The interaction of the structure-directing agent with the zeolite framework determines germanium distribution in SCM-15 germanosilicate

  • Stoyan P. Gramatikov 1 ,
  • Petko St. Petkov 1 ,
  • Zhendong Wang 2 ,
  • Weimin Yang 2 ,
  • Georgi N. Vayssilov , 1
Expand
  • 1. Faculty of Chemistry and Pharmacy, University of Sofia, 1126 Sofia, Bulgaria
  • 2. State Key Laboratory of Green Chemical Engineering and Industrial Catalysis; Sinopec Shanghai Research Institute of Petrochemical Technology Co., Ltd., Shanghai 201208, China
gnv@chem.uni-sofia.bg

Received date: 31 Oct 2023

Accepted date: 13 Jan 2024

Copyright

2024 Higher Education Press

Abstract

We report results from computational modeling of the relative stability of germanosilicate SCM-15 structure due to different distribution of germanium heteroatoms in the double four-member rings (D4Rs) of the framework and the orientation of the structure directing agent (SDA) molecules in the as-synthesized zeolite. The calculated relative energies of the bare zeolite framework suggest that structures with germanium ions clustered in the same D4Rs, e.g., with large number of Ge–O–Ge contacts, are the most stable. The simulations of various orientations of the SDA in the pores of the germanosilicate zeolite show different stability order—the most stable models are the structures with germanium spread among all D4Rs. Thus, for SCM-15 the stabilization due to the presence of the SDA and their orientation, is thermodynamic factor directing both the formation of specific framework type and Ge distribution in the framework during the synthesis. The relative stability of bare structures with different germanium distribution is of minor importance. This differs from SCM-14 germanosilicate, reported earlier, for which the stability order is preserved in presence of SDA. Thus, even for zeolites with the same chemical composition and SDA, the characteristics of their framework lead to different energetic preference for germanium distribution.

Cite this article

Stoyan P. Gramatikov , Petko St. Petkov , Zhendong Wang , Weimin Yang , Georgi N. Vayssilov . The interaction of the structure-directing agent with the zeolite framework determines germanium distribution in SCM-15 germanosilicate[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(5) : 58 . DOI: 10.1007/s11705-024-2417-1

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

The authors thank Sinopec for the support.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at http://doi.org/10.1007/s11705-024-2417-1 and is accessible for authorized users.
1
Čejka J , Opanasenko M , Shamzhy M , Wang Y , Yan W , Nachtigall P . Synthesis and post-synthesis transformation of germanosilicate zeolites. Angewandte Chemie International Edition, 2020, 59(44): 19380–19389

DOI

2
Jiang J , Jorda J L , Diaz-Cabanas M J , Yu J , Corma A . The synthesis of an extra-large-pore zeolite with double three-ring building units and a low framework density. Angewandte Chemie International Edition, 2010, 49(29): 4986–4988

DOI

3
Li Y , Yu J . New stories of zeolite structures: their descriptions, determinations, predictions, and evaluations. Chemical Reviews, 2014, 114(14): 7268–7316

DOI

4
St Petkov P , Aleksandrov H A , Valtchev V , Vayssilov G N . Framework stability of heteroatom substituted forms of large pore Ge-silicate molecular sieves: the case of ITQ-44. Chemistry of Materials, 2012, 24(13): 2509–2518

DOI

5
Zhang C , Kapaca E , Li J , Liu Y , Yi X , Zheng A , Zou X , Jiang J , Yu J . An extra-large pore zeolite with 24 × 8 × 8-ring channels using a structure directing agent derived from traditional Chinese medicine. Angewandte Chemie International Edition, 2018, 57(22): 6486–6490

DOI

6
Gao Z R , Li J , Lin C , Mayoral A , Sun J , Camblor M A . HPM-14: a new germanosilicate zeolite with interconnected extra-large pores plus odd-membered and small pores. Angewandte Chemie International Edition, 2020, 60(7): 3438–3442

DOI

7
Kemp K C , Choi W , Jo D , Park S H , Hong S B . Synthesis and structure of the medium-pore zeolite PST-35 with two interconnected cages of unusual orthorhombic shape. Chemical Science, 2022, 13(35): 10455–10460

DOI

8
Corma A , Díaz-Cabañas M J , Jordá J L , Martínez C , Moliner M . High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings. Nature, 2006, 443(7113): 842–845

DOI

9
Chlubná-Eliášová P , Tian Y , Pinar A B , Kubů M , Čejka J , Morris R E . The assembly-disassembly-organization-reassembly mechanism for 3d-2d-3d transformation of germanosilicate IWW Zeolite. Angewandte Chemie International Edition, 2014, 53(27): 7048–7052

DOI

10
Xu H , Jiang J , Yang B , Wu H , Wu P . Effective Baeyer-Villiger oxidation of ketones over germanosilicates. Catalysis Communications, 2014, 55: 83–86

DOI

11
Liu Z , Yuan J , van Baten J M , Zhou J , Tang X , Zhao C , Chen W , Yi X , Krishna R , Sastre G . . Synergistically enhance confined diffusion by continuum intersecting channels in zeolites. Science Advances, 2021, 7(11): eabf0775

DOI

12
Ma Y , Song S , Liu C , Liu L , Zhang L , Zhao Y , Wang X , Xu H , Guan Y , Jiang J . . Germanium-enriched double-four-membered-ring units inducing zeolite-confined subnanometric Pt clusters for efficient propane dehydrogenation. Nature Catalysis, 2023, 6(6): 506–518

DOI

13
Kasneryk V I , Shamzhy M V , Opanasenko M V , Cejka J . Tuning of textural properties of germanosilicate zeolites ITH and IWW by acidic leaching. Journal of Energy Chemistry, 2016, 25(2): 318–326

DOI

14
Li J , Corma A , Yu J . Synthesis of new zeolite structures. Chemical Society Reviews, 2015, 44(20): 7112–7127

DOI

15
Lu K , Huang J , Jiao M , Zhao Y , Ma Y , Jiang J , Xu H , Ma Y , Wu P . Topotactic conversion of Ge-rich IWW zeolite into IPC-18 under mild condition. Microporous and Mesoporous Materials, 2021, 310: 110617

DOI

16
Luo C , Li X , Fu W , Yuan Z , Tao W , Wang Z , Yang W . Hydrothermally stable ITH-type zeolite directed by a simple nonquaternary ammonium pyrrolidine derivative: synthesis, characterization and catalytic performance. Microporous and Mesoporous Materials, 2021, 319: 111058

DOI

17
Isaac C , Paillaud J , Daou T J , Ryzhikov A . Synthesis of BEC-type germanosilicates with asymmetric diquaternary ammonium salts. Microporous and Mesoporous Materials, 2021, 312: 110804

DOI

18
Odoh S O , Deem M W , Gagliardi L . Preferential location of germanium in the UTL and IPC-2a zeolites. Journal of Physical Chemistry C, 2014, 118(46): 26939–26946

DOI

19
Kasian N , Tuel A , Verheyen E , Kirschhock C E A , Taulelle F , Martens J A . NMR evidence for specific germanium siting in IM-12 zeolite. Chemistry of Materials, 2014, 26(19): 5556–5565

DOI

20
Kamakoti P , Barckholtz T A . Role of germanium in the formation of double four rings in zeolites. Journal of Physical Chemistry C, 2007, 111(9): 3575–3583

DOI

21
Sastre G , Corma A . Predicting structural feasibility of silica and germania zeolites. Journal of Physical Chemistry C, 2010, 114(3): 1667–1673

DOI

22
Verheyen E , Joos L , Van Havenbergh K , Breynaert E , Kasian N , Gobechiya E , Houthoofd K , Martineau C , Hinterstein M , Taulelle F . . Design of zeolite by inverse sigma transformation. Nature Materials, 2012, 11(12): 1059–1064

DOI

23
Gramatikov S P , Vayssilov G N . Petkov P. The relative stability of SCM-14 germanosilicate with different distributions of germanium ions in the absence and presence of structure-directing agents. Inorganic Chemistry Frontiers, 2022, 9(15): 3747–3757

DOI

24
Luo Y , Smeets S , Wang Z , Sun J , Yang W . Synthesis and structure determination of SCM-15: a 3D large pore zeolite with interconnected straight 12 × 12 × 10-ring channels. Chemistry, 2019, 25(9): 2184–2188

DOI

25
Perdew J P , Burke K , Ernzerhof M . Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865–3868

DOI

26
Grimme S J . Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 2006, 27(15): 1787–1799

DOI

27
Kresse G , Hafner J . Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Physical Review B: Condensed Matter, 1994, 49(20): 14251–14269

DOI

28
Kresse G , Furthmüller J . Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 1996, 6(1): 15–50

DOI

29
Blöchl P E . Projector augmented-wave method. Physical Review B: Condensed Matter, 1994, 50(24): 17953–17979

DOI

30
Kresse G , Joubert J . From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B: Condensed Matter, 1999, 59(3): 1758–1775

DOI

31
Manz T A , Gabaldon Limas N . Introducing DDEC6 atomic population analysis: Part 1. Charge partitioning theory and methodology. RSC Advances, 2016, 6(53): 47771–47801

DOI

32
Gabaldon Limas N , Manz T A . Introducing DDEC6 atomic population analysis: part 2. Computed results for a wide range of periodic and nonperiodic materials. RSC Advances, 2016, 6(51): 45727–45747

DOI

33
Fischer M , Bornes C , Mafra L , Rocha J . Elucidating the germanium distribution in itq-13 zeolites by density functional theory. Chemistry, 2022, 28(14): e202104298

DOI

34
Deka R C , Nasluzov V A , Ivanova Shor E I , Shor A M , Vayssilov G N , Rösch N . Comparison of all sites for Ti substitution in zeolite TS-1 by an accurate embedded-cluster method. Journal of Physical Chemistry B, 2005, 109(51): 24304–24310

DOI

35
Sklenak S , Dědeček J , Li C , Wichterlova B , Gabova V , Sierka M , Sauer J . Aluminium siting in the ZSM-5 framework by combination of high resolution 27Al NMR and DFT/MM calculations. Physical Chemistry Chemical Physics, 2009, 11(8): 1237–1247

DOI

36
Nystrom S , Hoffman A , Hibbitts D . Tuning Brønsted acid strength by altering site proximity in CHA framework zeolites. ACS Catalysis, 2018, 8(9): 7842–7860

DOI

37
Shamzhy M V , Eliasova P , Vitvarova D , Opanasenko M V , Firth D S , Morris R E . Post-synthesis stabilization of germanosilicate zeolites ITH, IWW, and UTL by substitution of Ge for Al. Chemistry, 2016, 22(48): 1–11

DOI

38
Lu P , Gomez-Hortiguela L , Gaoa Z , Camblor M A . Synthesis of germanosilicate zeolite HPM-12 using a short imidazolium-based dication: structure-direction by charge-to-charge distance matching. Dalton Transactions, 2019, 48(48): 17752–17762

DOI

Outlines

/