Small-sized Ni-Co/Mo2C/Co6Mo6C2@C for efficient alkaline and acidic hydrogen evolution reaction by an anchoring calcination strategy
Received date: 20 Nov 2023
Accepted date: 12 Jan 2024
Copyright
A novel, cheap and highly efficient Ni-Co/Mo2C/Co6Mo6C2@C nanocomposite has been successfully constructed through simple one-step carbonization method in a nitrogen atmosphere. Polyethyleneimine in the precursor can effectively anchor molybdenum-based Keggin-type polyoxometallate and NiCo-layered double hydroxide through electrostatic and coordination interactions, which avoids the aggregation of catalyst particles during the pyrolysis process. After optimization, the obtained Ni-Co/Mo2C/Co6Mo6C2@C possesses small size (3–8 nm), large specific surface area and hierarchical pore structure. More importantly, Ni-Co/Mo2C/Co6Mo6C2@C presents remarkable hydrogen evolution reaction activity with low overpotentials in 0.5 mol·L–1 H2SO4 (102.3 mV) and 1 mol·L–1 KOH (95 mV) to afford the current density of 10 mA·cm–2, as well as small Tafel slopes of 82.49 and 99.92 mV·dec–1, respectively. Simultaneously, this catalyst also shows outstanding stability for 12 h without a significant change in current density. The excellent catalytic performance of Ni-Co/Mo2C/Co6Mo6C2@C can put down to the synergistic effect between multiple components and the small size of the catalyst. This work provides unique insights into the preparation of efficient transition metal-based catalysts for HER.
Jianxia Gu , Ying Zhu , Haiyan Zheng , Chunyi Sun , Zhongmin Su . Small-sized Ni-Co/Mo2C/Co6Mo6C2@C for efficient alkaline and acidic hydrogen evolution reaction by an anchoring calcination strategy[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(5) : 57 . DOI: 10.1007/s11705-024-2416-2
1 |
Takata T , Jiang J Z , Sakata Y , Nakabayashi M , Shibata N , Nandal V , Seki K , Hisatomi T , Domen K . Photocatalytic water splitting with a quantum efficiency of almost unity. Nature, 2020, 581(7809): 411–414
|
2 |
Yu Z H , Yan H Q , Wang C N , Wang Z , Yao H Q , Liu R , Li C , Ma S L . Oxygen-deficient MoOx/Ni3S2 heterostructure grown onnickel foam as efficient and durable self-supported electrocatalysts for hydrogen evolution reaction. Frontiers of Chemical Science and Engineering, 2023, 17(4): 437–448
|
3 |
He L Q , Zhang W B , Mo Q J , Huang W J , Yang L C , Gao Q S . Molybdenum carbide-oxide heterostructures: in-situ surface reconfiguration toward efficient electrocatalytic hydrogen evolution. Angewandte Chemie International Edition, 2020, 59(9): 3544–3548
|
4 |
Qi R W , Liu X , Bu H K , Niu X Q , Ji X Y , Ma J W , Gao H T . In situ growth of phosphorized ZIF-67-derived amorphous CoP/Cu2O@CF electrocatalyst for efficient hydrogen evolution reaction. Frontiers of Chemical Science and Engineering, 2023, 17(10): 1430–1439
|
5 |
Xiong Q Z , Wang Y , Liu P F , Zheng L R , Wang G Z , Yang H G , Wong P K , Zhang H M , Zhao H J . Cobalt covalent doping in MoS2 to induce bifunctionality of overall water splitting. Advanced Materials, 2018, 30(29): 1801450
|
6 |
Feng X G , Wang H X , Bo X J , Guo L P . Bimetal-organic framework-derived porous rodlike cobalt/nickel nitride for all-pH value electrochemical hydrogen evolution. ACS Applied Materials & Interfaces, 2019, 11(8): 8018–8024
|
7 |
Huang W , Zhou D J , Qi G C , Liu X J . Fe-doped MoS2 nanosheets array for high-current-density seawater electrolysis. Nanotechnology, 2021, 32(41): 415403
|
8 |
Xu S R , Zhao H T , Li T S , Liang J , Lu S Y , Chen G , Gao S Y , Asiri A M , Wu Q , Sun X P . Iron-based phosphides as electrocatalysts for the hydrogen evolution reaction: recent advances and future prospects. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(38): 19729–19745
|
9 |
Ge J M , Diao S T , Jin J X , Wang Y P , Zhao X H , Zhang F Z , Lei X D . NiFeCu phosphides with surface reconstruction via the topotactic transformation of layered double hydroxides for overall water splitting. Inorganic Chemistry Frontiers, 2023, 10(12): 3515–3524
|
10 |
Fabre B , Falaise C , Cadot E . Polyoxometalates-functionalized electrodes for (photo)electrocatalytic applications: recent advances and prospects. ACS Catalysis, 2022, 12(19): 12055–12091
|
11 |
Song J , Chen J L , Xu Z C , Lin R Y Y . Metal-organic framework-derived 2D layered double hydroxide ultrathin nanosheets for efficient electrocatalytic hydrogen evolution reaction. Chemical Communications, 2022, 58(76): 10655–10658
|
12 |
Hu Z H , Huang J T , Luo Y , Liu M Q , Li X B , Yan M G , Ye Z G , Chen Z , Feng Z J , Huang S F . Wrinkled Ni-doped Mo2C coating on carbon fiber paper: an advanced electrocatalyst prepared by molten-salt method for hydrogen evolution reaction. Electrochimica Acta, 2019, 319: 293–301
|
13 |
Xu Y T , Xiao X F , Ye Z M , Zhao S L , Shen R G , He C T , Zhang J P , Li Y D , Chen X M . Cage-confinement pyrolysis route to ultrasmall tungsten carbide nanoparticles for efficient electrocatalytic hydrogen evolution. Journal of the American Chemical Society, 2017, 139(15): 5285–5288
|
14 |
Huang J X , Wang J L , Zhong H X , Zhang L Z . N-Cyanoethyl polyethylenimine as a water-soluble binder for LiFePO4 cathode in lithium-ion batteries. Journal of Materials Science, 2018, 53(13): 9690–9700
|
15 |
Yamamoto K , Imaoka T , Tanabe M , Kambe T . New horizon of nanoparticle and cluster catalysis with dendrimers. Chemical Reviews, 2020, 120(2): 1397–1437
|
16 |
Jiao Y Q , Yan H J , Wang R H , Wang X W , Zhang X M , Wu A P , Tian C G , Jiang B J , Fu H G . Porous plate-like MoP assembly as an efficient pH-universal hydrogen evolution electrocatalyst. ACS Applied Materials & Interfaces, 2020, 12(44): 49596–49606
|
17 |
Tang W S , Bai J Q , Zhou P C , He Q H , Xiao F , Zhao M J , Yang P L , Liao L , Wang Y , He P .
|
18 |
Liang H Y , Lin J H , Jia H N , Chen S L , Qi J L , Cao J , Lin T S , Fei W D , Feng J C . Hierarchical NiCo-LDH/NiCoP@NiMn-LDH hybrid electrodes on carbon cloth for excellent supercapacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(31): 15040–15046
|
19 |
Feng X G , Bo X J , Guo L P . An advanced hollow bimetallic carbide/nitrogen-doped carbon nanotube for efficient catalysis of oxygen reduction and hydrogen evolution and oxygen evolution reaction. Journal of Colloid and Interface Science, 2020, 575: 69–77
|
20 |
Wan J , Wu J B , Gao X , Li T Q , Hu Z M , Yu H M , Huang L . Structure confined porous Mo2C for efficient hydrogen evolution. Advanced Functional Materials, 2017, 27(45): 1703933
|
21 |
Gu J X , Zhao X , Sun Y , Zhou J , Sun C Y , Wang X L , Kang Z H , Su Z M . A photo-activated process cascaded electrocatalysis for the highly efficient CO2 reduction over a core-shell ZIF-8@Co/C. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(32): 16616–16623
|
22 |
Zheng H Y , Xu N , Hou B S , Zhao X , Dong M , Sun C Y , Wang X L , Su Z M . Bimetallic metal-organic framework-derived graphitic carbon-coated small Co/VN nanoparticles as advanced trifunctional electrocatalysts. ACS Applied Materials & Interfaces, 2021, 13(2): 2462–2471
|
23 |
Zhu Y , Zheng H Y , Liu X Y , Sun C Y , Dong M , Wang X L , Su Z M . Ultra-small porous WN/W2C nanoparticles for sustained hydrogen production by a polyoxometalate-intercalated pyrolysis strategy. New Journal of Chemistry, 2022, 46(48): 23292–23296
|
24 |
Wang L B , Zhang W B , Zheng X S , Chen Y Z , Wu W L , Qiu J X , Zhao X C , Zhao X , Dai Y Z , Zeng J . Incorporating nitrogen atoms into cobalt nanosheets as a strategy to boost catalytic activity toward CO2 hydrogenation. Nature Energy, 2017, 2(11): 869–876
|
25 |
Fan B B , Wang H Z , Zhang H , Song Y , Zheng X R , Li C J , Tan Y Q , Han X P , Deng Y D , Hu W B . Phase transfer of Mo2C induced by boron doping to boost nitrogen reduction reaction catalytic activity. Advanced Functional Materials, 2022, 32(20): 2110783
|
26 |
Boppella R , Park J , Yang W S , Tan J W , Moon J . Efficient electrocatalytic proton reduction on CoP nanocrystals embedded in microporous P, N Co-doped carbon spheres with dual active sites. Carbon, 2020, 156: 529–537
|
27 |
Tang Y J , Liu C H , Huang W , Wang X L , Dong L Z , Li S L , Lan Y Q . Bimetallic carbides-based nanocomposite as superior electrocatalyst for oxygen evolution reaction. ACS Applied Materials & Interfaces, 2017, 9(20): 16977–16985
|
28 |
Qing Q , Chen L L , Wei T , Wang Y M , Liu X E . Ni/NiM2O4 (M = Mn or Fe) supported on N-doped carbon nanotubes as trifunctional electrocatalysts for ORR, OER and HER. Catalysis Science & Technology, 2019, 9(7): 1595–1601
|
29 |
Liu H J , Zhang S , Qiao W Z , Fan R Y , Liu B , Wang S T , Hu H , Chai Y M , Dong B . Bimetallic metal-organic framework-derived bamboo-like N-doped carbon nanotube-encapsulated Ni-doped MoC nanoparticles for water oxidation. Journal of Colloid and Interface Science, 2024, 657: 208–218
|
30 |
Chi J Q , Xie J Y , Zhang W W , Dong B , Qin J F , Zhang X Y , Lin J H , Chai Y M , Liu C G . Chai Y M. N-Doped sandwich-structured Mo2C@C@Pt interface with ultralow Pt loading for pH-universal hydrogen evolution reaction. ACS Applied Materials & Interfaces, 2019, 11(4): 4047–4056
|
31 |
Lai L F , Potts J R , Zhan D , Wang L , Poh C K , Tang C H , Gong H , Shen Z X , Lin J Y , Ruoff R S . Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy & Environmental Science, 2012, 5(7): 7936–7942
|
32 |
Wu C , Liu D , Li H , Li J H . Molybdenum carbide-decorated metallic cobalt@nitrogen-doped carbon polyhedrons for enhanced electrocatalytic hydrogen evolution. Small, 2018, 14(16): 1704227
|
33 |
Liu H J , Zhang S , Chai Y M , Dong B . Ligand modulation of active sites to promote cobalt-doped 1T-MoS2 electrocatalytic hydrogen evolution in alkaline media. Angewandte Chemie International Edition, 2023, 62(48): 202313845
|
34 |
Gao Q S , Zhang W B , Shi Z P , Yang L C , Tang Y . Structural design and electronic modulation of transition metal-carbide electrocatalysts toward efficient hydrogen evolution. Advanced Materials, 2019, 31(2): 1802880
|
35 |
Faber M S , Jin S . Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy & Environmental Science, 2014, 7(11): 3519–3542
|
36 |
Chi J Q , Chai Y M , Shang X , Dong B , Liu C G , Zhang W J , Jin Z . Heterointerface engineering of trilayer-shelled ultrathin MoS2/MoP/N-doped carbon hollow nanobubbles for efficient hydrogen evolution. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(48): 24783–24792
|
37 |
Chen N N , Zhang W B , Zeng J C , He L Q , Li D , Gao Q S . Plasma-engineered MoP with nitrogen doping: electron localization toward efficient alkaline hydrogen evolution. Applied Catalysis B: Environmental, 2020, 268: 118441
|
38 |
Chen X Z , Qi J , Wang P , Li C , Chen X , Liang C H . Polyvinyl alcohol protected Mo2C/Mo2N multicomponent electrocatalysts with controlled morphology for hydrogen evolution reaction in acid and alkaline medium. Electrochimica Acta, 2018, 273: 239–247
|
39 |
Zang Y , Yang B P , Li A , Liao C G , Chen G , Liu M , Liu X H , Ma R Z , Zhang N . Tuning interfacial active sites over porous Mo2N-supported cobalt sulfides for efficient hydrogen evolution reactions in acid and alkaline electrolytes. ACS Applied Materials & Interfaces, 2021, 13(35): 41573–41583
|
40 |
Yan H J , Xie Y , Jiao Y Q , Wu A P , Tian C G , Zhang X M , Wang L , Fu H G . Holey reduced graphene oxide coupled with an Mo2N-Mo2C heterojunction for efficient hydrogen evolution. Advanced Materials, 2018, 30(2): 1704156
|
41 |
Du Q Q , Zhao R H , Guo T Y , Liu L , Chen X J , Zhang J , Du J P , Li J P , Mai L Q , Asefa T . Highly dispersed Mo2C nanodots in carbon nanocages derived from Mo-based xerogel: efficient electrocatalysts for hydrogen evolution. Small Methods, 2021, 5(11): 2100334
|
42 |
Liu W , Wang X T , Qu J K , Liu X L , Zhang Z F , Guo Y Z , Yin H Y , Wang D H . Tuning Ni dopant concentration to enable co-deposited superhydrophilic self-standing Mo2C electrode for high-efficient hydrogen evolution reaction. Applied Catalysis B: Environmental, 2022, 307: 121–201
|
43 |
Qin J Y , Xi C , Zhang R , Liu T , Zou P C , Wu D Y , Guo Q J , Mao J , Xin H L , Yang J . Activating edge-Mo of 2H-MoS2 via coordination with pyridinic N–C for pH-universal hydrogen evolution electrocatalysis. ACS Catalysis, 2021, 11(8): 4486–4497
|
44 |
Ouyang T , Ye Y Q , Wu C Y , Xiao K , Liu Z Q . Heterostructures composed of N-doped carbon nanotubes encapsulating cobalt and beta-Mo2C nanoparticles as bifunctional electrodes for water splitting. Angewandte Chemie International Edition, 2019, 58(15): 4923–4928
|
45 |
Hou X B , Zhou H M , Zhao M , Cai Y B , Wei Q F . MoS2 nanoplates embedded in Co-N-doped carbon nanocages as efficient catalyst for HER and OER. ACS Sustainable Chemistry & Engineering, 2020, 8(14): 5724–5733
|
46 |
Wang C Y , Zhao W J , Jiang H X , Cui M Y , Jin Y , Sun R X , Lin X F , Zhang L L . Molybdenum disulfide composite materials with encapsulated copper nanoparticles as hydrogen evolution catalysts. RSC Advances, 2022, 12(21): 13393–13400
|
47 |
Wei J L , Xu L , Hu L H , Wang T J , Ma Y F . Dual-doping strategy for enhancing hydrogen evolution on molybdenum carbide catalysts. Catalysts, 2023, 13(6): 931
|
48 |
Chen P R , Ouyang L Z , Lang C G , Zhong H , Liu J W , Wang H , Huang Z G , Zhu M . All-pH hydrogen evolution by heterophase molybdenum carbides prepared via mechanochemical synthesis. ACS Sustainable Chemistry & Engineering, 2023, 11(9): 3585–3593
|
49 |
Qiu Y , Liu J Z , Sun M X , Yang J F , Liu J Z , Zhang X Y , Liu X J , Zhang L X . Rational design of electrocatalyst with abundant Co/MoN heterogeneous domains for accelerating hydrogen evolution reaction. Chinese Journal of Structural Chemistry, 2022, 41: 2207040–2207045
|
50 |
Ma M Y , Yu H Z , Deng L M , Wang L Q , Liu S Y , Pan H , Ren J W , Maximov M Y , Hu F , Peng S J . Interfacial engineering of heterostructured carbon-supported molybdenum cobalt sulfides for efficient overall water splitting. Tungsten, 2023, 5(4): 589–597
|
/
〈 | 〉 |