Degradation pathways of amino acids during thermal utilization of biomass: a review

  • Mubarak Al-Kwradi ,
  • Mohammednoor Altarawneh
Expand
  • Department of Chemical and Petroleum Engineering, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
mn.Altarawneh@uaeu.ac.ae

Received date: 27 Dec 2023

Accepted date: 18 Feb 2024

Copyright

2024 Higher Education Press

Abstract

Amino acids are important nitrogen carriers in biomass and entail a broad spectrum of industrial uses, most notably as food additives, pharmaceutical ingredients, and raw materials for bio-based plastics. Attaining detailed information in regard to the fragmentation of amino acids is essential to comprehend the nitrogen transformation chemistry at conditions encountered during hydrothermal and pyrolytic degradation of biomass. The underlying aim of this review is to survey literature studies pertinent to the complex structures of amino acids, their formation yields from various categories of biomass, and their fragmentation routes at elevated temperatures and in the aqueous media. Two predominant degradation reactions ensue in the decomposition of amino acids, namely deamination and decarboxylation. Notably, minor differences in structure can greatly affect the fate for each amino acid. Moreover, amino acids, being nitrogen-rich compounds, play pivotal roles across various fields. There is a growing interest in producing varied types and configurations of amino acids. Microbial fermentation appears to a viable approach to produce amino acids at an industrial scale. One innovative method under investigation is catalytic synthesis using renewable biomass as feedstocks. Such a method taps into the inherent nitrogen in biomass sources like chitin and proteins, eliminating the need for external nitrogen sources. This environmentally friendly approach is in line with green chemistry principles and has been gathering momentum in the scientific community.

Cite this article

Mubarak Al-Kwradi , Mohammednoor Altarawneh . Degradation pathways of amino acids during thermal utilization of biomass: a review[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(7) : 78 . DOI: 10.1007/s11705-024-2433-1

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

Authors acknowledges a generous funding from the National Water and Energy Center at the United Arab Emirates University (UAEU) through the 12R124 grant.
1
Wang P , Shu C , Ye H , Biczysko M . Structural and energetic properties of amino acids and peptides benchmarked by accurate theoretical and experimental data. Journal of Physical Chemistry A, 2021, 125(45): 9826–9837

DOI

2
Lee C Y , Chen J T , Chang W T , Shiah I M . Effect of pH on the solubilities of divalent and trivalent amino acids in water at 298.15 K. Fluid Phase Equilibria, 2013, 343(1): 30–35

DOI

3
Pradhan A A , Vera J H . Effect of acids and bases on the solubility of amino acids. Fluid Phase Equilibria, 1998, 152(1): 121–132

DOI

4
Lara-Popoca J , Thoke H S , Stock R P , Rudino-Pinera E , Bagatolli L A . Inductive effects in amino acids and peptides: ionization constants and tryptophan fluorescence. Biochemistry and Biophysics Reports, 2020, 24(1): 100802

DOI

5
Bowden N A , Sanders J P M , Bruins M E . Solubility of the proteinogenic α-amino acids in water, ethanol, and ethanol-ater mixtures. Journal of Chemical & Engineering Data, 2018, 63(3): 488–497

DOI

6
Petrotchenko E V , Borchers C H . Protein chemistry combined with mass spectrometry for protein structure determination. Chemical Reviews, 2022, 122(8): 7488–7499

DOI

7
Nakashima H , Nishikawa K . Discrimination of intracellular and extracellular proteins using amino acid composition and residue-pair frequencies. Journal of Molecular Biology, 1994, 238(1): 54–61

DOI

8
Rosenkranz A A , Slastnikova T A . Prospects of using protein engineering for selective drug delivery into a specific compartment of target cells. Pharmaceutics, 2023, 15(3): 987

DOI

9
Stollar E J , Smith D P . Uncovering protein structure. Essays in Biochemistry, 2020, 64(4): 649–680

DOI

10
Kirschning A . On the evolutionary history of the twenty encoded amino acids. Chemistry, 2022, 28(55): e202201419

DOI

11
Xu Q , Deng H , Li X , Quan Z S . Application of amino acids in the structural modification of natural products: a review. Frontiers in Chemistry, 2021, 9(1): 1–26

DOI

12
Huang Y , Ji X , Ma Z , Łężyk M , Xue Y , Zhao H . Green chemical and biological synthesis of cadaverine: recent development and challenges. RSC Advances, 2021, 11(39): 23922–23942

DOI

13
Liu K , Shao B , Zheng B , Zong B . Catalytic production of functional monomers from lysine and their application in high-valued polymers. Catalysts, 2022, 13(1): 56

DOI

14
Haeger G , Jolmes T , Oyen S , Jaeger K E , Bongaerts J , Schörken U , Siegert P . Novel recombinant aminoacylase from Paraburkholderia monticola capable of N-acyl-amino acid synthesis. Applied Microbiology and Biotechnology, 2024, 108(1): 93

DOI

15
Heieck K , Arnold N D , Brück T B . Metabolic stress constrains microbial L-cysteine production in Escherichia coli by accelerating transposition through mobile genetic elements. Microbial Cell Factories, 2023, 22(1): 10

DOI

16
D’Este M , Alvarado-Morales M , Angelidaki I . Amino acids production focusing on fermentation technologies: a review. Biotechnology Advances, 2018, 36(1): 14–25

DOI

17
Cheng H , Zhu X , Zhu C , Qian J , Zhu N , Zhao L , Chen J . Hydrolysis technology of biomass waste to produce amino acids in sub-critical water. Bioresource Technology, 2008, 99(9): 3337–3341

DOI

18
Goto M , Obuchi R , Hirose T , Sakaki T , Shibata M . Hydrothermal conversion of municipal organic waste into resources. Bioresource Technology, 2004, 93(3): 279–284

DOI

19
Klejdus B , Lojková L , Kula E , Buchta I , Hrdlička P , Kubáň V . Supercritical fluid extraction of amino acids from birch (Betula pendula Roth) leaves and their liquid chromatographic determination with fluorimetric detection. Journal of Separation Science, 2008, 31(8): 1363–1373

DOI

20
Pourali O , Asghari F S , Yoshida H . Sub-critical water treatment of rice bran to produce valuable materials. Food Chemistry, 2009, 115(1): 1–7

DOI

21
Sereewatthanawut I , Prapintip S , Watchiraruji K , Goto M , Sasaki M , Shotipruk A . Extraction of protein and amino acids from deoiled rice bran by subcritical water hydrolysis. Bioresource Technology, 2008, 99(3): 555–561

DOI

22
Duchiron S W , Pollet E , Givry S , Avérous L . Enzymatic synthesis of amino acids endcapped polycaprolactone: a green route towards functional polyesters. Molecules, 2018, 23(2): 290

DOI

23
Grasso F , Méndez-Paz D , Vázquez Sobrado R , Orlandi V , Turrini F , De Negri Atanasio G , Grasselli E , Tiso M , Boggia R . Feasibility of enzymatic protein extraction from a dehydrated fish biomass obtained from unsorted canned yellowfin tuna side streams: Part I. Gels, 2023, 9(9): 760

DOI

24
Wagner A J , Zubarev D Y , Aspuru-Guzik A , Blackmond D G . Chiral sugars drive enantioenrichment in prebiotic amino acid synthesis. ACS Central Science, 2017, 3(4): 322–328

DOI

25
Schaberg A , Wroblowski R , Goertz R . Comparative study of the thermal decomposition behaviour of different amino acids and peptides. Journal of Physics: Conference Series, 2018, 1107(3): 032013

DOI

26
Körner P . Hydrothermal degradation of amino acids. ChemSusChem, 2021, 14(22): 4947–4957

DOI

27
Jeong Y , Kim H W , Ku J , Seo J . Breakdown of chiral recognition of amino acids in reduced dimensions. Scientific Reports, 2020, 10(1): 16166

DOI

28
Inaki M , Liu J , Matsuno K . Cell chirality: its origin and roles in left-right asymmetric development. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371(1710): 20150403

29
Cava F , Lam H , de Pedro M A , Waldor M K . Emerging knowledge of regulatory roles of D-amino acids in bacteria. Cellular and Molecular Life Sciences, 2011, 68(5): 817–831

DOI

30
Kühnle A , Linderoth T R , Hammer B , Besenbacher F . Chiral recognition in dimerization of adsorbed cysteine observed by scanning tunnelling microscopy. Nature, 2002, 415(6874): 891–893

DOI

31
Chen Q , Richardson N V . Enantiomeric interactions between nucleic acid bases and amino acids on solid surfaces. Nature Materials, 2003, 2(5): 324–328

DOI

32
Lopinski G P , Moffatt D J , Wayner D D M , Wolkow R A . Determination of the absolute chirality of individual adsorbed molecules using the scanning tunnelling microscope. Nature, 1998, 392(6679): 909–911

DOI

33
Zhang J , Li B , Cui X , Wang B , Yang J , Hou J G . Spontaneous chiral resolution in supramolecular assembly of 2,4,6-tris(2-pyridyl)-1,3,5-triazine on Au(111). Journal of the American Chemical Society, 2009, 131(16): 5885–5890

DOI

34
Harms M J , Castañeda C A , Schlessman J L , Sue G R , Isom D G , Cannon B R , García-Moreno E B . The pK(a) values of acidic and basic residues buried at the same internal location in a protein are governed by different factors. Journal of Molecular Biology, 2009, 389(1): 34–47

DOI

35
MehtaK KVedanthamG. Next-Generation Process Design for Monoclonal Antibody Purification, in Biopharmaceutical Processing. Jagschies G, Lindskog E, Łącki K, Galliher P, eds. Amsterdam: Elsevier, 2018, 793–811

36
Pace C N , Grimsley G R , Scholtz J M . Protein ionizable groups: pK values and their contribution to protein stability and solubility. Journal of Biological Chemistry, 2009, 284(20): 13285–13289

DOI

37
Chipens G I , Balodis I , Gnilomedova L E . Polarity and hydropathic properties of natural amino acids. Ukrainskii Biokhimicheskii Zhurnal, 1991, 63(4): 20–29

38
KalidasCSangaranarayananM V. Amino Acids in Biophysical Chemistry: Techniques and Applications. Kalidas C, Sangaranarayanan M V, eds. Cham: Springer Nature Switzerland, 2023, 115–127

39
SelvarajCDineshD CRajaramKSundaresanSSinghS K. Macromolecular chemistry: an introduction. In: In Silico Approaches to Macromolecular Chemistry, Thomas M E, Thomas J, Thomas S, Kornweitz H, eds. Amsterdam: Elsevier, 2023, 71–128

40
Bellissent-Funel M C , Hassanali A , Havenith M , Henchman R , Pohl P , Sterpone F , van der Spoel D , Xu Y , Garcia A E . Water determines the structure and dynamics of proteins. Chemical Reviews, 2016, 116(13): 7673–7697

DOI

41
Melnikov S , Mailliot J , Rigger L , Neuner S , Shin B S , Yusupova G , Dever T E , Micura R , Yusupov M . Molecular insights into protein synthesis with proline residues. EMBO Reports, 2016, 17(12): 1776–1784

DOI

42
Stipanuk M H . Metabolism of sulfur-containing amino acids: how the body copes with excess methionine, cysteine, and sulfide. Journal of Nutrition, 2020, 150(1): 2494S–2505S

DOI

43
Poole L B . The basics of thiols and cysteines in redox biology and chemistry. Free Radical Biology & Medicine, 2015, 80(1): 148–157

DOI

44
KohlmeierM. Nutrient Metabolism. 1st ed. London: Academic Press, 2003, 389–395

45
El-FawalH A N. Neurotoxicology. In: Encyclopedia of Environmental Health (2nd Edition). Nriagu J ed. Oxford: Elsevier, 2011, 614–633

46
André I , Linse S , Mulder F A A . Residue-specific pKa determination of lysine and arginine side chains by indirect 15N and 13C NMR spectroscopy: application to apo calmodulin. Journal of the American Chemical Society, 2007, 129(51): 15805–15813

DOI

47
Zhu C , Gao Y , Li H , Meng S , Li L , Francisco J S , Zeng X C . Characterizing hydrophobicity of amino acid side chains in a protein environment via measuring contact angle of a water nanodroplet on planar peptide network. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(46): 12946–12951

DOI

48
BhagavanN VHaC E. Three-dimensional structure of proteins and disorders of protein misfolding. In: Essentials of Medical Biochemistry (2nd Edition), Bhagavan N V, Ha C E, Eds. San Diego: Academic Press, 2015, 31–51

49
PelleyJ W. Protein Structure and Function, in Elsevier’s Integrated Biochemistry. Pelley J W, eds. Philadelphia: Mosby, 2007, 19–28

50
Ogo S , Uehara K , Abura T , Fukuzumi S . pH-Dependent chemoselective synthesis of α-amino acids. Reductive amination of α-keto acids with ammonia catalyzed by acid-stable iridium hydride complexes in water. Journal of the American Chemical Society, 2004, 126(10): 3020–3021

DOI

51
Zuend S J , Coughlin M P , Lalonde M P , Jacobsen E N . Scaleable catalytic asymmetric Strecker syntheses of unnatural α-amino acids. Nature, 2009, 461(7266): 968–970

DOI

52
Zhang M , Imm S , Bähn S , Neumann H , Beller M . Synthesis of α-amino acid amides: ruthenium-catalyzed amination of α-hydroxy amides. Angewandte Chemie International Edition, 2011, 50(47): 11197–11201

DOI

53
Magrino T , Pietrucci F , Saitta A M . Step by step strecker amino acid synthesis from ab initio prebiotic chemistry. Journal of Physical Chemistry Letters, 2021, 12(10): 2630–2637

DOI

54
Hu P , Ben-David Y , Milstein D . General synthesis of amino acid salts from amino alcohols and basic water liberating H2. Journal of the American Chemical Society, 2016, 138(19): 6143–6146

DOI

55
Deng W , Wang Y , Zhang S , Gupta K M , Hülsey M J , Asakura H , Liu L , Han Y , Karp E M , Beckham G T . . Catalytic amino acid production from biomass-derived intermediates. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(20): 5093–5098

DOI

56
Xu B , Dai J , Du Z , Li F , Liu H , Gu X , Wang X , Li N , Zhao J . Catalytic conversion of biomass-derived compounds to various amino acids: status and perspectives. Frontiers of Chemical Science and Engineering, 2023, 17(7): 817–829

DOI

57
Liu X , Zhang Q , Wang R , Li H . Sustainable conversion of biomass-derived carbohydrates into lactic acid using heterogeneous catalysts. Current Green Chemistry, 2020, 7(3): 282–289

DOI

58
Deng W , Wang P , Wang B , Wang Y , Yan L , Li Y , Zhang Q , Cao Z , Wang Y . Transformation of cellulose and related carbohydrates into lactic acid with bifunctional Al(III)-Sn(II) catalysts. Green Chemistry, 2018, 20(3): 735–744

DOI

59
Li J , Yang R , Xu S , Zhou C , Xiao Y , Hu C , Tsang D C W . Biomass-derived polyols valorization towards glycolic acid production with high atom-economy. Applied Catalysis B: Environmental, 2022, 317(1): 121785

DOI

60
Sjöström E . Carbohydrate degradation products from alkaline treatment of biomass. Biomass and Bioenergy, 1991, 1(1): 61–64

DOI

61
Cao Y , Chen D , Meng Y , Saravanamurugan S , Li H . Visible-light-driven prompt and quantitative production of lactic acid from biomass sugars over a N-TiO2 photothermal catalyst. Green Chemistry, 2021, 23(24): 10039–10049

DOI

62
Wang Y , Furukawa S , Song S , He Q , Asakura H , Yan N . Catalytic production of alanine from waste glycerol. Angewandte Chemie International Edition, 2020, 59(6): 2289–2293

DOI

63
Xu S , Tian Q , Xiao Y , Zhang W , Liao S , Li J , Hu C . Regulating the competitive reaction pathway in glycerol conversion to lactic acid/glycolic acid selectively. Journal of Catalysis, 2022, 413(1): 407–416

DOI

64
Besson M , Gallezot P , Pinel C . Conversion of biomass into chemicals over metal catalysts. Chemical Reviews, 2014, 114(3): 1827–1870

DOI

65
Li C , Zhao X , Wang A , Huber G W , Zhang T . Catalytic transformation of lignin for the production of chemicals and fuels. Chemical Reviews, 2015, 115(21): 11559–11624

DOI

66
Key R E , Bozell J J . Progress toward lignin valorization via selective catalytic technologies and the tailoring of biosynthetic pathways. ACS Sustainable Chemistry & Engineering, 2016, 4(10): 5123–5135

DOI

67
Xing R , Qi W , Huber G W . Production of furfural and carboxylic acids from waste aqueous hemicellulose solutions from the pulp and paper and cellulosic ethanol industries. Energy & Environmental Science, 2011, 4(6): 2193–2205

DOI

68
de Clippel F , Dusselier M , Van Rompaey R , Vanelderen P , Dijkmans J , Makshina E , Giebeler L , Oswald S , Baron G V , Denayer J F M . . Fast and selective sugar conversion to alkyl lactate and lactic acid with bifunctional carbon-silica catalysts. Journal of the American Chemical Society, 2012, 134(24): 10089–10101

DOI

69
Weingarten R , Kim Y T , Tompsett G A , Fernández A , Han K S , Hagaman E W , Conner W C Jr , Dumesic J A , Huber G W . Conversion of glucose into levulinic acid with solid metal(IV) phosphate catalysts. Journal of Catalysis, 2013, 304: 123–134

DOI

70
Anderson E , Katahira R , Reed M , Resch M , Karp E , Beckham G , Roman-Leshkov Y . Reductive catalytic fractionation of corn stover lignin. ACS Sustainable Chemistry & Engineering, 2016, 4(12): 6940–6950

DOI

71
Choi Y S , Singh R , Zhang J , Balasubramanian G , Sturgeon M R , Katahira R , Chupka G , Beckham G T , Shanks B H . Pyrolysis reaction networks for lignin model compounds: unraveling thermal deconstruction of β-O-4 and α-O-4 compounds. Green Chemistry, 2016, 18(6): 1762–1773

DOI

72
Tang Z , Deng W , Wang Y , Zhu E , Wan X , Zhang Q , Wang Y . Transformation of cellulose and its derived carbohydrates into formic and lactic acids catalyzed by vanadyl cations. ChemSusChem, 2014, 7(6): 1557–1567

DOI

73
Wang F F , Liu C L , Dong W S . Highly efficient production of lactic acid from cellulose using lanthanide triflate catalysts. Green Chemistry, 2013, 15(8): 2091–2095

DOI

74
Li L , Shen F , Smith R L , Qi X . Quantitative chemocatalytic production of lactic acid from glucose under anaerobic conditions at room temperature. Green Chemistry, 2017, 19(1): 76–81

DOI

75
Kawaguchi H , Uematsu K , Ogino C , Teramura H , Nakamura S , Tsuge Y , Hasunuma T , Oinuma K I , Takaya N , Kondo A . Simultaneous saccharification and fermentation of kraft pulp by recombinant Escherichia coli for phenyllactic acid production. Biochemical Engineering Journal, 2014, 88(1): 188–194

DOI

76
Ralph J . Hydroxycinnamates in lignification. Phytochemistry Reviews, 2010, 9(1): 65–83

DOI

77
Gunanathan C , Milstein D . Selective synthesis of primary amines directly from alcohols and ammonia. Angewandte Chemie International Edition, 2008, 47(45): 8661–8664

DOI

78
Pingen D , Müller C , Vogt D . Direct amination of secondary alcohols using ammonia. Angewandte Chemie International Edition, 2010, 49(44): 8130–8133

DOI

79
Tomer A , Wyrwalski F , Przybylski C , Paul J F , Monflier E , Pera-Titus M , Ponchel A . Facile preparation of Ni/Al2O3 catalytic formulations with the aid of cyclodextrin complexes: towards highly active and robust catalysts for the direct amination of alcohols. Journal of Catalysis, 2017, 356: 111–124

DOI

80
Alshammari A , Murugesan K . MOF-derived cobalt nanoparticles catalyze a general synthesis of amines. Science, 2017, 358(6361): 326–332

DOI

81
Watson A J , Williams J M . The give and take of alcohol activation. Science, 2010, 329(5992): 635–636

DOI

82
Tonouchi N , Ito H . Present global situation of amino acids in industry. Advances in Biochemical Engineering/Biotechnology, 2017, 159(1): 3–14

83
Xie Z , Chen B , Peng F , Liu M , Liu H , Yang G , Han B . Highly efficient synthesis of amino acids by amination of bio-derived hydroxy acids with ammonia over Ru supported on N-doped carbon nanotubes. ChemSusChem, 2020, 13(21): 5683–5689

DOI

84
Kitamura M , Lee D , Hayashi S , Tanaka S , Yoshimura M . Catalytic Leuckart-Wallach-type reductive amination of ketones. Journal of Organic Chemistry, 2002, 67(24): 8685–8687

DOI

85
Kadyrov R , Riermeier T H , Dingerdissen U , Tararov V , Börner A . The first highly enantioselective homogeneously catalyzed asymmetric reductive amination: synthesis of alpha-N-benzylamino acids. Journal of Organic Chemistry, 2003, 68(10): 4067–4070

DOI

86
Nguyen D P , Sladek R N , Do L H . Scope and limitations of reductive amination catalyzed by half-sandwich iridium complexes under mild reaction conditions. Tetrahedron Letters, 2020, 61(32): 152–196

DOI

87
Chan A S C , Chen C C , Lin Y C . Catalytic reductive amination of α-ketocaboxylic acids as a useful route to amino acids. Applied Catalysis A, General, 1994, 119(1): L1–L5

DOI

88
Dai J , Li F , Fu X . Towards shell biorefinery: advances in chemical-catalytic conversion of chitin biomass to organonitrogen chemicals. ChemSusChem, 2020, 13(24): 6498–6508

DOI

89
Yan N , Chen X . Sustainability: don’t waste seafood waste. Nature, 2015, 524(7564): 155–157

DOI

90
ChenXYangHYanN. Shell biorefinery: dream or reality? Chemistry, 2016, 22(38): 13402–13421

91
Yang H , Gözaydın G , Nasaruddin R R , Har J R G , Chen X , Wang X , Yan N . Toward the shell biorefinery: processing crustacean shell waste using hot water and carbonic acid. ACS Sustainable Chemistry & Engineering, 2019, 7(5): 5532–5542

DOI

92
Duan B , Zheng X , Xia Z , Fan X , Guo L , Liu J , Wang Y , Ye Q , Zhang L . Highly biocompatible nanofibrous microspheres self-assembled from chitin in NaOH/urea aqueous solution as cell carriers. Angewandte Chemie International Edition, 2015, 54(17): 5152–5156

DOI

93
Dai J , Gözaydın G , Hu C , Yan N . Catalytic conversion of chitosan to glucosaminic acid by tandem hydrolysis and oxidation. ACS Sustainable Chemistry & Engineering, 2019, 7(14): 12399–12407

DOI

94
Kruse A , Dahmen N . Water—a magic solvent for biomass conversion. Journal of Supercritical Fluids, 2015, 96(1): 36–45

DOI

95
Libra J A , Ro K S , Kammann C , Funke A , Berge N D , Neubauer Y , Titirici M M , Fühner C , Bens O , Kern J . . Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels, 2011, 2(1): 71–106

DOI

96
Kruse A , Funke A , Titirici M M . Hydrothermal conversion of biomass to fuels and energetic materials. Current Opinion in Chemical Biology, 2013, 17(3): 515–521

DOI

97
Zhang B , Biswal B K , Zhang J , Balasubramanian R . Hydrothermal treatment of biomass feedstocks for sustainable production of chemicals, fuels, and materials: progress and perspectives. Chemical Reviews, 2023, 123(11): 7193–7294

DOI

98
Gwyther C L , Williams A P , Golyshin P N , Edwards-Jones G , Jones D L . The environmental and biosecurity characteristics of livestock carcass disposal methods: a review. Waste Management, 2011, 31(4): 767–778

DOI

99
Pietrucci F , Aponte J C , Starr R , Pérez-Villa A , Elsila J E , Dworkin J P , Saitta A M . Hydrothermal decomposition of amino acids and origins of prebiotic meteoritic organic compounds. ACS Earth & Space Chemistry, 2018, 2(6): 588–598

DOI

100
Changi S , Zhu M , Savage P E . Hydrothermal reaction kinetics and pathways of phenylalanine alone and in binary mixtures. ChemSusChem, 2012, 5(9): 1743–1757

DOI

101
Sato N , Quitain A T , Kang K , Daimon H , Fujie K . Reaction kinetics of amino acid decomposition in high-temperature and high-pressure water. Industrial & Engineering Chemistry Research, 2004, 43(13): 3217–3222

DOI

102
Faisal M , Sato N , Quitain A T , Daimon H , Fujie K . Reaction kinetics and pathway of hydrothermal decomposition of aspartic acid. International Journal of Chemical Kinetics, 2007, 39(3): 175–180

DOI

103
Estrada C F , Mamajanov I , Hao J , Sverjensky D A , Cody G D , Hazen R M . Aspartate transformation at 200 °C with brucite [Mg(OH)2], NH3, and H2: implications for prebiotic molecules in hydrothermal systems. Chemical Geology, 2017, 457(1): 162–172

DOI

104
Vallentyne J R . Biogeochemistry of organic matter—II. Thermal reaction kinetics and transformation products of amino compounds. Geochimica et Cosmochimica Acta, 1964, 28(2): 157–188

DOI

105
Qian Y , Engel M H , Macko S A , Carpenter S , Deming J W . Kinetics of peptide hydrolysis and amino acid decomposition at high temperature. Geochimica et Cosmochimica Acta, 1993, 57(14): 3281–3293

DOI

106
Andersson E , Holm N G . The stability of some selected amino acids under attempted redox constrained hydrothermal conditions. Origins of Life and Evolution of the Biosphere, 2000, 30(1): 9–23

DOI

107
Bada J L , Miller S L , Zhao M . The stability of amino acids at submarine hydrothermal vent temperatures. Origins of Life and Evolution of the Biosphere, 1995, 25(1): 111–118

DOI

108
Rogalinski T , Herrmann S , Brunner G . Production of amino acids from bovine serum albumin by continuous sub-critical water hydrolysis. Journal of Supercritical Fluids, 2005, 36(1): 49–58

DOI

109
Zhu G , Zhu X , Fan Q , Wan X . Kinetics of amino acid production from bean dregs by hydrolysis in sub-critical water. Amino Acids, 2011, 40(4): 1107–1113

DOI

110
Abdelmoez W , Nakahasi T , Yoshida H . Amino acid transformation and decomposition in saturated subcritical water conditions. Industrial & Engineering Chemistry Research, 2007, 46(16): 5286–5294

DOI

111
Li J , Brill T B . Spectroscopy of hydrothermal reactions 25: kinetics of the decarboxylation of protein amino acids and the effect of side chains on hydrothermal stability. Journal of Physical Chemistry A, 2003, 107(31): 5987–5992

DOI

112
Klingler D , Berg J , Vogel H . Hydrothermal reactions of alanine and glycine in sub- and supercritical water. Journal of Supercritical Fluids, 2007, 43(1): 112–119

DOI

113
Chen Y P , Huang Y Q , Xie J J , Yin X L , Wu C Z . Hydrothermal reaction of phenylalanine as a model compound of algal protein. Journal of Fuel Chemistry & Technology, 2014, 42(1): 61–67

DOI

114
Torrens-Spence M P , Liu P , Ding H , Harich K , Gillaspy G , Li J . Biochemical evaluation of the decarboxylation and decarboxylation-deamination activities of plant aromatic amino acid decarboxylases. Journal of Biological Chemistry, 2013, 288(4): 2376–2387

DOI

115
Iqubal M A , Sharma R , Jheeta S . Kamaluddin. Thermal condensation of glycine and alanine on metal ferrite surface: primitive peptide bond formation scenario. Life, 2017, 7(2): 15

DOI

116
Otake T , Taniguchi T , Furukawa Y , Kawamura F , Nakazawa H , Kakegawa T . Stability of amino acids and their oligomerization under high-pressure conditions: implications for prebiotic chemistry. Astrobiology, 2011, 11(8): 799–813

DOI

117
Pedreira-Segade U , Hao J , Montagnac G , Cardon H , Daniel I . Spontaneous polymerization of glycine under hydrothermal conditions. ACS Earth & Space Chemistry, 2019, 3(8): 1669–1677

DOI

118
Hodge J E . Dehydrated foods, chemistry of browning reactions in model systems. Journal of Agricultural and Food Chemistry, 1953, 1(15): 928–943

DOI

119
Martins S I F S , Jongen W M F , van Boekel M A J S . A review of Maillard reaction in food and implications to kinetic modelling. Trends in Food Science & Technology, 2000, 11(9): 364–373

DOI

120
Li J , Brill T B . Spectroscopy of hydrothermal reactions, part 26: kinetics of decarboxylation of aliphatic amino acids and comparison with the rates of racemization. International Journal of Chemical Kinetics, 2003, 35(11): 602–610

DOI

121
Ueno S , Ichinoi H , Zhao J , Fujii T . Degradation of fish gelatin using hot-compressed water and the properties of the degradation products. High Pressure Research, 2015, 35(2): 203–213

DOI

122
Sohn M , Ho C T . Ammonia generation during thermal degradation of amino acids. Journal of Agricultural and Food Chemistry, 1995, 43(12): 3001–3003

DOI

123
Bella D L , Hahn C , Stipanuk M H . Effects of nonsulfur and sulfur amino acids on the regulation of hepatic enzymes of cysteine metabolism. American Journal of Physiology. Endocrinology and Metabolism, 1999, 277(1): E144–E153

DOI

124
Stipanuk M H , Dominy J E Jr , Lee J I , Coloso R M . Mammalian cysteine metabolism: new insights into regulation of cysteine metabolism. Journal of Nutrition, 2006, 136(6): 1652S–1659S

DOI

125
Kwon Y H , Stipanuk M H . Cysteine regulates expression of cysteine dioxygenase and γ-glutamylcysteine synthetase in cultured rat hepatocytes. American Journal of Physiology. Endocrinology and Metabolism, 2001, 280(5): E804–E815

DOI

126
Courtney-MartinGPencharzP B. Sulfur amino acids metabolism from protein synthesis to glutathione. In: The Molecular Nutrition of Amino Acids and Proteins. Dardevet D, ed. Boston: Academic Press, 2016, 265–286

127
Kovacs J , Holleran E M , Hui K Y . Kinetic studies in peptide chemistry. Coupling, racemization and evaluation of methods useful for shortening coupling time. Journal of Organic Chemistry, 1980, 45(6): 1060–1065

DOI

128
Fujimaki M , Kato S , Kurata T . Pyrolysis of sulfur-containing amino acids. Agricultural and Biological Chemistry, 1969, 33(8): 1144–1151

DOI

129
Nagano Y , Samejima H , Kinoshita S . Antioxidant activity of 3-methylthiopropylamine hydrochloride. Agricultural and Biological Chemistry, 1968, 32(7): 846–850

DOI

130
Samanmulya T , Farobie O , Matsumura Y . Gasification characteristics of histidine and 4-methylimidazole under supercritical water conditions. Biomass Conversion and Biorefinery, 2017, 7(4): 487–494

DOI

131
De Schouwer F , Claes L , Vandekerkhove A , Verduyckt J , De Vos D E . Protein-rich biomass waste as a resource for future biorefineries: state of the art, challenges, and opportunities. ChemSusChem, 2019, 12(7): 1272–1303

DOI

132
Kourist R , Guterl J K , Miyamoto K , Sieber V . Enzymatic decarboxylation: an emerging reaction for chemicals production from renewable resources. ChemCatChem, 2014, 6(3): 689–701

DOI

133
Yamano N , Kawasaki N , Takeda S , Nakayama A . Production of 2-pyrrolidone from biobased glutamate by using Escherichia coli. Journal of Polymers and the Environment, 2013, 21(2): 528–533

DOI

134
Teng Y , Scott E L , Witte-van Dijk S C M , Sanders J P M . Simultaneous and selective decarboxylation of l-serine and deamination of l-phenylalanine in an amino acid mixture—a means of separating amino acids for synthesizing biobased chemicals. New Biotechnology, 2016, 33(1): 171–178

DOI

135
Egorova K S , Seitkalieva M M , Posvyatenko A V , Ananikov V P . An unexpected increase of toxicity of amino acid-containing ionic liquids. Toxicology Research, 2015, 4(1): 152–159

DOI

136
Spekreijse J , Le Nôtre J , van Haveren J , Scott E L , Sanders J P M . Simultaneous production of biobased styrene and acrylates using ethenolysis. Green Chemistry, 2012, 14(10): 2747–2751

DOI

137
Claes L , Janssen M , De Vos D E . Organocatalytic decarboxylation of amino acids as a route to bio-based amines and amides. ChemCatChem, 2019, 11(17): 4297–4306

DOI

138
Chatelus G . Thermal decarboxylation of α-amino acids. Bulletin de la Société Chimique de France, 1964, 10(1): 2523–2532

139
Hartmann M , Seiberth M . Über ein tetralin-peroxyd. Helvetica Chimica Acta, 1932, 15(1): 1390–1392

DOI

140
Kumar R , Shah S , Paramita Das P , Bhagavanbhai G G K , Al Fatesh A , Chowdhury B . An overview of caprolactam synthesis. Catalysis Reviews. Science and Engineering, 2019, 61(4): 516–594

DOI

141
FrostJ W. Catalytic deamination for caprolactam production. US Patent, US8283466B2, 2012

142
FrostJ W. Synthesis of caprolactam from lysine. US Patent, US7399855B2, 2008

143
De Schouwer F , Cuypers T , Claes L , De Vos D E . Metal-catalyzed reductive deamination of glutamic acid to bio-based dimethyl glutarate and methylamines. Green Chemistry, 2017, 19(8): 1866–1876

DOI

144
Weiss I M , Muth C , Drumm R , Kirchner H O K . Thermal decomposition of the amino acids glycine, cysteine, aspartic acid, asparagine, glutamic acid, glutamine, arginine and histidine. BMC Biophysics, 2018, 11(1): 2

DOI

145
Mazlan M A F , Uemura Y , Osman N , Suzana Y . Fast pyrolysis of hardwood residues using a fixed bed drop-type pyrolyzer. Energy Conversion and Management, 2015, 98(1): 208–214

DOI

146
Mullen C , Boateng A , Goldberg N , Lima I , Laird D , Hicks K . Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis. Biomass and Bioenergy, 2010, 34(1): 67–74

DOI

147
Su H , Xu G , Chen H , Xu Y . Enriching duckweed as an energy crop for producing biobutanol using enzyme hydrolysis pretreatments and strengthening fermentation process using pH-stat. ACS Sustainable Chemistry & Engineering, 2015, 3(1): 2002

DOI

148
Liu G , Wright M M , Zhao Q , Brown R C , Wang K , Xue Y . Catalytic pyrolysis of amino acids: comparison of aliphatic amino acid and cyclic amino acid. Energy Conversion and Management, 2016, 112(1): 220–225

DOI

149
Li J , Wang Z , Yang X , Hu L , Liu Y , Wang C . Decomposing or subliming? An investigation of thermal behavior of L-leucine. Thermochimica Acta, 2006, 447(1): 147–153

DOI

150
Kitagawa H , Sendoda Y , Ono Y . Transformation of propane into aromatic hydrocarbons over ZSM-5 zeolites. Journal of Catalysis, 1986, 101(1): 12–18

DOI

151
Ono Y , Kitagawa H , Sendoda Y . Transformation of but-1-ene into aromatic hydrocarbons over ZSM-5 zeolites. Journal of the Chemical Society, Faraday Transactions 1. Physical Chemistry in Condensed Phases, 1987, 83(9): 2913–2923

152
Sharma R , Chan W G , Seeman J , Hajaligol M . Formation of low molecular weight heterocycles and polycyclic aromatic compounds (PACs) in the pyrolysis of α-amino acids. Journal of Analytical and Applied Pyrolysis, 2003, 66(1): 97–121

DOI

153
Wang K , Brown R . Catalytic pyrolysis of corn dried distillers grains with solubles to produce hydrocarbons. ACS Sustainable Chemistry & Engineering, 2014, 2(1): 2142–2148

DOI

154
Wang K , Kim K H , Brown R C . Catalytic pyrolysis of individual components of lignocellulosic biomass. Green Chemistry, 2014, 16(2): 727–735

DOI

155
Wang K , Brown R C . Catalytic pyrolysis of microalgae for production of aromatics and ammonia. Green Chemistry, 2013, 15(3): 675–681

DOI

156
Zhang H , Cheng Y T , Vispute T P , Xiao R , Huber G W . Catalytic conversion of biomass-derived feedstocks into olefins and aromatics with ZSM-5: the hydrogen to carbon effective ratio. Energy & Environmental Science, 2011, 4(6): 2297–2307

DOI

157
Carlson T R , Jae J , Lin Y C , Tompsett G A , Huber G W . Catalytic fast pyrolysis of glucose with HZSM-5: the combined homogeneous and heterogeneous reactions. Journal of Catalysis, 2010, 270(1): 110–124

DOI

158
Lien Y C , Nawar W W . Thermal decomposition of some amico acids: alanine and β-alanine. Journal of Food Science, 1974, 39(5): 914–916

DOI

159
Tian Y , Zhang J , Zuo W , Chen L , Cui Y , Tan T . Nitrogen conversion in relation to NH3 and HCN during microwave pyrolysis of sewage sludge. Environmental Science & Technology, 2013, 47(7): 3498–3505

DOI

160
Yuan S , Zhou Z J , Li J , Wang F C . Nitrogen conversion during rapid pyrolysis of coal and petroleum coke in a high-frequency furnace. Applied Energy, 2012, 92(1): 854–859

DOI

161
Li M , Zhao Y , Guo Q , Qian X , Niu D . Bio-hydrogen production from food waste and sewage sludge in the presence of aged refuse excavated from refuse landfill. Renewable Energy, 2008, 33(12): 2573–2579

DOI

162
Gomez-Flores M , Nakhla G , Hafez H . Microbial kinetics of Clostridium termitidis on cellobiose and glucose for biohydrogen production. Biotechnology Letters, 2015, 37(10): 1965–1971

DOI

163
Cheng J , Ding L , Lin R , Liu M , Zhou J , Cen K . Physicochemical characterization of typical municipal solid wastes for fermentative hydrogen and methane co-production. Energy Conversion and Management, 2016, 117(1): 297–304

DOI

164
Ionescu G , Rada E , Ragazzi M , Mărculescu C , Badea A , Apostol T . Integrated municipal solid waste scenario model using advanced pretreatment and waste to energy processes. Energy Conversion and Management, 2013, 76(1): 1083–1092

DOI

165
Sharma P , Melkania U . Enhancement effect of amino acids on hydrogen production from organic fraction of municipal solid waste using co-culture of Escherichia coli and Enterobacter aerogenes. Energy Conversion and Management, 2018, 163(1): 260–267

DOI

166
Xia A , Cheng J , Ding L , Lin R , Song W , Su H , Zhou J , Cen K . Substrate consumption and hydrogen production via co-fermentation of monomers derived from carbohydrates and proteins in biomass wastes. Applied Energy, 2015, 139(1): 9–16

DOI

167
Cheng J , Song W , Xia A , Su H , Zhou J , Cen K . Sequential generation of hydrogen and methane from xylose by two-stage anaerobic fermentation. International Journal of Hydrogen Energy, 2012, 37(1): 13323–13329

DOI

168
Chen Y , Xiao N , Zhao Y , Mu H . Enhancement of hydrogen production during waste activated sludge anaerobic fermentation by carbohydrate substrate addition and pH control. Bioresource Technology, 2012, 114(1): 349–356

DOI

169
Su H , Cheng J , Zhou J , Song W , Cen K . Combination of dark- and photo-fermentation to enhance hydrogen production and energy conversion efficiency. International Journal of Hydrogen Energy, 2009, 34(1): 8846–8853

DOI

170
Junghare M , Subudhi S , Lal B . Improvement of hydrogen production under decreased partial pressure by newly isolated alkaline tolerant anaerobe, Clostridium butyricum TM-9A: optimization of process parameters. International Journal of Hydrogen Energy, 2012, 37(1): 3160–3168

DOI

171
Lo Y C , Lu W C , Chen C Y , Chang J S . Dark fermentative hydrogen production from enzymatic hydrolysate of xylan and pretreated rice straw by Clostridium butyricum CGS5. Bioresource Technology, 2010, 101(15): 5885–5891

DOI

172
Xia A , Cheng J , Lin R , Liu J , Zhou J , Cen K . Sequential generation of hydrogen and methane from glutamic acid through combined photo-fermentation and methanogenesis. Bioresource Technology, 2013, 131(1): 146–151

DOI

173
Yuan Z , Yang H , Zhi X , Shen J . Enhancement effect of L-cysteine on dark fermentative hydrogen production. International Journal of Hydrogen Energy, 2008, 33(22): 6535–6540

DOI

174
Elbeshbishy E , Hafez H , Nakhla G . Ultrasonication for biohydrogen production from food waste. International Journal of Hydrogen Energy, 2011, 36(4): 2896–2903

DOI

175
Xia A , Cheng J , Ding L , Lin R , Song W , Zhou J , Cen K . Effects of changes in microbial community on the fermentative production of hydrogen and soluble metabolites from Chlorella pyrenoidosa biomass in semi-continuous operation. Energy, 2014, 68(1): 982–988

DOI

176
Chen H , Xie Y , Chen W , Xia M , Li K , Chen Z , Chen Y , Yang H . Investigation on co-pyrolysis of lignocellulosic biomass and amino acids using TG-FTIR and Py-GC/MS. Energy Conversion and Management, 2019, 196(1): 320–329

DOI

177
BrittPBuchananA COwensCSkeenJ. Does glucose enhance the formation of nitrogen containing polycyclic aromatic compounds and polycyclic aromatic hydrocarbons in the pyrolysis of proline? Fuel, 2004, 83(12): 1417–1432

178
Huber G W , Iborra S , Corma A . Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chemical Reviews, 2006, 106(9): 4044–4098

DOI

179
Yang H , Huan B , Chen Y , Gao Y , Li J , Chen H . Biomass-based pyrolytic polygeneration system for bamboo industry waste: evolution of the char structure and the pyrolysis mechanism. Energy & Fuels, 2016, 30(8): 6430–6439

DOI

180
Choi S S , Ko J E . Analysis of cyclic pyrolysis products formed from amino acid monomer. Journal of Chromatography. A, 2011, 1218(46): 8443–8455

DOI

181
Sharma R , Chan W , Hajaligol M . Product compositions from pyrolysis of some aliphatic α-amino acids. Journal of Analytical and Applied Pyrolysis, 2006, 75(2): 69–81

DOI

182
Ren Q , Zhao C . NOx and N2O precursors from biomass pyrolysis: nitrogen transformation from amino acid. Environmental Science & Technology, 2012, 46(7): 4236–4240

DOI

183
Chiavari G , Galletti G C . Pyrolysis—gas chromatography/mass spectrometry of amino acids. Journal of Analytical and Applied Pyrolysis, 1992, 24(2): 123–137

DOI

Outlines

/