Zinc(II) metal-organic framework eluting titanium implant as propulsive agent to boost the endothelium regeneration
Received date: 30 Dec 2023
Accepted date: 06 Feb 2024
Copyright
The advent of antiproliferative drug-eluting vascular stents can dramatically reduce in-stent restenosis via inhibiting the hyperproliferation of vascular smooth muscle cells. However, the antiproliferative drugs also restrain the repair of the injured endothelial layer, which in turn leads to the very later in-stent restenosis. Evidence points that competent endothelium plays a critical role in guaranteeing the long-term patency via maintaining vascular homeostasis. Boosting the regeneration of endothelium on the implanted vascular stents could be rendered as a promising strategy to reduce stent implantation complications. In this regard, bioactive zinc(II) metal-organic framework modified with endothelial cell-targeting Arg-Glu-Asp-Val peptide was embedded in poly(lactide-co-caprolactone) to serve as a functional coating on the surface of titanium substrate, which can promote the proliferation and migration of endothelial cells. The in vitro cell experiments revealed that the zinc(II) metal-organic framework embedded in the polymer coating was able to modulate the behaviors of endothelial cells owing to the bioactive effects of zinc ion and peptide. Our results confirmed that zinc(II) metal-organic framework eluting coating represented a new possibility for promoting the repair of the damaged endothelium with potential clinical implications in vascular-related biomaterials and tissue engineering applications.
Wen Liu , Xiaoyu Wang , Ying Li , Shihai Xia , Wencheng Zhang , Yakai Feng . Zinc(II) metal-organic framework eluting titanium implant as propulsive agent to boost the endothelium regeneration[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(6) : 69 . DOI: 10.1007/s11705-024-2428-y
1 |
Frąk W , Wojtasińska A , Lisińska W , Młynarska E , Franczyk B , Rysz J . Pathophysiology of cardiovascular diseases: new insights into molecular mechanisms of atherosclerosis, arterial hypertension, and coronary artery disease. Biomedicines, 2022, 10(8): 1938
|
2 |
Cockerill I , See C W , Young M L , Wang Y , Zhu D . Designing better cardiovascular stent materials: a learning curve. Advanced Functional Materials, 2021, 31(1): 2005361
|
3 |
Andreou I , Stone P H , Ikonomidis I , Alexopoulos D , Sabaté M . Recurrent atherosclerosis complications as a mechanism for stent failure. Hellenic Journal of Cardiology, 2020, 61(1): 9–14
|
4 |
Zhu Y , Liu K , Chen M L , Liu Y , Gao A , Hu C , Li H , Zhu H G , Han H Y , Zhang J W .
|
5 |
Clare J , Ganly J , Bursill C A , Sumer H , Kingshott P , de Haan J B . The mechanisms of restenosis and relevance to next generation stent design. Biomolecules, 2022, 12(3): 430
|
6 |
Liu W , Wang X Y , Feng Y K . Restoring endothelial function: shedding light on cardiovascular stent development. Biomaterials Science, 2023, 11(12): 4132–4150
|
7 |
Zhou J Y , Wang M Y , Wei T T , Bai L C , Zhao J , Wang K , Feng Y K . Endothelial cell-mediated gene delivery for in situ accelerated endothelialization of a vascular graft. ACS Applied Materials & Interfaces, 2021, 13(14): 16097–16105
|
8 |
Wu Y F , Song L L , Shafiq M , Ijima H , Kim S H , Wei R , Kong D L , Mo X M , Wang K . Peptides-tethered vascular grafts enable blood vessel regeneration via endogenous cell recruitment and neovascularization. Composites. Part B, Engineering, 2023, 252: 110504
|
9 |
Hu S Q , Li Z H , Shen D L , Zhu D S , Huang K , Su T , Dinh P U , Cores J , Cheng K . Exosome-eluting stents for vascular healing after ischaemic injury. Nature Biomedical Engineering, 2021, 5(10): 1174–1188
|
10 |
Shah P , Chandra S . Review on emergence of nanomaterial coatings in bio-engineered cardiovascular stents. Journal of Drug Delivery Science and Technology, 2022, 70: 103224
|
11 |
Park K S , Kang S N , Kim D H , Kim H B , Im K S , Park W , Hong Y J , Han D K , Joung Y K . Late endothelial progenitor cell-capture stents with CD146 antibody and nanostructure reduce in-stent restenosis and thrombosis. Acta Biomaterialia, 2020, 111: 91–101
|
12 |
Zhang B , Qin Y M , Wang Y B . A nitric oxide-eluting and REDV peptide-conjugated coating promotes vascular healing. Biomaterials, 2022, 284: 121478
|
13 |
Gao B , Wang X Y , Wang M Y , You K X , Ahmed Suleiman G S , Ren X K , Guo J T , Xia S H , Zhang W C , Feng Y K . Superlow dosage of intrinsically bioactive zinc metal-organic frameworks to modulate endothelial cell morphogenesis and significantly rescue ischemic disease. ACS Nano, 2022, 16(1): 1395–1408
|
14 |
Mohanta M , Thirugnanam A . Commercial pure titanium—a potential candidate for cardiovascular stent. Materialwissenschaft und Werkstofftechnik, 2022, 53(12): 1518–1543 (in German)
|
15 |
Zhang X Y , Wang Y B , Liu J , Shi J , Mao D , Midgley A C , Leng X G , Kong D L , Wang Z H , Liu B .
|
16 |
Wang X Y , Gao B , Xia S H , Zhang W C , Chen X M , Li Z Q , Meng X Y , Feng Y K . Surface-functionalized zinc MOFs delivering zinc ion and hydrogen sulfide as tailored anti-hindlimb ischemic nanomedicine. Applied Materials Today, 2023, 32: 101843
|
17 |
Ding X , Chin W , Lee C N , Hedrick J L , Yang Y Y . Peptide‐functionalized polyurethane coatings prepared via grafting-to strategy to selectively promote endothelialization. Advanced Healthcare Materials, 2018, 7(5): 1700944
|
18 |
Liu S H , Zhi J C , Chen Y , Song Z Y , Wang L , Tang C Z , Li S J , Lai X P , Xu N G , Liu T . Biomimetic modification on the microporous surface of cardiovascular materials to accelerate endothelialization and regulate intimal regeneration. Biomaterials Advances, 2022, 135: 112666
|
19 |
Wang M Y , Wan Y , Liu W , Gao B , Wang X Y , Li W Z , Xia S H , Zhang W C , Wang K , Feng Y K . Covalent grafting of zwitterion polymer and REDV peptide onto NiTi alloy surface for anticoagulation and proendothelialization. Polymers for Advanced Technologies, 2023, 34(8): 2663–2673
|
20 |
Im S H , Im D H , Park S J , Jung Y , Kim D H , Kim S H . Current status and future direction of metallic and polymeric materials for advanced vascular stents. Progress in Materials Science, 2022, 126: 100922
|
21 |
Godwin G , Jaisingh S J , Priyan M S , Singh S C E . Wear and corrosion behaviour of Ti-based coating on biomedical implants. Surface Engineering, 2021, 37(1): 32–41
|
22 |
He W J , Ye L , Coates P , Caton-Rose F , Zhao X W . Construction of fully biodegradable poly(L-lactic acid)/poly(D-lactic acid)-poly(lactide-co-caprolactone) block polymer films: viscoelasticity, processability and flexibility. International Journal of Biological Macromolecules, 2023, 236: 123980
|
23 |
Du Y H , Xing L Y , Hou P J , Qi J , Liu X L , Zhang Y Y , Chen D L , Li Q , Xiong C D , Huang T F .
|
24 |
Wang X Y , Gao B , Wang M Y , Wang Q L , Xia S H , Zhang W C , Meng X Y , Feng Y K . CO delivery nanosystem based on regenerative bioactive zinc MOFs highlights intercellular crosstalk for enhanced vascular remodeling in CLI therapy. Chemical Engineering Journal, 2023, 452: 139670
|
25 |
Jana S . Endothelialization of cardiovascular devices. Acta Biomaterialia, 2019, 99: 53–71
|
26 |
Bi Y G , Lin Z T , Deng S T . Fabrication and characterization of hydroxyapatite/sodium alginate/chitosan composite microspheres for drug delivery and bone tissue engineering. Materials Science and Engineering C, 2019, 100: 576–583
|
27 |
Zhou R Y , Wu Y M , Chen K , Zhang D T , Chen Q , Zhang D H , She Y R , Zhang W J , Liu L Q , Zhu Y Q .
|
28 |
Li Q , Hao X F , Wang H X , Guo J T , Ren X K , Xia S H , Zhang W C , Feng Y K . Multifunctional REDV-G-TAT-G-NLS-Cys peptide sequence conjugated gene carriers to enhance gene transfection efficiency in endothelial cells. Colloids and Surfaces. B, Biointerfaces, 2019, 184: 110510
|
29 |
Evans C E , Iruela-Arispe M L , Zhao Y Y . Mechanisms of endothelial regeneration and vascular repair and their application to regenerative medicine. American Journal of Pathology, 2021, 191(1): 52–65
|
30 |
Yu S , Gao Y , Mei X , Ren T C , Liang S , Mao Z W , Gao C Y . Preparation of an Arg-Glu-Asp-Val peptide density gradient on hyaluronic acid-coated poly(ε-caprolactone) film and its influence on the selective adhesion and directional migration of endothelial cells. ACS Applied Materials & Interfaces, 2016, 8(43): 29280–29288
|
31 |
Ridley A J , Schwartz M A , Burridge K , Firtel R A , Ginsberg M H , Borisy G , Parsons J T , Horwitz A R . Cell migration: integrating signals from front to back. Science, 2003, 302(5651): 1704–1709
|
/
〈 | 〉 |