Small-sized Ni-Co/Mo2C/Co6Mo6C2@C for efficient alkaline and acidic hydrogen evolution reaction by an anchoring calcination strategy

  • Jianxia Gu , 1 ,
  • Ying Zhu 2 ,
  • Haiyan Zheng 2 ,
  • Chunyi Sun , 2 ,
  • Zhongmin Su 2
Expand
  • 1. Department of Chemistry, Xinzhou Normal University, Xinzhou 034000, China
  • 2. School of Chemistry, Northeast Normal University, Changchun 130024, China
gujx349@nenu.edu.cn
suncy009@nenu.edu.cn

Received date: 20 Nov 2023

Accepted date: 12 Jan 2024

Copyright

2024 Higher Education Press

Abstract

A novel, cheap and highly efficient Ni-Co/Mo2C/Co6Mo6C2@C nanocomposite has been successfully constructed through simple one-step carbonization method in a nitrogen atmosphere. Polyethyleneimine in the precursor can effectively anchor molybdenum-based Keggin-type polyoxometallate and NiCo-layered double hydroxide through electrostatic and coordination interactions, which avoids the aggregation of catalyst particles during the pyrolysis process. After optimization, the obtained Ni-Co/Mo2C/Co6Mo6C2@C possesses small size (3–8 nm), large specific surface area and hierarchical pore structure. More importantly, Ni-Co/Mo2C/Co6Mo6C2@C presents remarkable hydrogen evolution reaction activity with low overpotentials in 0.5 mol·L–1 H2SO4 (102.3 mV) and 1 mol·L–1 KOH (95 mV) to afford the current density of 10 mA·cm–2, as well as small Tafel slopes of 82.49 and 99.92 mV·dec–1, respectively. Simultaneously, this catalyst also shows outstanding stability for 12 h without a significant change in current density. The excellent catalytic performance of Ni-Co/Mo2C/Co6Mo6C2@C can put down to the synergistic effect between multiple components and the small size of the catalyst. This work provides unique insights into the preparation of efficient transition metal-based catalysts for HER.

Cite this article

Jianxia Gu , Ying Zhu , Haiyan Zheng , Chunyi Sun , Zhongmin Su . Small-sized Ni-Co/Mo2C/Co6Mo6C2@C for efficient alkaline and acidic hydrogen evolution reaction by an anchoring calcination strategy[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(5) : 57 . DOI: 10.1007/s11705-024-2416-2

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21971032), the Youth Science Research Project of Shanxi Province (Grant No. 202103021223362), the Science and technology innovation project of higher education in Shanxi Province (Grant No. 2021L450) and the Foundation of Xinzhou Teachers University, China (Grant No. 2021KY07). This work was supported by the State Key Laboratory of Safety and Control for Chemicals [10010104-19-ZC0613-0180].

Electronic Supplementary Material

Supplementary material is available in the online version of this article at http://doi.org/10.1007/s11705-024-2416-2 and is accessible for authorized users.
1
Takata T , Jiang J Z , Sakata Y , Nakabayashi M , Shibata N , Nandal V , Seki K , Hisatomi T , Domen K . Photocatalytic water splitting with a quantum efficiency of almost unity. Nature, 2020, 581(7809): 411–414

DOI

2
Yu Z H , Yan H Q , Wang C N , Wang Z , Yao H Q , Liu R , Li C , Ma S L . Oxygen-deficient MoOx/Ni3S2 heterostructure grown onnickel foam as efficient and durable self-supported electrocatalysts for hydrogen evolution reaction. Frontiers of Chemical Science and Engineering, 2023, 17(4): 437–448

DOI

3
He L Q , Zhang W B , Mo Q J , Huang W J , Yang L C , Gao Q S . Molybdenum carbide-oxide heterostructures: in-situ surface reconfiguration toward efficient electrocatalytic hydrogen evolution. Angewandte Chemie International Edition, 2020, 59(9): 3544–3548

DOI

4
Qi R W , Liu X , Bu H K , Niu X Q , Ji X Y , Ma J W , Gao H T . In situ growth of phosphorized ZIF-67-derived amorphous CoP/Cu2O@CF electrocatalyst for efficient hydrogen evolution reaction. Frontiers of Chemical Science and Engineering, 2023, 17(10): 1430–1439

DOI

5
Xiong Q Z , Wang Y , Liu P F , Zheng L R , Wang G Z , Yang H G , Wong P K , Zhang H M , Zhao H J . Cobalt covalent doping in MoS2 to induce bifunctionality of overall water splitting. Advanced Materials, 2018, 30(29): 1801450

DOI

6
Feng X G , Wang H X , Bo X J , Guo L P . Bimetal-organic framework-derived porous rodlike cobalt/nickel nitride for all-pH value electrochemical hydrogen evolution. ACS Applied Materials & Interfaces, 2019, 11(8): 8018–8024

DOI

7
Huang W , Zhou D J , Qi G C , Liu X J . Fe-doped MoS2 nanosheets array for high-current-density seawater electrolysis. Nanotechnology, 2021, 32(41): 415403

DOI

8
Xu S R , Zhao H T , Li T S , Liang J , Lu S Y , Chen G , Gao S Y , Asiri A M , Wu Q , Sun X P . Iron-based phosphides as electrocatalysts for the hydrogen evolution reaction: recent advances and future prospects. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(38): 19729–19745

DOI

9
Ge J M , Diao S T , Jin J X , Wang Y P , Zhao X H , Zhang F Z , Lei X D . NiFeCu phosphides with surface reconstruction via the topotactic transformation of layered double hydroxides for overall water splitting. Inorganic Chemistry Frontiers, 2023, 10(12): 3515–3524

DOI

10
Fabre B , Falaise C , Cadot E . Polyoxometalates-functionalized electrodes for (photo)electrocatalytic applications: recent advances and prospects. ACS Catalysis, 2022, 12(19): 12055–12091

DOI

11
Song J , Chen J L , Xu Z C , Lin R Y Y . Metal-organic framework-derived 2D layered double hydroxide ultrathin nanosheets for efficient electrocatalytic hydrogen evolution reaction. Chemical Communications, 2022, 58(76): 10655–10658

DOI

12
Hu Z H , Huang J T , Luo Y , Liu M Q , Li X B , Yan M G , Ye Z G , Chen Z , Feng Z J , Huang S F . Wrinkled Ni-doped Mo2C coating on carbon fiber paper: an advanced electrocatalyst prepared by molten-salt method for hydrogen evolution reaction. Electrochimica Acta, 2019, 319: 293–301

DOI

13
Xu Y T , Xiao X F , Ye Z M , Zhao S L , Shen R G , He C T , Zhang J P , Li Y D , Chen X M . Cage-confinement pyrolysis route to ultrasmall tungsten carbide nanoparticles for efficient electrocatalytic hydrogen evolution. Journal of the American Chemical Society, 2017, 139(15): 5285–5288

DOI

14
Huang J X , Wang J L , Zhong H X , Zhang L Z . N-Cyanoethyl polyethylenimine as a water-soluble binder for LiFePO4 cathode in lithium-ion batteries. Journal of Materials Science, 2018, 53(13): 9690–9700

DOI

15
Yamamoto K , Imaoka T , Tanabe M , Kambe T . New horizon of nanoparticle and cluster catalysis with dendrimers. Chemical Reviews, 2020, 120(2): 1397–1437

DOI

16
Jiao Y Q , Yan H J , Wang R H , Wang X W , Zhang X M , Wu A P , Tian C G , Jiang B J , Fu H G . Porous plate-like MoP assembly as an efficient pH-universal hydrogen evolution electrocatalyst. ACS Applied Materials & Interfaces, 2020, 12(44): 49596–49606

DOI

17
Tang W S , Bai J Q , Zhou P C , He Q H , Xiao F , Zhao M J , Yang P L , Liao L , Wang Y , He P . . Polymethylene blue nanospheres supported honeycomb-like NiCo-LDH for high-performance supercapacitors. Electrochimica Acta, 2023, 439: 141683

DOI

18
Liang H Y , Lin J H , Jia H N , Chen S L , Qi J L , Cao J , Lin T S , Fei W D , Feng J C . Hierarchical NiCo-LDH/NiCoP@NiMn-LDH hybrid electrodes on carbon cloth for excellent supercapacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(31): 15040–15046

DOI

19
Feng X G , Bo X J , Guo L P . An advanced hollow bimetallic carbide/nitrogen-doped carbon nanotube for efficient catalysis of oxygen reduction and hydrogen evolution and oxygen evolution reaction. Journal of Colloid and Interface Science, 2020, 575: 69–77

DOI

20
Wan J , Wu J B , Gao X , Li T Q , Hu Z M , Yu H M , Huang L . Structure confined porous Mo2C for efficient hydrogen evolution. Advanced Functional Materials, 2017, 27(45): 1703933

DOI

21
Gu J X , Zhao X , Sun Y , Zhou J , Sun C Y , Wang X L , Kang Z H , Su Z M . A photo-activated process cascaded electrocatalysis for the highly efficient CO2 reduction over a core-shell ZIF-8@Co/C. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(32): 16616–16623

DOI

22
Zheng H Y , Xu N , Hou B S , Zhao X , Dong M , Sun C Y , Wang X L , Su Z M . Bimetallic metal-organic framework-derived graphitic carbon-coated small Co/VN nanoparticles as advanced trifunctional electrocatalysts. ACS Applied Materials & Interfaces, 2021, 13(2): 2462–2471

DOI

23
Zhu Y , Zheng H Y , Liu X Y , Sun C Y , Dong M , Wang X L , Su Z M . Ultra-small porous WN/W2C nanoparticles for sustained hydrogen production by a polyoxometalate-intercalated pyrolysis strategy. New Journal of Chemistry, 2022, 46(48): 23292–23296

DOI

24
Wang L B , Zhang W B , Zheng X S , Chen Y Z , Wu W L , Qiu J X , Zhao X C , Zhao X , Dai Y Z , Zeng J . Incorporating nitrogen atoms into cobalt nanosheets as a strategy to boost catalytic activity toward CO2 hydrogenation. Nature Energy, 2017, 2(11): 869–876

DOI

25
Fan B B , Wang H Z , Zhang H , Song Y , Zheng X R , Li C J , Tan Y Q , Han X P , Deng Y D , Hu W B . Phase transfer of Mo2C induced by boron doping to boost nitrogen reduction reaction catalytic activity. Advanced Functional Materials, 2022, 32(20): 2110783

DOI

26
Boppella R , Park J , Yang W S , Tan J W , Moon J . Efficient electrocatalytic proton reduction on CoP nanocrystals embedded in microporous P, N Co-doped carbon spheres with dual active sites. Carbon, 2020, 156: 529–537

DOI

27
Tang Y J , Liu C H , Huang W , Wang X L , Dong L Z , Li S L , Lan Y Q . Bimetallic carbides-based nanocomposite as superior electrocatalyst for oxygen evolution reaction. ACS Applied Materials & Interfaces, 2017, 9(20): 16977–16985

DOI

28
Qing Q , Chen L L , Wei T , Wang Y M , Liu X E . Ni/NiM2O4 (M = Mn or Fe) supported on N-doped carbon nanotubes as trifunctional electrocatalysts for ORR, OER and HER. Catalysis Science & Technology, 2019, 9(7): 1595–1601

DOI

29
Liu H J , Zhang S , Qiao W Z , Fan R Y , Liu B , Wang S T , Hu H , Chai Y M , Dong B . Bimetallic metal-organic framework-derived bamboo-like N-doped carbon nanotube-encapsulated Ni-doped MoC nanoparticles for water oxidation. Journal of Colloid and Interface Science, 2024, 657: 208–218

DOI

30
Chi J Q , Xie J Y , Zhang W W , Dong B , Qin J F , Zhang X Y , Lin J H , Chai Y M , Liu C G . Chai Y M. N-Doped sandwich-structured Mo2C@C@Pt interface with ultralow Pt loading for pH-universal hydrogen evolution reaction. ACS Applied Materials & Interfaces, 2019, 11(4): 4047–4056

DOI

31
Lai L F , Potts J R , Zhan D , Wang L , Poh C K , Tang C H , Gong H , Shen Z X , Lin J Y , Ruoff R S . Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy & Environmental Science, 2012, 5(7): 7936–7942

DOI

32
Wu C , Liu D , Li H , Li J H . Molybdenum carbide-decorated metallic cobalt@nitrogen-doped carbon polyhedrons for enhanced electrocatalytic hydrogen evolution. Small, 2018, 14(16): 1704227

DOI

33
Liu H J , Zhang S , Chai Y M , Dong B . Ligand modulation of active sites to promote cobalt-doped 1T-MoS2 electrocatalytic hydrogen evolution in alkaline media. Angewandte Chemie International Edition, 2023, 62(48): 202313845

DOI

34
Gao Q S , Zhang W B , Shi Z P , Yang L C , Tang Y . Structural design and electronic modulation of transition metal-carbide electrocatalysts toward efficient hydrogen evolution. Advanced Materials, 2019, 31(2): 1802880

DOI

35
Faber M S , Jin S . Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy & Environmental Science, 2014, 7(11): 3519–3542

DOI

36
Chi J Q , Chai Y M , Shang X , Dong B , Liu C G , Zhang W J , Jin Z . Heterointerface engineering of trilayer-shelled ultrathin MoS2/MoP/N-doped carbon hollow nanobubbles for efficient hydrogen evolution. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(48): 24783–24792

DOI

37
Chen N N , Zhang W B , Zeng J C , He L Q , Li D , Gao Q S . Plasma-engineered MoP with nitrogen doping: electron localization toward efficient alkaline hydrogen evolution. Applied Catalysis B: Environmental, 2020, 268: 118441

DOI

38
Chen X Z , Qi J , Wang P , Li C , Chen X , Liang C H . Polyvinyl alcohol protected Mo2C/Mo2N multicomponent electrocatalysts with controlled morphology for hydrogen evolution reaction in acid and alkaline medium. Electrochimica Acta, 2018, 273: 239–247

DOI

39
Zang Y , Yang B P , Li A , Liao C G , Chen G , Liu M , Liu X H , Ma R Z , Zhang N . Tuning interfacial active sites over porous Mo2N-supported cobalt sulfides for efficient hydrogen evolution reactions in acid and alkaline electrolytes. ACS Applied Materials & Interfaces, 2021, 13(35): 41573–41583

DOI

40
Yan H J , Xie Y , Jiao Y Q , Wu A P , Tian C G , Zhang X M , Wang L , Fu H G . Holey reduced graphene oxide coupled with an Mo2N-Mo2C heterojunction for efficient hydrogen evolution. Advanced Materials, 2018, 30(2): 1704156

DOI

41
Du Q Q , Zhao R H , Guo T Y , Liu L , Chen X J , Zhang J , Du J P , Li J P , Mai L Q , Asefa T . Highly dispersed Mo2C nanodots in carbon nanocages derived from Mo-based xerogel: efficient electrocatalysts for hydrogen evolution. Small Methods, 2021, 5(11): 2100334

DOI

42
Liu W , Wang X T , Qu J K , Liu X L , Zhang Z F , Guo Y Z , Yin H Y , Wang D H . Tuning Ni dopant concentration to enable co-deposited superhydrophilic self-standing Mo2C electrode for high-efficient hydrogen evolution reaction. Applied Catalysis B: Environmental, 2022, 307: 121–201

DOI

43
Qin J Y , Xi C , Zhang R , Liu T , Zou P C , Wu D Y , Guo Q J , Mao J , Xin H L , Yang J . Activating edge-Mo of 2H-MoS2 via coordination with pyridinic N–C for pH-universal hydrogen evolution electrocatalysis. ACS Catalysis, 2021, 11(8): 4486–4497

DOI

44
Ouyang T , Ye Y Q , Wu C Y , Xiao K , Liu Z Q . Heterostructures composed of N-doped carbon nanotubes encapsulating cobalt and beta-Mo2C nanoparticles as bifunctional electrodes for water splitting. Angewandte Chemie International Edition, 2019, 58(15): 4923–4928

DOI

45
Hou X B , Zhou H M , Zhao M , Cai Y B , Wei Q F . MoS2 nanoplates embedded in Co-N-doped carbon nanocages as efficient catalyst for HER and OER. ACS Sustainable Chemistry & Engineering, 2020, 8(14): 5724–5733

DOI

46
Wang C Y , Zhao W J , Jiang H X , Cui M Y , Jin Y , Sun R X , Lin X F , Zhang L L . Molybdenum disulfide composite materials with encapsulated copper nanoparticles as hydrogen evolution catalysts. RSC Advances, 2022, 12(21): 13393–13400

DOI

47
Wei J L , Xu L , Hu L H , Wang T J , Ma Y F . Dual-doping strategy for enhancing hydrogen evolution on molybdenum carbide catalysts. Catalysts, 2023, 13(6): 931

DOI

48
Chen P R , Ouyang L Z , Lang C G , Zhong H , Liu J W , Wang H , Huang Z G , Zhu M . All-pH hydrogen evolution by heterophase molybdenum carbides prepared via mechanochemical synthesis. ACS Sustainable Chemistry & Engineering, 2023, 11(9): 3585–3593

DOI

49
Qiu Y , Liu J Z , Sun M X , Yang J F , Liu J Z , Zhang X Y , Liu X J , Zhang L X . Rational design of electrocatalyst with abundant Co/MoN heterogeneous domains for accelerating hydrogen evolution reaction. Chinese Journal of Structural Chemistry, 2022, 41: 2207040–2207045

50
Ma M Y , Yu H Z , Deng L M , Wang L Q , Liu S Y , Pan H , Ren J W , Maximov M Y , Hu F , Peng S J . Interfacial engineering of heterostructured carbon-supported molybdenum cobalt sulfides for efficient overall water splitting. Tungsten, 2023, 5(4): 589–597

DOI

Outlines

/