Fabrication of surface passivated two-dimensional MFI zeolite for alkylation between toluene with methanol

  • Zhenyuan Zou 1 ,
  • Shengzhi Gan 1 ,
  • Ting Pu 1 ,
  • Xingxing Zeng 1 ,
  • Yi Huang 2 ,
  • Baoyu Liu , 1
Expand
  • 1. School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
  • 2. School of Engineering, Institute for Materials & Processes, the University of Edinburgh, Edinburgh EH9 3FB, United Kingdom
baoyu.liu@gdut.edu.cn

Received date: 15 Dec 2023

Accepted date: 31 Dec 2023

Copyright

2024 Higher Education Press

Abstract

The fabrication of suitable MFI zeolites to effectively produce para-xylene through the alkylation between toluene and methanol is highly desired. Here, the two-dimensional pillared MFI zeolite was modified by silicalite-1, and its morphology and structure were systematically investigated by tuning the concentration of Si species during the secondary crystallization process. The MFI zeolites were characterized by X-ray diffraction, transmission electron microscopy, pyridine-infrared and N2 adsorption-desorption isotherms. The characterization results showed that the external Brønsted acid sites of surface passivated P-MFI-x samples have been successfully shielded. Interestingly, the P-MFI-23 showed long lifetime and high selectivity of para-xylene (about 35%) based on the cooperation between opened interlamellar structure and passivated silicalite-1 layer. It was found that the accumulated hard coke in the interior of MFI zeolites not only blocked the channels of zeolites but also covered the acidic sites, resulting in the deactivation of catalyst. Furthermore, the highest selectivity of para-xylene (about 48%) can be achieved for P-MFI-30 under harsh reaction condition, which also exhibited excellent regeneration property in the alkylation reaction between toluene and methanol. The strategy described in present research may open a window for the design of other advanced materials.

Cite this article

Zhenyuan Zou , Shengzhi Gan , Ting Pu , Xingxing Zeng , Yi Huang , Baoyu Liu . Fabrication of surface passivated two-dimensional MFI zeolite for alkylation between toluene with methanol[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(4) : 46 . DOI: 10.1007/s11705-024-2407-3

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 22278090, 21978055), the Natural Science Foundation of Guangdong Province (Grant No. 2022A1515012088), and the Science and Technology Program of Guangdong Province (Grant No. 2022A0505050073).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-024-2407-3 and is accessible for authorized users.
1
Han H , Zhang A F , Ren L M , Nie X W , Liu M , Liu Y , Shi C , Yang H , Song C S , Guo X W . Coke-resistant (Pt + Ni)/ZSM-5 catalyst for shape-selective alkylation of toluene with methanol to para-xylene. Chemical Engineering Science, 2022, 252: 117529

DOI

2
Tomás R A F , Bordado J C M , Gomes J F P . p-xylene oxidation to terephthalic acid: a literature review oriented toward process optimization and development. Chemical Reviews, 2013, 113(10): 7421–7469

DOI

3
Han H , Yang H , Zhang A F , Ren L M , Nie X W , Chen C Q , Liu M , Shi C A , Song C S , Guo X W . Design of highly stable metal/ZSM-5 catalysts for the shape-selective alkylation of toluene with methanol to para-xylene. Inorganic Chemistry Frontiers, 2022, 9(13): 3348–3358

DOI

4
Ashraf M T , Chebbi R , Darwish N A . Process of p-xylene production by highly selective methylation of toluene. Industrial & Engineering Chemistry Research, 2013, 52(38): 13730–13737

DOI

5
Vermeiren W , Gilson J P . Impact of zeolites on the petroleum and petrochemical industry. Topics in Catalysis, 2009, 52(9): 1131–1161

DOI

6
Niziolek A M , Onel O , Floudas C A . Production of benzene, toluene, and xylenes from natural gas via methanol: process synthesis and global optimization. AIChE Journal. American Institute of Chemical Engineers, 2016, 62(5): 1531–1556

DOI

7
Li T , Shoinkhorova T , Gascon J , Ruiz-Martínez J . Aromatics production via methanol-mediated transformation routes. ACS Catalysis, 2021, 11(13): 7780–7819

DOI

8
Ilias S , Bhan A . The mechanism of aromatic dealkylation in methanol-to-hydrocarbons conversion on H-ZSM-5: What are the aromatic precursors to light olefins?. Journal of Catalysis, 2014, 311: 6–16

DOI

9
Čejka J , Wichterlová B . Acid-catalyzed synthesis of mono- and dialkyl benzenes over zeolites: active sites, zeolite topology, and reaction mechanisms. Catalysis Reviews. Science and Engineering, 2002, 44(3): 375–421

DOI

10
Xue B , Chen J , Liu N , Guo J , Xu J , Xu C F , Shen Q M , Li Y X . Role of complex equilibrium in the shape-selective performances of MgO/MCM-22 catalysts prepared by complexing impregnation. Catalysis Communications, 2014, 56: 174–178

DOI

11
Lee C , Lee S , Kim W , Ryoo R . High utilization of methanol in toluene methylation using MFI zeolite nanosponge catalyst. Catalysis Today, 2018, 303: 143–149

DOI

12
Wang Y R , Liu M , Zhang A F , Zuo Y , Ding F S , Chang Y , Song C S , Guo X W . Methanol usage in toluene methylation over Pt modified ZSM-5 catalyst: effects of total pressure and carrier gas. Industrial & Engineering Chemistry Research, 2017, 56(16): 4709–4717

DOI

13
Li J H , Xiang H , Liu M , Wang Q L , Zhu Z R , Hu Z H . The deactivation mechanism of two typical shape-selective HZSM-5 catalysts for alkylation of toluene with methanol. Catalysis Science & Technology, 2014, 4(8): 2639–2649

DOI

14
Jo C , Cho K , Kim J , Ryoo R . MFI zeolite nanosponges possessing uniform mesopores generated by bulk crystal seeding in the hierarchical surfactant-directed synthesis. Chemical Communications, 2014, 50(32): 4175–4177

DOI

15
Sotelo J L , Uguina M A , Valverde J L , Serrano D P . Deactivation of toluene alkylation with methanol over magnesium-modified ZSM-5 Shape selectivity changes induced by coke formation. Applied Catalysis A, General, 1994, 114(2): 273–285

DOI

16
Dong P , Li Z Y , Wang D L , Wang X R , Guo Y Q , Li G X , Zhang D Q . Alkylation of benzene by methanol: thermodynamics analysis for designing and designing for enhancing the selectivity of toluene and para-xylene. Catalysis Letters, 2019, 149(1): 248–258

DOI

17
Ren S , Tian C , Yue Y H , Zou W , Hua W M , Gao Z . Selective alkylation of benzene with methanol to toluene and xylene over sheet-like ZSM-5 with controllable b-oriented length. Catalysis Letters, 2023, 4: 352–361

DOI

18
Xiong F , Ji C , Gan S Z , Liang P , Huang Y , Shang J , Liu B Y , Dong J X . Tuning the mesoscopically structured ZSM-5 nanosheets for the alkylation between toluene and methanol. AIChE Journal. American Institute of Chemical Engineers, 2023, 69(6): e18054

DOI

19
Wang C F , Zhang Q , Zhu Y F , Zhang D K , Chen J Y , Chiang F K . p-Xylene selectivity enhancement in methanol toluene alkylation by separation of catalysis function and shape-selective function. Molecular Catalysis, 2017, 433: 242–249

DOI

20
Prech J , Pizarro P , Serrano D P , Cejka J . From 3D to 2D zeolite catalytic materials. Chemical Society Reviews, 2018, 47(22): 8263–8306

DOI

21
Shao X L , Wang S Q , Zhou Y H , Zhang X , Tian H Z , Wang Z , Yuan Z Y , Wang H T . Synthesis of multilamellar ZSM-5 nanosheets with tailored b-axis thickness. Microporous and Mesoporous Materials, 2022, 345: 112252

DOI

22
Meng X H , Lin C H , Zhang Y H , Qin H B , Cao S , Duan L H . Mass transfer behavior of benzene in hierarchically structured ZSM-5. Frontiers in Chemistry, 2019, 7: 502

DOI

23
Choi M , Na K , Kim J , Sakamoto Y , Terasaki O , Ryoo R . Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 2009, 461(7261): 246–249

DOI

24
Na K , Choi M , Park W , Sakamoto Y , Terasaki O , Ryoo R . Pillared MFI zeolite nanosheets of a single-unit-cell thickness. Journal of the American Chemical Society, 2010, 132(12): 4169–4177

DOI

25
Shen X F , Mao W T , Ma Y H , Xu D D , Wu P , Terasaki O , Han L , Che S N . A hierarchical MFI zeolite with a two-dimensional square mesostructure. Angewandte Chemie International Edition, 2018, 57(3): 724–728

DOI

26
Liu B Y , Wattanaprayoon C , Oh S C , Emdadi L , Liu D X . Synthesis of organic pillared MFI zeolite as bifunctional acid-base catalyst. Chemistry of Materials, 2015, 27(5): 1479–1487

DOI

27
Xu D D , Ma Y H , Jing Z F , Han L , Singh B , Feng J , Shen X F , Cao F L , Oleynikov P , Sun H . . π–π interaction of aromatic groups in amphiphilic molecules directing for single-crystalline mesostructured zeolite nanosheets. Nature Communications, 2014, 5(1): 4262

DOI

28
Hao J , Cheng D G , Chen F Q , Zhan X L . n-heptane catalytic cracking on ZSM-5 zeolite nanosheets: effect of nanosheet thickness. Microporous and Mesoporous Materials, 2021, 310: 110647

DOI

29
Wei L , Song K C , Wu W , Holdren S , Zhu G H , Shulman E , Shang W J , Chen H Y , Zachariah M R , Liu D X . Vapor-phase strategy to pillaring of two-dimensional zeolite. Journal of the American Chemical Society, 2019, 141(22): 8712–8716

DOI

30
Park W , Yu D , Na K , Jelfs K E , Slater B , Sakamoto Y , Ryoo R . Hierarchically structure-directing effect of multi-ammonium surfactants for the generation of MFI zeolite nanosheets. Chemistry of Materials, 2011, 23(23): 5131–5137

DOI

31
Shen X F , Mao W T , Ma Y H , Peng H G , Xu D D , Wu P , Han L , Che S A . Mesoporous MFI zeolite with a 2D square structure directed by surfactants with an azobenzene tail group. Chemistry, 2018, 24(34): 8615–8623

DOI

32
Sing K S W . Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 1985, 57(4): 603–619

DOI

33
Morales-Pacheco P , Alvarez F , Bucio L , Domínguez J M . Synthesis and structural properties of zeolitic nanocrystals II: FAU-type zeolites. Journal of Physical Chemistry C, 2009, 113(6): 2247–2255

DOI

34
Huang Y Q , Xiong F , Zou Z Y , Huang Y , Zhao Z X , Liu B Y , Dong J X . Fabrication of β-zeolite nanocrystal aggregates for the alkylation of benzene and cyclohexene. Industrial & Engineering Chemistry Research, 2023, 62(1): 190–198

DOI

35
Huang Y Q , Wang M N , Huang Y , Shang J , Liu B Y . Mesoporous beta zeolites with controlled distribution of bronsted acid sites for alkylation of benzene with cyclohexene. Results in Engineering, 2023, 19: 101377

DOI

Outlines

/