Enlarged interlayer of separator coating enabling high-performance lithiumsulfur batteries

  • Yanqi Feng 1,2 ,
  • Hui Liu , 2 ,
  • Xiaoting Liu , 3 ,
  • Qiongqiong Lu , 4,5
Expand
  • 1. School of Materials & Environment Engineering, Chengdu Technological University, Chengdu 611730, China
  • 2. School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi’an 710021, China
  • 3. Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
  • 4. Institute of Materials, Henan Key Laboratory of Advanced Conductor Materials, Henan Academy of Sciences, Zhengzhou 450046, China
  • 5. Leibniz Institute for Solid State and Materials Research (IFW), Dresden e.V., Dresden 01069, Germany
liuhui@sust.edu.cn
liuxiaoting@zzu.edu.cn
qiongqiong.lu@hotmail.com

Received date: 11 Jul 2023

Accepted date: 06 Nov 2023

Copyright

2024 Higher Education Press

Abstract

Lithiumsulfur batteries have been intensively studied due to their high theoretical energy density and abundant sulfur resources. However, their commercial application is hindered by the low redox kinetics and high sulfur losses. In principle, in the design of cathodes and separators, the adsorption toward lithium-polysulfides should be enhanced and the conversion of soluble high-order lithium-polysulfides should be catalyzed. Herein, a KV3O8·0.75H2O separator is designed as an effective lithium-polysulfides mediator in lithiumsulfur batteries. The intercalated K+ would enlarge the interlayer spacing of vanadium oxides, preventing the collapse of the layer structure and improving the electrical/ion conductivity of the interface. Moreover, the KV3O8·0.75H2O modified separator possess a prior adsorption and high redox kinetics toward lithium-polysulfides due to the enhanced diffusion kinetics, which guarantees the high-rate capability and efficient utilization of sulfur. As a result, lithiumsulfur batteries exhibit a high capacity of 1362 mAh·g1 and a long lifespan with a low capacity loss of 0.073% per cycle. This work may provide an alternative way to establish a functional separator to balance the adsorption and conversion of polysulfides during the redox back and forth.

Cite this article

Yanqi Feng , Hui Liu , Xiaoting Liu , Qiongqiong Lu . Enlarged interlayer of separator coating enabling high-performance lithiumsulfur batteries[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(2) : 20 . DOI: 10.1007/s11705-024-2385-5

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

Lu Q would like to acknowledge the financial supports from Joint Fund of Henan Province Science and Technology R&D Program (Grant No. 225200810093) and Startup Research of Henan Academy of Sciences (Grant No. 231817001). We also acknowledge financial supports from the National Natural Science Foundation of China (Grant No. 51272147), the Natural Science Foundation of Shaanxi Province (Grant No. 2015JM5208), the Graduate Innovation Found of Shaanxi University of Science and Technology, and Scientific Research Project of Chengdu Technological University (Grant No. 2023RC001). This work is also supported by the National Key R&D Program of China (Grant No. 2019YFC1520100). Feng Y acknowledge the financial supports from China Scholarship Council. The authors thank Andrea Voß (IFW Dresden) for technical support and ICP test. Beamtime allocation and support at beamline P65 of the PETRA III synchrotron (Deutsches Elektronen-Synchrotron, DESY, Hamburg, Germany) is gratefully acknowledged. Daria Mikhailova (IFW Dresden) is acknowledged for XAS measurement.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-024-2385-5 and is accessible for authorized users.
1
Jin G F , Zhang J L , Dang B Y , Wu F C , Li J D . Engineering zirconium-based metal-organic framework-801 films on carbon cloth as shuttle-inhibiting interlayers for lithium−sulfur batteries. Frontiers of Chemical Science and Engineering, 2022, 16(4): 511–522

DOI

2
Du B W , Luo Y H , Wu F C , Liu G H , Li J D , Xue W . Continuous amino-functionalized University of Oslo 66 membranes as efficacious polysulfide barriers for lithium−sulfur batteries. Frontiers of Chemical Science and Engineering, 2023, 17(2): 194–205

DOI

3
Hong X , Wang R , Liu Y , Fu J , Liang J , Dou S . Recent advances in chemical adsorption and catalytic conversion materials for LiS batteries. Journal of Energy Chemistry, 2020, 42: 144–168

DOI

4
Zhang T , Zhang L , Hou L . MXenes: synthesis strategies and lithium−sulfur battery applications. eScience, 2022, 2(2): 164–182

5
Zhang J , Li M N , Younus A H , Wang B S , Weng Q H , Zhang Y , Zhang S G . An overview of the characteristics of advanced binders for high-performance Li–S batteries. Nano Materials Science, 2021, 3(2): 124–139

DOI

6
Ren L T , Liu J , Pato H A , Wang Y , Lu X W , Chandio A I , Zhou M Y , Liu W , Xu H J , Sun X M . Rational design of nanoarray structures for lithium–sulfur batteries: recent advances and future prospects. Materials Futures, 2023, 2(4): 042103

DOI

7
Hu Y , Chen W , Lei T , Jiao Y , Huang J , Hu A , Gong C , Yan C , Wang X , Xiong J . Strategies toward high-loading lithium–sulfur battery. Advanced Energy Materials, 2020, 10(17): 2000082

DOI

8
Ng S F , Lau M Y L , Ong W J . Lithium–sulfur battery cathode design: tailoring metal-based nanostructures for robust polysulfide adsorption and catalytic conversion. Advanced Materials, 2021, 33(50): 2008654

DOI

9
Wu S Y , Li X , Zhang Y Z , Guan Q H , Wang J , Shen C Y , Lin H Z , Wang J T , Wang Y L , Zhan L . . Interface engineering of mxene-based heterostructures for lithium−sulfur batteries. Nano Research, 2023, 16(7): 9158–9178

DOI

10
Li P , Lv H , Li Z , Meng X , Lin Z , Wang R , Li X . The electrostatic attraction and catalytic effect enabled by ionic-covalent organic nanosheets on MXene for separator modification of lithium–sulfur batteries. Advanced Materials, 2021, 33(17): 2007803

DOI

11
Li X , Guan Q , Zhuang Z , Zhang Y , Lin Y , Wang J , Shen C , Lin H , Wang Y , Zhan L . . Ordered mesoporous carbon grafted mxene catalytic heterostructure as Li-ion kinetic pump toward high-efficient sulfur/sulfide conversions for Li–S battery. ACS Nano, 2023, 17(2): 1653–1662

DOI

12
Li C , Liu R , Xiao Y , Cao F , Zhang H . Recent progress of separators in lithium–sulfur batteries. Energy Storage Materials, 2021, 40: 439–460

DOI

13
Zhu D , Long T , Xu B , Zhao Y , Hong H , Liu R , Meng F , Liu J . Recent advances in interlayer and separator engineering for lithium–sulfur batteries. Journal of Energy Chemistry, 2021, 57: 41–60

DOI

14
Tang J D , Zhao Q , Li F L , Hao Z D , Xu X L , Zhang Q Q , Liu J B , Jin Y H , Wang H . Two-dimensional materials towards separator functionalization in advanced Li–S batteries. Nanoscale, 2021, 13(45): 18883–18911

DOI

15
Wang X X , Deng N P , Wei L Y , Yang Q , Xiang H Y , Wang M , Cheng B W , Kang W M . Recent progress in high-performance lithium sulfur batteries: the emerging strategies for advanced separators/electrolytes based on nanomaterials and corresponding interfaces. Chemistry An Asian Journal, 2021, 16(19): 2852–2870

DOI

16
Song M , Tan H , Chao D L , Fan H J . Recent advances in Zn-ion batteries. Advanced Functional Materials, 2018, 28(41): 1802564

DOI

17
Zuo S Y , Xu X J , Ji S M , Wang Z S , Liu Z B , Liu J . Cathodes for aqueous Zn-ion batteries: materials, mechanisms, and kinetics. Chemistry A European Journal, 2021, 27(3): 830–860

DOI

18
Wang C , Cao Y , Luo Z , Li G , Xu W , Xiong C , He G , Wang Y , Li S , Liu H , Fang D . Flexible potassium vanadate nanowires on Ti fabric as a binder-free cathode for high-performance advanced lithium-ion battery. Chemical Engineering Journal, 2017, 307: 382–388

DOI

19
Islam S , Alfaruqi M H , Putro D Y , Soundharrajan V , Sambandam B , Jo J , Park S , Lee S , Mathew V , Kim J . K+ intercalated V2O5 nanorods with exposed facets as advanced cathodes for high energy and high rate zinc-ion batteries. Journal of Materials Chemistry A, 2019, 7(35): 20335–20347

DOI

20
Wan F , Huang S , Cao H , Niu Z . Freestanding potassium vanadate/carbon nanotube films for ultralong-life aqueous zinc-ion batteries. ACS Nano, 2020, 14(6): 6752–6760

DOI

21
Qiu N , Yang Z M , Xue R , Wang Y , Zhu Y M , Liu W . Toward a high-performance aqueous zinc ion battery: potassium vanadate nanobelts and carbon enhanced zinc foil. Nano Letters, 2021, 21(7): 2738–2744

DOI

22
Yang Y Q , Tang Y , Fang G Z , Shan L T , Guo J S , Zhang W Y , Wang C , Wang L B , Zhou J , Liang S Q . Li+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy & Environmental Science, 2018, 11(11): 3157–3162

DOI

23
Sambandam B , Soundharrajan V , Kim S , Alfaruqi M H , Jo J , Kim S , Mathew V , Sun Y K , Kim J . K2V6O16·2.7H2O nanorod cathode: an advanced intercalation system for high energy aqueous rechargeable Zn-ion batteries. Journal of Materials Chemistry A, 2018, 6(32): 15530–15539

DOI

24
Baddour-Hadjean R , Thanh Nguyen Huynh L , Batyrbekuly D , Bach S , Pereira-Ramos J P . Bilayered potassium vanadate K0.5V2O5 as superior cathode material for Na-ion batteries. ChemSusChem, 2019, 12(23): 5192–5198

DOI

25
Zhang W , Tang C , Lan B , Chen L , Tang W , Zuo C , Dong S , An Q , Luo P . K0.23V2O5 as a promising cathode material for rechargeable aqueous zinc ion batteries with excellent performance. Journal of Alloys and Compounds, 2020, 819: 152971

DOI

26
Zhang X , Li X , Zhang Y , Li X , Guan Q , Wang J , Zhuang Z , Zhuang Q , Cheng X , Liu H . . Accelerated Li+ desolvation for diffusion booster enabling low-temperature sulfur redox kinetics via electrocatalytic carbon-grazfted-CoP porous nanosheets. Advanced Functional Materials, 2023, 33(36): 2302624

DOI

27
Zhu Y H , Zhang Q , Yang X , Zhao E Y , Sun T , Zhang X B , Wang S , Yu X Q , Yan J M , Jiang Q . Reconstructed orthorhombic V2O5 polyhedra for fast ion diffusion in K-ion batteries. Chem, 2019, 5(1): 168–179

DOI

28
Hao P F , Zhu T , Su Q , Lin J D , Cui R , Cao X X , Wang Y P , Pan A Q . Electrospun single crystalline fork-like K2V8O21 as high-performance cathode materials for lithium-ion batteries. Frontiers in Chemistry, 2018, 6: 195

DOI

29
Wan F , Zhang L L , Dai X , Wang X Y , Niu Z Q , Chen J . Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nature Communications, 2018, 9(1): 1656

DOI

30
Hu P , Yan M Y , Zhu T , Wang X P , Wei X J , Li J T , Zhou L , Li Z H , Chen L N , Mai L Q . Zn/V2O5 aqueous hybrid-ion battery with high voltage platform and long cycle life. ACS Applied Materials & Interfaces, 2017, 9(49): 42717–42722

DOI

31
Xie Z Q , Lai J W , Zhu X P , Wang Y . Green synthesis of vanadate nanobelts at room temperature for superior aqueous rechargeable zinc-ion batteries. ACS Applied Energy Materials, 2018, 1(11): 6401–6408

DOI

32
Feng Y Q , Liu H , Liu Y , Li J Q . Tunable oxygen deficient in MoO3x/MoO2 heterostructure for enhanced lithium storage properties. International Journal of Energy Research, 2022, 46(5): 5789–5799

DOI

33
Chen R , Wang Z Q , Chen Z X , Wang P J , Fang G Z , Zhou J , Tan X P , Liang S Q . Synthesis of K0.25V2O5 hierarchical microspheres as a high-rate and long-cycle cathode for lithium metal batteries. Journal of Alloys and Compounds, 2019, 772: 852–860

DOI

34
Baddour-Hadjean R , Boudaoud A , Bach S , Emery N , Pereira-Ramos J P . A comparative insight of potassium vanadates as positive electrode materials for Li batteries: influence of the long-range and local structure. Inorganic Chemistry, 2014, 53(3): 1764–1772

DOI

35
Bach S , Boudaoud A , Emery N , Baddour-Hadjean R , Pereira-Ramos J P . K0.5V2O5: a novel Li intercalation compound as positive electrode material for rechargeable lithium batteries. Electrochimica Acta, 2014, 119: 38–42

DOI

36
Peng Z , Wei Q , Tan S , He P , Luo W , An Q , Mai L . Novel layered iron vanadate cathode for high-capacity aqueous rechargeable zinc batteries. Chemical Communications, 2018, 54(32): 4041–4044

DOI

37
Ding Y C , Peng Y Q , Chen W Y , Niu Y J , Wu S G , Zhang X X , Hu L H . V-MOF derived porous V2O5 nanoplates for high performance aqueous zinc-ion battery. Applied Surface Science, 2019, 493: 368–374

DOI

38
Singh M , Kumar P , Reddy G B . Effect of Ar, O2, and N2 plasma on the growth and composition of vanadium oxide nanostructured thin films. Advanced Materials Interfaces, 2018, 5(18): 1800612

DOI

39
Cao K , Liu H , Li Y , Wang Y , Jiao L . Encapsulating sulfur in δ-MnO2 at room temperature for Li–S battery cathode. Energy Storage Materials, 2017, 9: 78–84

DOI

Outlines

/