanding the pseudo-lignin formation in a lignocellulosic biorefinery. Green Chemistry, 2018, 20(10): 2192–2205
|
30 |
Hu F , Jung S , Ragauskas A . Pseudo-lignin formation and its impact on enzymatic hydrolysis. Bioresource Technology, 2012, 117: 7–12
|
31 |
Wu R , Wang X , Zhang Y , Fu Y , Qin M . Efficient removal of surface-deposited pseudo-lignin and lignin droplets by isothermal phase separation during hydrolysis. Bioresource Technology, 2022, 345: 126533
|
32 |
Ceaser R , Rosa S , Montane D , Constanti M , Medina F . Optimization of softwood pretreatment by microwave-assisted deep eutectic solvents at high solids loading. Bioresource Technology, 2023, 369: 128470
|
33 |
Varilla-Mazaba A , Raggazo-Sánchez J A , Calderón-Santoyo M , Gómez-Rodríguez J , Aguilar-Uscanga M G . Optimization of lignin extraction by response surface methodology from sugarcane bagasse using deep eutectic solvents (DES). Industrial Crops and Products, 2022, 184: 115040
|
34 |
Lu A , Yu X , Chen L , Okonkwo C E , Otu P , Zhou C , Lu Q , Sun Q . Development of novel ternary deep eutectic pretreatment solvents from lignin-derived phenol, and its efficiency in delignification and enzymatic hydrolysis of peanut shells. Renewable Energy, 2023, 205: 617–626
|
35 |
Wang Y , Meng X , Jeong K , Li S , Leem G , Kim K H , Pu Y , Ragauskas A J , Yoo C G . Investigation of a lignin-based deep eutectic solvent using p-hydroxybenzoic acid for efficient woody biomass conversion. ACS Sustainable Chemistry & Engineering, 2020, 8(33): 12542–12553
|
36 |
Jin M , da Costa Sousa L , Schwartz C , He Y , Sarks C , Gunawan C , Balan V , Dale B E . Toward lower cost cellulosic biofuel production using ammonia based pretreatment technologies. Green Chemistry, 2016, 18(4): 957–966
|
37 |
Ayodele B V , Alsaffar M A , Mustapa S I . An overview of integration opportunities for sustainable bioethanol production from first- and second-generation sugar-based feedstocks. Journal of Cleaner Production, 2020, 245: 118857
|
38 |
Shen B , Hou S , Jia Y , Yang C , Su Y , Ling Z , Huang C , Lai C , Yong Q . Synergistic effects of hydrothermal and deep eutectic solvent pretreatment on co-production of xylo-oligosaccharides and enzymatic hydrolysis of poplar. Bioresource Technology, 2021, 341: 125787
|
39 |
Orij R , Brul S , Smits G J . Intracellular pH is a tightly controlled signal in yeast. Biochimica et Biophysica Acta. G, General Subjects, 2011, 1810(10): 933–944
|
40 |
Mira N P , Palma M , Guerreiro J F , Sa-Correia I . Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Microbial Cell Factories, 2010, 9(1): 79–91
|
41 |
Liu X , Jia B , Sun X , Ai J , Wang L , Wang C , Zhao F , Zhan J , Huang W . Effect of initial pH on growth characteristics and fermentation properties of Saccharomyces cerevisiae. Journal of Food Science, 2015, 80(4): M800–M808
|
42 |
Kumar V , Yadav S K , Kumar J , Ahluwalia V . A critical review on current strategies and trends employed for removal of inhibitors and toxic materials generated during biomass pretreatment. Bioresource Technology, 2020, 299: 122633
|
43 |
Jonsson L J , Alriksson B , Nilvebrant N O . Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnology for Biofuels, 2013, 6(1): 16
|
44 |
Lee S Y , Kim H U , Chae T U , Cho J S , Kim J W , Shin J H , Kim D I , Ko Y S , Jang W D , Jang Y S . Jang Y S. A comprehensive metabolic map for production of bio-based chemicals. Nature Catalysis, 2019, 2(1): 18–33
|
45 |
Wang R , Wang K , Zhou M , Xu J , Jiang J . Efficient fractionation of moso bamboo by synergistic hydrothermal-deep eutectic solvents pretreatment. Bioresource Technology, 2021, 328: 124873
|
46 |
Ji Q , Yu X , Yagoub A E G A , Chen L , Zhou C . Efficient removal of lignin from vegetable wastes by ultrasonic and microwave-assisted treatment with ternary deep eutectic solvent. Industrial Crops and Products, 2020, 149: 112357
|
47 |
Ong V Z , Wu T Y , Chu K K L , Sun W Y , Shak K P Y . A combined pretreatment with ultrasound-assisted alkaline solution and aqueous deep eutectic solvent for enhancing delignification and enzymatic hydrolysis from oil palm fronds. Industrial Crops and Products, 2021, 160: 112974
|
48 |
Shang G , Zhang C , Wang F , Qiu L , Guo X , Xu F . Liquid hot water pretreatment to enhance the anaerobic digestion of wheat straw-effects of temperature and retention time. Environmental Science and Pollution Research International, 2019, 26(28): 29424–29434
|
49 |
Xu J , Zhou P , Liu X , Yuan L , Zhang C , Dai L . Tandem character of liquid hot water and deep eutectic solvent to enhance lignocellulose deconstruction. ChemSusChem, 2021, 14(13): 2740–2748
|
/
〈 | 〉 |