Bilayer borophene: an efficient catalyst for hydrogen evolution reaction

  • Na Xing 1 ,
  • Nan Gao 3 ,
  • Panbin Ye 3 ,
  • Xiaowei Yang , 2 ,
  • Haifeng Wang , 1 ,
  • Jijun Zhao 2
Expand
  • 1. College of Sciences/Xinjiang Production & Construction Corps Key Laboratory of Advanced Energy Storage Materials and Technologies, Shihezi University, Shihezi 832000, China
  • 2. Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), Dalian University of Technology, Dalian 116024, China
  • 3. School of Materials Science and Engineering, Taizhou University, Taizhou 318000, China
xwyang@dlut.edu.cn
whfeng@shzu.edu.cn

Received date: 17 Sep 2023

Accepted date: 28 Nov 2023

Copyright

2024 Higher Education Press

Abstract

The electrocatalytic hydrogen evolution reaction is a crucial technique for green hydrogen production. However, finding affordable, stable, and efficient catalyst materials to replace noble metal catalysts remains a significant challenge. Recent experimental breakthroughs in the synthesis of two-dimensional bilayer borophene provide a theoretical framework for exploring their physical and chemical properties. In this study, we systematically considered nine types of bilayer borophenes as potential electrocatalysts for the hydrogen evolution reaction. Our first-principles calculations revealed that bilayer borophenes exhibit high stability and excellent conductivity, possessing a relatively large specific surface area with abundant active sites. Both surface boron atoms and the bridge sites between two boron atoms can serve as active sites, displaying high activity for the hydrogen evolution reaction. Notably, the Gibbs free energy change associated with adsorption for these bilayer borophenes can reach as low as ‒0.002 eV, and the Tafel reaction energy barriers are lower (0.70 eV) than those on Pt. Moreover, the hydrogen evolution reaction activity of these two-dimensional bilayer borophenes can be described by engineering their work function. Additionally, we considered the effect of pH on hydrogen evolution reaction activity, with significant activity observed in an acidic environment. These theoretical results reveal the excellent catalytic performance of two-dimensional bilayer borophenes and provide crucial guidance for the experimental exploration of multilayer boron for various energy applications.

Cite this article

Na Xing , Nan Gao , Panbin Ye , Xiaowei Yang , Haifeng Wang , Jijun Zhao . Bilayer borophene: an efficient catalyst for hydrogen evolution reaction[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(3) : 26 . DOI: 10.1007/s11705-024-2389-1

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12264043 and 11864033) and the Supercomputing Center of Dalian University of Technology.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at http://doi.org/10.1007/s11705-024-2389-1 and is accessible for authorized users.
1
Turner J A . Sustainable hydrogen production. Science, 2004, 305(5686): 972–974

DOI

2
Schlapbach L , Zuttel A . Hydrogen-storage materials for mobile applications. Nature, 2001, 414(6861): 353–358

DOI

3
Bhavsar S , Najera M , Solunke R , Veser G . Chemical looping: to combustion and beyond. Catalysis Today, 2014, 228: 96–105

DOI

4
Liu J , Yu G , Huang X , Chen W . The crucial role of strained ring in enhancing the hydrogen evolution catalytic activity for the 2D carbon allotropes: a high-throughput first-principles investigation. 2D Materials, 2020, 7(1): 15015

5
Adamska L , Sadasivam S , Foley J J IV , Darancet P , Sharifzadeh S . First-principles investigation of borophene as a monolayer transparent conductor. Journal of Physical Chemistry C, 2018, 122(7): 4037–4045

DOI

6
Huang Y , Shirodkar S N , Yakobson B I . Two-dimensional boron polymorphs for visible range plasmonics: a first-principles exploration. Journal of the American Chemical Society, 2017, 139(47): 17181–17185

DOI

7
Fan F , Wang R , Zhang H , Wu W . Emerging beyond-graphene elemental 2D materials for energy and catalysis applications. Chemical Society Reviews, 2021, 50(19): 10983–11031

DOI

8
Zhang X , Hou L , Ciesielski A , Samorì P . 2D materials beyond graphene for high-performance energy storage applications. Advanced Energy Materials, 2016, 6(23): 1600671

DOI

9
Feng B , Zhang J , Ito S , Arita M , Cheng C , Chen L , Wu K , Komori F , Sugino O , Miyamoto K . . Discovery of 2D anisotropic dirac cones. Advanced Materials, 2018, 30(2): 1704025

DOI

10
Yang X , Shang C , Zhou S , Zhao J . MBenes: emerging 2D materials as efficient electrocatalysts for the nitrogen reduction reaction. Nanoscale Horizons, 2020, 5(7): 1106–1115

DOI

11
Zhang X , Wu T , Wang H , Zhao R , Chen H , Wang T , Wei P , Luo Y , Zhang Y , Sun X . Boron nanosheet: an elemental two-dimensional (2D) material for ambient electrocatalytic N2-to-NH3 fixation in neutral media. ACS Catalysis, 2019, 9(5): 4609–4615

DOI

12
Tai G , Xu M , Hou C , Liu R , Liang X , Wu Z . Borophene nanosheets as high-efficiency catalysts for the hydrogen evolution reaction. ACS Applied Materials & Interfaces, 2021, 13(51): 60987–60994

DOI

13
Qun F , Choi C , Yan C , Liu Y , Qiu J , Hong S , Jung Y , Sun Z . High-yield production of few-layer boron nanosheets for efficient electrocatalytic N2 reduction. Chemical Communications, 2019, 55(29): 4246–4249

DOI

14
De la Barrera S C , Sinko M R , Gopalan D P , Sivadas N , Seyler K L , Watanabe K , Taniguchi T , Tsen A W , Xu X , Xiao D . . Tuning lsing superconductivity with layer and spin-orbit coupling in two-dimensional transition-metal dichalcogenides. Nature Communications, 2018, 9(1): 14–27

DOI

15
Kumar P , Liu J , Motlag M , Tong L , Hu Y , Huang X , Bandopadhyay A , Pati S K , Ye L , Irudayaraj J . . Laser shock tuning dynamic interlayer coupling in graphene-boron nitride moiré superlattices. Nano Letters, 2019, 19(1): 283–291

DOI

16
Gao N , Wu X , Jiang X , Bai Y , Zhao J . Structure and stability of bilayer borophene: the roles of hexagonal holes and interlayer bonding. FlatChem, 2018, 7: 48–54

DOI

17
Li D , Tang Q , He J , Li B , Ding G , Feng C , Zhou H , Zhang G . From two- to three-dimensional van der Waals layered structures of boron crystals: an ab initio study. ACS Omega, 2019, 4(5): 8015–8021

DOI

18
Xu Y , Xuan X , Yang T , Zhang Z , Li S , Guo W . Quasi-freestanding bilayer borophene on Ag (111). Nano Letters, 2022, 22(8): 3488–3494

DOI

19
Liu X , Li Q , Ruan Q , Rahn M S , Yakobson B I , Hersam M C . Borophene synthesis beyond the single-atomic-layer limit. Nature Materials, 2022, 21(1): 35–40

DOI

20
Chen C , Lv H , Zhang P , Zhuo Z , Wang Y , Ma C , Li W , Wang X , Feng B , Cheng P . . Synthesis of bilayer borophene. Nature Chemistry, 2022, 14(1): 25–31

DOI

21
Sutter P , Sutter E . Large-scale layer-by-layer synthesis of borophene on Ru (0001). Chemistry of Materials, 2021, 33(22): 8838–8843

DOI

22
Gao N , Ye P , Chen J , Xiao J , Yang X . Density functional theory study of bilayer borophene-based anode material for rechargeable lithium ion batteries. Langmuir, 2023, 39(29): 10270–10279

DOI

23
Gao N , Li J , Chen J , Yang X . Interaction between bilayer borophene and metal or inert substrates. Applied Surface Science, 2023, 626: 157157

DOI

24
Chang Y , Liu J , Liu H , Zhang Y W , Gao J , Zhao J . Robust sandwiched B/TM/B structures by metal intercalating into bilayer borophene leading to excellent hydrogen evolution reaction. Advanced Energy Materials, 2023, 13(29): 2301331

DOI

25
Kresse G , Furthmuller J . Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B: Condensed Matter, 1996, 54(16): 11169–11186

DOI

26
Kresse G , Joubert D . From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B: Condensed Matter, 1999, 59(3): 1758–1775

DOI

27
Perdew J P , Burke K , Ernzerhof M . Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865–3868

DOI

28
Grimme S , Antony J , Ehrlich S , Krieg H . A consistent and accurateab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. Journal of Chemical Physics, 2010, 132(15): 154104

DOI

29
Carrasco J , Hodgson A , Michaelides A . A molecular perspective of water at metal interfaces. Nature Materials, 2012, 11(8): 667–674

DOI

30
Dalsaniya M H , Gajaria T K , Som N N , Jha P K . Electron density modulation of a metallic GeSb monolayer by pnictogen doping for excellent hydrogen evolution. Physical Chemistry Chemical Physics, 2020, 22(35): 19823–19836

DOI

31
Guha A , Veettil Vineesh T , Sekar A , Narayanaru S , Sahoo M , Nayak S , Chakraborty S , Narayanan T N . Mechanistic insight into enhanced hydrogen evolution reaction activity of ultrathin hexagonal boron nitride-modified Pt electrodes. ACS Catalysis, 2018, 8(7): 6636–6644

DOI

32
Henkelman G , Uberuaga B P , Jónsson H . A climbing image nudged elastic band method for finding saddle points and minimum energy paths. Journal of Chemical Physics, 2000, 113(22): 9901–9904

DOI

33
Henkelman G , Arnaldsson A , Jónsson H . A fast and robust algorithm for Bader decomposition of charge density. Computational Materials Science, 2006, 36(3): 354–360

DOI

34
Parrinello M , Rahman A . Crystal structure and pair potentials: a molecular-dynamics. Physical Review Letters, 1980, 45(14): 1196–1199

DOI

35
Chodvadiya D , Dalsaniya M H , Som N N , Chakraborty B , Kurzydłowski D , Kurzydłowski K J , Jha P K . Defects and doping engineered two-dimensional o-B2N2 for hydrogen evolution reaction catalyst: insights from DFT simulation. International Journal of Hydrogen Energy, 2023, 48(13): 5138–5151

DOI

36
Hansen J N , Prats H , Toudahl K K , Mørch Secher N , Chan K , Kibsgaard J , Chorkendorff I . Is there anything better than Pt for HER?. ACS Energy Letters, 2021, 6(4): 1175–1180

DOI

37
Luo Y , Zhang Z , Yang F , Li J , Liu Z , Ren W , Zhang S , Liu B . Stabilized hydroxide-mediated nickel-based electrocatalysts for high-current-density hydrogen evolution in alkaline media. Energy & Environmental Science, 2021, 14(8): 4610–4619

DOI

38
Luo M , Yang J , Li X , Eguchi M , Yamauchi Y , Wang Z . Insights into alloy/oxide or hydroxide interfaces in Ni–Mo-based electrocatalysts for hydrogen evolution under alkaline conditions. Chemical Science, 2023, 14(13): 3400–3414

DOI

39
Fajin J L . DS Cordeiro M N, Gomes J R. Density functional theory study of the water dissociation on platinum surfaces: general trends. Journal of Physical Chemistry A, 2014, 118(31): 5832–5840

DOI

40
Nie S , Feibelman P J , Bartelt N C , Thürmer K . Pentagons and heptagons in the first water layer on Pt (111). Physical Review Letters, 2010, 105(2): 026102

DOI

41
Donadio D , Ghiringhelli L M , Delle Site L . Autocatalytic and cooperatively stabilized dissociation of water on a stepped platinum surface. Journal of the American Chemical Society, 2012, 134(46): 19217–19222

DOI

42
Zhang P , Sun L . Electrocatalytic hydrogenation and oxidation in aqueous conditions. Chinese Journal of Chemistry, 2020, 38(9): 996–1004

DOI

43
Mathew K , Sundararaman R , Letchworth-Weaver K , Arias T A , Hennig R G . Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. Journal of Chemical Physics, 2014, 140(8): 084106

DOI

44
Zhang Q , Asthagiri A . Solvation effects on DFT predictions of ORR activity on metal surfaces. Catalysis Today, 2019, 323: 35–43

DOI

45
Yang X , Gao N , Zhou S , Zhao J . MXene nanoribbons as electrocatalysts for the hydrogen evolution reaction with fast kinetics. Physical Chemistry Chemical Physics, 2018, 20(29): 19390–19397

DOI

46
Skúlason E , Tripkovic V , Björketun M E , Gudmundsdóttir S , Karlberg G , Rossmeisl J , Bligaard T , Jónsson H , Nørskov J K . Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. Journal of Physical Chemistry C, 2010, 114(42): 18182–18197

DOI

47
Michaelson H B . The work function of the elements and its periodicity. Journal of Applied Physics, 1977, 48(11): 4729–4733

DOI

48
Qian Y , Zheng B , Xie Y , He J , Chen J , Yang L , Lu X , Yu H . Imparting α-borophene with high work function by fluorine adsorption: a first-principles investigation. Langmuir, 2021, 37(37): 11027–11040

DOI

49
Liu N , Zhao Y , Zhou S , Zhao J . CO2 reduction on p-block metal oxide overlayers on metal substrates—2D MgO as a prototype. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(11): 5688–5698

DOI

50
Shan B , Cho K . First principles study of work functions of single wall carbon nanotubes. Physical Review Letters, 2005, 94(23): 236602

DOI

Outlines

/