Enhanced bioethanol production from sugarcane bagasse: combination of liquid hot water and deep eutectic solvent pretreatment for optimized enzymatic saccharification

  • Xiaoling Xian ,
  • Biying Li ,
  • Shiyong Feng ,
  • Jiale Huang ,
  • Xinyuan Fu ,
  • Ting Wu ,
  • Xiaoqing Lin
Expand
  • School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, China
linxiaoqing@gdut.edu.cn

Received date: 27 Dec 2023

Accepted date: 23 Feb 2024

Copyright

2024 Higher Education Press

Abstract

In the present study, a sustainable pretreatment methodology combining liquid hot water and deep eutectic solvent is proposed for the efficient fractionation of hemicellulose, cellulose, and lignin from sugarcane bagasse, thereby facilitating the comprehensive utilization of both C5 and C6 sugars. The application of this combined pretreatment strategy to sugarcane bagasse led to notable enhancements in enzymatic saccharification and subsequent fermentation. Experiment results demonstrate that liquid hot water-deep eutectic solvent pretreatment yielded 85.05 ± 0.66 g·L–1 of total fermentable sugar (glucose: 60.96 ± 0.21 g·L–1, xylose: 24.09 ± 0.87 g·L–1) through enzymatic saccharification of sugarcane bagasse. Furthermore, fermentation of the pretreated sugarcane bagasse hydrolysate yielded 34.33 ± 3.15 g·L–1 of bioethanol. These findings confirm the effectiveness of liquid hot water-deep eutectic solvent pretreatment in separating lignocellulosic components, thus presenting a sustainable and promising pretreatment method for maximizing the valuable utilization of biomass resources.

Cite this article

Xiaoling Xian , Biying Li , Shiyong Feng , Jiale Huang , Xinyuan Fu , Ting Wu , Xiaoqing Lin . Enhanced bioethanol production from sugarcane bagasse: combination of liquid hot water and deep eutectic solvent pretreatment for optimized enzymatic saccharification[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(8) : 85 . DOI: 10.1007/s11705-024-2438-9

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China for financial support of this research (Grant Nos. 21978053, 51508547).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at http://doi.org/10.1007/s11705-024-2438-9 and is accessible for authorized users.
1
Gaurav N , Sivasankari S , Kiran G S , Ninawe A , Selvin J . Utilization of bioresources for sustainable biofuels: a review. Renewable & Sustainable Energy Reviews, 2017, 73(7): 205–214

DOI

2
Bórawski P , Bełdycka Bórawska A , Szymańska E J , Jankowski K J , Dubis B , Dunn J W . Development of renewable energy sources market and biofuels in the European Union. Journal of Cleaner Production, 2019, 228: 467–484

DOI

3
Ashby R D , Qureshi N , Strahan G D , Johnston D B , Msanne J , Lin X . Corn stover hydrolysate and levulinic acid: mixed substrates for short-chain polyhydroxyalkanoate production. Biocatalysis and Agricultural Biotechnology, 2022, 43: 102391

DOI

4
De Bhowmick G , Sarmah A K , Sen R . Lignocellulosic biorefinery as a model for sustainable development of biofuels and value added products. Bioresource Technology, 2018, 247: 1144–1154

DOI

5
Osman A I , Qasim U , Jamil F , Al-Muhtaseb A H , Jrai A A , Al-Riyami M , Al-Maawali S , Al-Haj L , Al-Hinai A , Al-Abri M . . Bioethanol and biodiesel: bibliometric mapping, policies and future needs. Renewable & Sustainable Energy Reviews, 2021, 152: 111677

DOI

6
Ebadian M , van Dyk S , McMillan J D , Saddler J . Biofuels policies that have encouraged their production and use: an international perspective. Energy Policy, 2020, 147: 111906

DOI

7
Chen J , Zhang B , Luo L , Zhang F , Yi Y , Shan Y , Liu B , Zhou Y , Wang X , Lü X . A review on recycling techniques for bioethanol production from lignocellulosic biomass. Renewable & Sustainable Energy Reviews, 2021, 149: 111370

DOI

8
Rezania S , Oryani B , Cho J , Talaiekhozani A , Sabbagh F , Hashemi B , Rupani P F , Mohammadi A A . Different pretreatment technologies of lignocellulosic biomass for bioethanol production: an overview. Energy, 2020, 199: 117457

DOI

9
Sawhney D , Vaid S , Bangotra R , Sharma S , Dutt H C , Kapoor N , Mahajan R , Bajaj B K . Proficient bioconversion of rice straw biomass to bioethanol using a novel combinatorial pretreatment approach based on deep eutectic solvent, microwave irradiation and laccase. Bioresource Technology, 2023, 375: 128791

DOI

10
Huang J , Khan M T , Perecin D , Coelho S T , Zhang M . Sugarcane for bioethanol production: potential of bagasse in Chinese perspective. Renewable & Sustainable Energy Reviews, 2020, 133: 110296

DOI

11
Vieira S , Barros M V , Sydney A C N , Piekarski C M , de Francisco A C , Vandenberghe L P S , Sydney E B . Sustainability of sugarcane lignocellulosic biomass pretreatment for the production of bioethanol. Bioresource Technology, 2020, 299: 122635

DOI

12
Sun C , Song G , Pan Z , Tu M , Kharaziha M , Zhang X , Show P L , Sun F . Advances in organosolv modified components occurring during the organosolv pretreatment of lignocellulosic biomass. Bioresource Technology, 2023, 368: 128356

DOI

13
Dharmaraja J , Shobana S , Arvindnarayan S , Francis R R , Jeyakumar R B , Saratale R G , Ashokkumar V , Bhatia S K , Kumar V , Kumar G . Lignocellulosic biomass conversion via greener pretreatment methods towards biorefinery applications. Bioresource Technology, 2023, 369: 128328

DOI

14
Zheng X , Xian X , Hu L , Tao S , Zhang X , Liu Y , Lin X . Efficient short-time hydrothermal depolymerization of sugarcane bagasse in one-pot for cellulosic ethanol production without solid-liquid separation, water washing, and detoxification. Bioresource Technology, 2021, 339: 125575

DOI

15
Liu Y , Zheng X , Tao S , Hu L , Zhang X , Lin X . Process optimization for deep eutectic solvent pretreatment and enzymatic hydrolysis of sugar cane bagasse for cellulosic ethanol fermentation. Renewable Energy, 2021, 177: 259–267

DOI

16
Zhao L , Sun Z F , Zhang C C , Nan J , Ren N Q , Lee D J , Chen C . Advances in pretreatment of lignocellulosic biomass for bioenergy production: challenges and perspectives. Bioresource Technology, 2022, 343: 126123

DOI

17
Mankar A R , Pandey A , Modak A , Pant K K . Pretreatment of lignocellulosic biomass: a review on recent advances. Bioresource Technology, 2021, 334: 125235

DOI

18
Basak B , Kumar R , Bharadwaj A , Kim T H , Kim J R , Jang M , Oh S E , Roh H S , Jeon B H . Advances in physicochemical pretreatment strategies for lignocellulose biomass and their effectiveness in bioconversion for biofuel production. Bioresource Technology, 2023, 369: 128413

DOI

19
Wu M , Gong L , Ma C , He Y C . Enhanced enzymatic saccharification of sorghum straw by effective delignification via combined pretreatment with alkali extraction and deep eutectic solvent soaking. Bioresource Technology, 2021, 340: 125695

DOI

20
Xia F , Gong J , Lu J , Cheng Y , Zhai S , An Q , Wang H . Combined liquid hot water with sodium carbonate-oxygen pretreatment to improve enzymatic saccharification of reed. Bioresource Technology, 2020, 297: 122498

DOI

21
Huang C , Zhan Y , Wang J , Cheng J , Meng X , Liang L , Liang F , Deng Y , Fang G , Ragauskas A J . Valorization of bamboo biomass using combinatorial pretreatments. Green Chemistry, 2022, 24(9): 3736–3749

DOI

22
Xian X , Zheng X , Huang J , Qureshi N , Li B , Liu J , Zeng Y , Nichols N N , Lin X . Detoxification of high solid-liquid hydrothermal pretreated sugar cane bagasse by chromatographic adsorption for cellulosic ethanol production. Industrial Crops and Products, 2023, 202: 117048

DOI

23
Xian X , Fang L , Zhou Y , Li B , Zheng X , Liu Y , Lin X . Integrated bioprocess for cellulosic ethanol production from wheat straw: new ternary deep-eutectic-solvent pretreatment, enzymatic saccharification, and fermentation. Fermentation (Basel, Switzerland), 2022, 8(8): 371

DOI

24
SluiterAHamesBRuizRScarlataCSluiterJTempletonDCrockerD. Determination of structural carbohydrates and lignin in biomass. Technical Report NREL/TP-510–42618. 2008

25
Diaz S , Ortega Z , Benitez A N , Costa D , Carvalheiro F , Fernandes M C , Duarte L C . Assessment of the effect of autohydrolysis treatment in banana’s pseudostem pulp. Waste Management (New York, N.Y.), 2021, 119: 306–314

DOI

26
Ma X J , Cao S L , Lin L , Luo X L , Hu H C , Chen L H , Huang L L . Hydrothermal pretreatment of bamboo and cellulose degradation. Bioresource Technology, 2013, 148: 408–413

DOI

27
Batista G , Souza R B A , Pratto B , Dos Santos-Rocha M S R , Cruz A J G . Effect of severity factor on the hydrothermal pretreatment of sugarcane straw. Bioresource Technology, 2019, 275: 321–327

DOI

28
Zabed H M , Akter S , Yun J , Zhang G , Awad F N , Qi X , Sahu J N . Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production. Renewable & Sustainable Energy Reviews, 2019, 105: 105–128

DOI

29
Shinde S D , Meng X , Kumar R , Ragauskas A J . Recent advances in understanding the pseudo-lignin formation in a lignocellulosic biorefinery. Green Chemistry, 2018, 20(10): 2192–2205

DOI

30
Hu F , Jung S , Ragauskas A . Pseudo-lignin formation and its impact on enzymatic hydrolysis. Bioresource Technology, 2012, 117: 7–12

DOI

31
Wu R , Wang X , Zhang Y , Fu Y , Qin M . Efficient removal of surface-deposited pseudo-lignin and lignin droplets by isothermal phase separation during hydrolysis. Bioresource Technology, 2022, 345: 126533

DOI

32
Ceaser R , Rosa S , Montane D , Constanti M , Medina F . Optimization of softwood pretreatment by microwave-assisted deep eutectic solvents at high solids loading. Bioresource Technology, 2023, 369: 128470

DOI

33
Varilla-Mazaba A , Raggazo-Sánchez J A , Calderón-Santoyo M , Gómez-Rodríguez J , Aguilar-Uscanga M G . Optimization of lignin extraction by response surface methodology from sugarcane bagasse using deep eutectic solvents (DES). Industrial Crops and Products, 2022, 184: 115040

DOI

34
Lu A , Yu X , Chen L , Okonkwo C E , Otu P , Zhou C , Lu Q , Sun Q . Development of novel ternary deep eutectic pretreatment solvents from lignin-derived phenol, and its efficiency in delignification and enzymatic hydrolysis of peanut shells. Renewable Energy, 2023, 205: 617–626

DOI

35
Wang Y , Meng X , Jeong K , Li S , Leem G , Kim K H , Pu Y , Ragauskas A J , Yoo C G . Investigation of a lignin-based deep eutectic solvent using p-hydroxybenzoic acid for efficient woody biomass conversion. ACS Sustainable Chemistry & Engineering, 2020, 8(33): 12542–12553

DOI

36
Jin M , da Costa Sousa L , Schwartz C , He Y , Sarks C , Gunawan C , Balan V , Dale B E . Toward lower cost cellulosic biofuel production using ammonia based pretreatment technologies. Green Chemistry, 2016, 18(4): 957–966

DOI

37
Ayodele B V , Alsaffar M A , Mustapa S I . An overview of integration opportunities for sustainable bioethanol production from first- and second-generation sugar-based feedstocks. Journal of Cleaner Production, 2020, 245: 118857

DOI

38
Shen B , Hou S , Jia Y , Yang C , Su Y , Ling Z , Huang C , Lai C , Yong Q . Synergistic effects of hydrothermal and deep eutectic solvent pretreatment on co-production of xylo-oligosaccharides and enzymatic hydrolysis of poplar. Bioresource Technology, 2021, 341: 125787

DOI

39
Orij R , Brul S , Smits G J . Intracellular pH is a tightly controlled signal in yeast. Biochimica et Biophysica Acta. G, General Subjects, 2011, 1810(10): 933–944

DOI

40
Mira N P , Palma M , Guerreiro J F , Sa-Correia I . Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Microbial Cell Factories, 2010, 9(1): 79–91

DOI

41
Liu X , Jia B , Sun X , Ai J , Wang L , Wang C , Zhao F , Zhan J , Huang W . Effect of initial pH on growth characteristics and fermentation properties of Saccharomyces cerevisiae. Journal of Food Science, 2015, 80(4): M800–M808

DOI

42
Kumar V , Yadav S K , Kumar J , Ahluwalia V . A critical review on current strategies and trends employed for removal of inhibitors and toxic materials generated during biomass pretreatment. Bioresource Technology, 2020, 299: 122633

DOI

43
Jonsson L J , Alriksson B , Nilvebrant N O . Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnology for Biofuels, 2013, 6(1): 16

DOI

44
Lee S Y , Kim H U , Chae T U , Cho J S , Kim J W , Shin J H , Kim D I , Ko Y S , Jang W D , Jang Y S . Jang Y S. A comprehensive metabolic map for production of bio-based chemicals. Nature Catalysis, 2019, 2(1): 18–33

DOI

45
Wang R , Wang K , Zhou M , Xu J , Jiang J . Efficient fractionation of moso bamboo by synergistic hydrothermal-deep eutectic solvents pretreatment. Bioresource Technology, 2021, 328: 124873

DOI

46
Ji Q , Yu X , Yagoub A E G A , Chen L , Zhou C . Efficient removal of lignin from vegetable wastes by ultrasonic and microwave-assisted treatment with ternary deep eutectic solvent. Industrial Crops and Products, 2020, 149: 112357

DOI

47
Ong V Z , Wu T Y , Chu K K L , Sun W Y , Shak K P Y . A combined pretreatment with ultrasound-assisted alkaline solution and aqueous deep eutectic solvent for enhancing delignification and enzymatic hydrolysis from oil palm fronds. Industrial Crops and Products, 2021, 160: 112974

DOI

48
Shang G , Zhang C , Wang F , Qiu L , Guo X , Xu F . Liquid hot water pretreatment to enhance the anaerobic digestion of wheat straw-effects of temperature and retention time. Environmental Science and Pollution Research International, 2019, 26(28): 29424–29434

DOI

49
Xu J , Zhou P , Liu X , Yuan L , Zhang C , Dai L . Tandem character of liquid hot water and deep eutectic solvent to enhance lignocellulose deconstruction. ChemSusChem, 2021, 14(13): 2740–2748

DOI

Outlines

/