Optimized the vanadium electrolyte with sulfate-phosphoric mixed acids to enhance the stable operation at high-temperature

  • Ling Ge 1,2,3,4 ,
  • Tao Liu , 1,2,3,4 ,
  • Yimin Zhang 1,2,3,4,5 ,
  • Hong Liu 1,2,3,4
Expand
  • 1. School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
  • 2. State Environmental Protection Key Laboratory of Mineral Metallurgical Resources Utilization and Pollution Control, Wuhan University of Science and Technology, Wuhan 430081, China
  • 3. Hubei Collaborative Innovation Center for High Efficient Utilization of Vanadium Resources, Wuhan University of Science and Technology, Wuhan 430081, China
  • 4. Hubei Provincial Engineering Technology Research Center of High Efficient Cleaning Utilization for Shale Vanadium Resource, Wuhan University of Science and Technology, Wuhan 430081, China
  • 5. School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
tkliutao@126.com

Received date: 31 Aug 2023

Accepted date: 19 Oct 2023

Copyright

2023 Higher Education Press

Abstract

Herein, the influence of the concentration design and comprehensive performance of the sulfate-phosphoric mixed acid system electrolyte is investigated to realize an electrolyte that maintains high energy density and stable operation at high temperatures. Static stability tests have shown that VOPO4 precipitation occurs only with vanadium(V) electrolyte. The concentration of vanadium ion of 2.0–2.2 mol·L–1, phosphoric acid of 0.10–0.15 mol·L–1, and sulfuric acid of 2.5–3.0 mol·L–1 are suitable for a vanadium redox flow battery in the temperature range from –20 to 50 °C. The equations for predicting the viscosity and conductivity of electrolytes are obtained by the response surface method. The optimized electrolyte overcomes precipitation generation. It has 2.8 times higher energy density than the non-phosphate electrolyte, and a coulomb efficiency of 94.0% at 50 °C. The sulfate-phosphoric mixed acid system electrolyte promotes the electrode reaction process, increases the current density, and reduces the resistance. This work systematically optimizes the concentrations of composition of positive and negative vanadium electrolytes with mixed sulfate-phosphoric acid. It provides a basis for the different valence states and comprehensive properties of sulfate-phosphoric mixed acid system vanadium electrolytes under extreme environments, guiding engineering applications.

Cite this article

Ling Ge , Tao Liu , Yimin Zhang , Hong Liu . Optimized the vanadium electrolyte with sulfate-phosphoric mixed acids to enhance the stable operation at high-temperature[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(2) : 14 . DOI: 10.1007/s11705-023-2377-x

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51774216), Hubei Technical Innovation Special Project of China (Grant No. 2017ACA185) and Science and technology innovation Talent program of Hubei Province (Grant No. 2022EJD002).
1
JiaZSunDZhangYZhengJ. What China can learn from the US history of energy strategy development. Sino-global Energy, 2016, 21: 1–7 (in Chinese)

2
Dai H , Su Y , Kuang L , Liu J , Gu D , Zou C . Contemplation on China’s energy-development strategies and initiatives in the context of its carbon neutrality goal. Engineering, 2021, 7(12): 1684–1687

DOI

3
Yang H M , Zhou H T , Zhao P , Yi B L . Actuality and prospect of energy storage technologies. Research & Exploration, 2005, 3: 1–7

4
Ghimire P C , Bhattarai A , Lim T M , Wai N , Skyllas-Kazacos M , Yan Q . In-situ tools used in vanadium redox flow battery research—review. Batteries, 2021, 7(3): 53

DOI

5
Parasuraman A , Lim T M , Menictas C , Skyllas-Kazacos M . Review of material research and development for vanadium redox flow battery applications. Electrochimica Acta, 2013, 101: 27–40

DOI

6
Ding C , Ni X , Li X , Xi X , Han X , Bao X , Zhang H . Effects of phosphate additives on the stability of positive electrolytes for vanadium flow batteries. Electrochimica Acta, 2015, 164: 307–314

DOI

7
DoetschCBurfeindJ. Chapter 12—Vanadium redox flow batteries. Storing Energy, 2016, 227–247

8
KimS. Vanadium redox flow batteries: electrochemical engineering. Energy Storage Devices, 2019, 1–19

9
Kear G , Shah A A , Walsh F C . Development of the all-vanadium redox flow battery for energy storage: a review of technological, financial and policy aspects. International Journal of Energy Research, 2012, 36(11): 1105–1120

DOI

10
Ding C , Zhang H , Li X , Liu T , Xing F . Vanadium flow battery for energy storage: prospects and challenges. Journal of Physical Chemistry Letters, 2013, 4(8): 1281–1294

DOI

11
Rahman F , Skyllas-Kazacos M . Vanadium redox battery: positive half-cell electrolyte studies. Journal of Power Sources, 2009, 189(2): 1212–1219

DOI

12
Carvalho W M Jr , Cassayre L , Quaranta D , Chauvet F , El-Hage R , Tzedakis T , Biscans B . Stability of highly supersaturated vanadium electrolyte solution and characterization of precipitated phases for vanadium redox flow battery. Journal of Energy Chemistry, 2021, 61: 436–445

DOI

13
Yang Y , Zhang Y , Tang L , Liu T , Peng S , Yang X . Improved energy density and temperature range of vanadium redox flow battery by controlling the state of charge of positive electrolyte. Journal of Power Sources, 2020, 450: 227675

DOI

14
Wang G , Chen J , Wang X , Tian J , Kang H , Zhu X , Zhang Y , Liu X , Wang R . Study on stabilities and electrochemical behavior of V(V) electrolyte with acid additives for vanadium redox flow battery. Journal of Energy Chemistry, 2014, 23(1): 73–81

DOI

15
Yang Y , Zhang Y , Tang L , Liu T , Huang J , Peng S , Yang X . Investigations on physicochemical properties and electrochemical performance of sulfate–chloride mixed acid electrolyte for vanadium redox flow battery. Journal of Power Sources, 2019, 434: 226719

DOI

16
Huang Z , Mu A . Research and analysis of performance improvement of vanadium redox flow battery in microgrid: a technology review. International Journal of Energy Research, 2021, 45(10): 14170–14193

DOI

17
Cheng Y , Wang X , Huang S , Samarakoon W , Xi S , Ji Y , Zhang H , Zhang F , Du Y , Feng Z . . Redox targeting-based vanadium redox-flow battery. ACS Energy Letters, 2019, 4(12): 3028–3035

DOI

18
Kim D , Jeon J . A high-temperature tolerance solution for positive electrolyte of vanadium redox flow batteries. Journal of Electroanalytical Chemistry, 2017, 801: 92–97

DOI

19
Mousa A , Skyllas-Kazacos M . Effect of additives on the low-temperature stability of vanadium redox flow battery negative half-cell electrolyte. ChemElectroChem, 2015, 2(11): 1742–1751

DOI

20
Li L , Kim S , Wang W , Vijayakumar M , Nie Z , Chen B , Zhang J , Xia G , Hu J , Graff G . . A stable vanadium redox-flow battery with high energy density for large-scale energy storage. Advanced Energy Materials, 2011, 1(3): 394–400

DOI

21
He Z , He Y , Chen C , Yang S , Liu J , He Z , Liu S . Study of the electrochemical performance of VO2+/VO2+ redox couple in sulfamic acid for vanadium redox flow battery. Ionics, 2014, 20(7): 949–955

DOI

22
Peng S , Wang N F , Wu X J , Liu S Q , Fang D , Huang K L , Liu Y N . Vanadium species in CH3SO3H and H2SO4 mixed acid as the supporting electrolyte for vanadium redox flow battery. International Journal of Electrochemical Science, 2012, 7(1): 643–649

DOI

23
Chu Y , Liu C , Ren H , Zhang Y , Ma C . Electrochemical performance of VO2+/VO2+ redox couple in the H2SO4–CH3SO3H solutions. International Journal of Electrochemical Science, 2016, 11(3): 1987–1996

DOI

24
Nikiforidis G , Belhcen A , Anouti M . A highly concentrated vanadium protic ionic liquid electrolyte for the vanadium redox flow battery. Journal of Energy Chemistry, 2021, 57: 238–246

DOI

25
Yang Y , Zhang Y , Liu T , Huang J . Improved broad temperature adaptability and energy density of vanadium redox flow battery based on sulfate–chloride mixed acid by optimizing the concentration of electrolyte. Journal of Power Sources, 2019, 415: 62–68

DOI

26
Fan C , Yang H , Zhu Q . Preparation and electrochemical properties of high purity mixed-acid electrolytes for high energy density vanadium redox flow battery. International Journal of Electrochemical Science, 2017, 12(8): 7728–7738

DOI

27
Zhang Z H , Wei L , Wu M C , Bai B F , Zhao T S . Chloride ions as an electrolyte additive for high performance vanadium redox flow batteries. Applied Energy, 2021, 289: 116690

DOI

28
Oldenburg F J , Bon M , Perogo D , Polino D , Laino T , Gubler L , Schmidt T . Revealing the role of phosphoric acid in all-vanadium redox flow batteries with DFT calculations and in situ analysis. Physical Chemistry Chemical Physics, 2018, 20(36): 23664–23673

29
Nguyen T D , Wang L P , Whitehead A , Wai N , Scherer G G , Xu Z J . Insights into the synergistic effect of ammonium and phosphate-containing additives for a thermally stable vanadium redox flow battery electrolyte. Journal of Power Sources, 2018, 402: 75–81

DOI

30
Zhang J , Li L , Nie Z , Chen B , Vijayakumar M , Kim S , Wang W , Schwenzer B , Liu J , Yang Z . Effects of additives on the stability of electrolytes for all-vanadium redox flow batteries. Journal of Applied Electrochemistry, 2011, 41(10): 1215–1221

DOI

31
Zhang Y , Xi J , Liu L , Wu Z . Boosting the thermal stability of electrolytes in vanadium redox flow batteries via 1-hydroxyethane-1,1-diphosphonic acid. Journal of Applied Electrochemistry, 2020, 50(2): 255–264

DOI

32
Vijayakumar M , Li L , Graff G , Liu J , Zhang H , Yang Z , Hu J Z . Towards understanding the poor thermal stability of V5+ electrolyte solution in vanadium redox flow batteries. Journal of Power Sources, 2011, 196(7): 3669–3672

DOI

33
Kazacos M , Skyllas-Kazacos M . High energy density vanadium electrolyte solutions, methods of preparation thereof and all-vanadium redox cells and batteries containing high energy density vanadium electrolyte solutions. international pat. Application, 1996, (PCT/AU96/00268): USPat.7078123

34
Zhang Y , Haushalter R , Zubieta J . Hydrothermal synthesis and crystal and molecular structure of a binuclear dioxovanadium(V) species exhibiting a bridging HPO42– ligand, [(VO2)2(HPO4)(2,2ˈ-bipy)2]∙H2O. Inorganica Chimica Acta, 1997, 260: 105–110

DOI

35
Silva F T , Ogasawara T . Transactions of the institution of mining and metallurgy section C. Mineral Processing and Extractive Metallurgy, 1993, 102: 188

36
Roe S , Menictas C , Skyllas-Kazacos M . A high energy density vanadium redox flow battery with 3 mol·L–1 vanadium electrolyte. Journal of the Electrochemical Society, 2016, 163(1): A5023–A5028

DOI

37
Cox R A , Haldna Ü L , Idler K L , Yates K . Resolution of Raman spectra of aqueous sulfuric acid mixtures using principal factor analysis. Canadian Journal of Chemistry, 1981, 59(17): 2591–2598

DOI

38
Skyllas-Kazacos M , Cao L , Kazacos M , Kausar N , Mousa A . Vanadium electrolyte studies for the vanadium redox battery—a review. ChemSusChem, 2016, 9(13): 1521–1543

DOI

39
Li L , Ma A , Zeng G , Li H . Syntheses and infrared spectra of rare earth complexes with diethyl phosphate. Journal of Rare Earths, 1991, 9(2): 95–99

40
XiS QLanS QZengG FHongG Y. Infrared and Raman spectra of rare earth pentaphosphates. Guangpuxue Yu Guangpu Fenxi, 1984, 4(1): 8–15 (in Chinese)

41
Roznyatovskaya N V , Roznyatovsky V A , Höhne C C , Fühl M , Gerber T , Küttinger M , Noack J , Fischer P , Pinkwart K , Tübke J . The role of phosphate additive in stabilization of sulphuric-acid-based vanadium(V) electrolyte for all-vanadium redox-flow batteries. Journal of Power Sources, 2017, 363: 234–243

DOI

42
Zhang T W , Liu X C , Wang G F , Liu H , Xiao L , Zhou Y H , Liang Q , Zhang C W . Core-shell microstructured nanocomposites optimized based on Box-Behnken design for enhanced suppression of hydrogen co-flow flames. International Journal of Hydrogen Energy, 2021, 46(21): 12035–12061

DOI

43
Wang Q W , Bai D N , Shen M T , Wang L H , Jin S . Optimization of Rhododendri daurici oil liposome by Box-Behnken design and response surface method. Journal of Hainan Medical College, 2022, 28(2): 16–22

44
Davarcioglu B . The general characteristic of weak intermolecular interactions in liquids and crystals. International Journal of Modern Engineering Research, 2011, 1(2): 443–454

45
Izmailov A F , Myerson A S . Relationship between solution shear viscosity and density at the saturation point. Journal of Crystal Growth, 1996, 166(1–4): 261–265

DOI

46
Assassi M , Madjene F , Harchouche S , Boulfiza H . Photocatalytic treatment of crystal violet in aqueous solution: Box-Behnken optimization and degradation mechanism. Environmental Progress & Sustainable Energy, 2021, 40(6): e13702

DOI

47
ZhangH M. Technology and application of fluid flow battery energy storage. Science Press, 2022 (in Chinese)

48
Liu H , Zhang Y , Liu T , Huang J , Chen L M , Hu Y W . Preparation of vanadium electrolyte from vanadium shale leaching solution with high concentration chloride using D2EHPA. Transactions of Nonferrous Metals Society of China, 2023, 33(5): 1594–1608

DOI

49
McAdams E T , Lackermeier A , McLaughlin J A , Macken D , Jossinet J . The linear and non-linear electrical properties of the electrode-electrolyte interface. Biosensors & Bioelectronics, 1995, 10(1–2): 67–74

DOI

50
Agarwal H , Florian J , Goldsmith B R , Singh N . The effect of anion bridging on heterogeneous charge transfer for V2+/V3+. Cell Reports. Physical Science, 2021, 2(1): 100307

DOI

51
Song S Q , Chen X , Guo W N , Fan Y S , Wang B G . Study on transport behaviors of vanadium ions and water across nano-porous proton-conductive membranes. Membrane Science and Technology, 2014, 34(01): 9–14

Outlines

/