RESEARCH ARTICLE

A tunable ionic covalent organic framework platform for efficient CO2 catalytic conversion

  • Ting Li 1,2 ,
  • Ji Xiong 1,2 ,
  • Minghui Chen 1,2 ,
  • Quan Shi 1,2 ,
  • Xiangyu Li 1,2 ,
  • Yu Jiang 1,2 ,
  • Yaqing Feng 1,2 ,
  • Bao Zhang , 1,2,3
Expand
  • 1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
  • 2. Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang 522000, China
  • 3. Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
baozhang@tju.edu.cn

Received date: 08 Jul 2023

Accepted date: 25 Aug 2023

Copyright

2024 Higher Education Press

Abstract

The cycloaddition reaction between epoxides and CO2 is an effective method to utilize CO2 resource. Covalent organic frameworks (COFs) provide a promising platform for the catalytic CO2 transformations on account of their remarkable chemical and physical properties. Herein, a family of novel vinylene-linked ionic COFs named TE-COFs (TTE-COF, TME-COF, TPE-COF, TBE-COF) has been facilely synthesized from N-ethyl-2,4,6-trimethylpyridinium bromide and a series of triphenyl aromatic aldehydes involving different numbers of nitrogen atoms in the central aromatic ring. The resulting catalyst TTE-COF with excellent adsorption capacity (45.6 cm3·g–1, 273 K) exhibited outstanding catalytic performance, remarkable recyclability and great substrate tolerance. Moreover, it was also observed that the introduction of nitrogen atom in the precursor led to a great improvement in the crystallinity and CO2 adsorption capacity of TE-COFs, thus resulting to a progressively improved catalytic performance. This work not only illustrated the influence of monomer nitrogen content on the crystallinity and CO2 adsorption capacity of TE-COFs but also provided a green heterogeneous candidate for catalyzing the cycloaddition between CO2 and epoxides, which shed a light on improving the catalytic performance of the CO2 cycloaddition reaction by designing the covalent organic frameworks structures.

Cite this article

Ting Li , Ji Xiong , Minghui Chen , Quan Shi , Xiangyu Li , Yu Jiang , Yaqing Feng , Bao Zhang . A tunable ionic covalent organic framework platform for efficient CO2 catalytic conversion[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(1) : 3 . DOI: 10.1007/s11705-023-2369-x

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

This work was financially supported by the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2022A1515011606) and the Haihe Laboratory of Sustainable Chemical Transformations.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-023-2369-x and is accessible for authorized users.
1
Huang C H , Tan C S . A review: CO2 utilization. Aerosol and Air Quality Research, 2014, 14(2): 480–499

DOI

2
Hepburn C , Adlen E , Beddington J , Carter E A , Fuss S , Dowell N M , Minx J C , Smith P , Williams C K . The technological and economic prospects for CO2 utilization and removal. Nature, 2019, 575(7781): 87–97

DOI

3
De S , Dokania A , Ramirez A , Gascon J . Advances in the design of heterogeneous catalysts and thermocatalytic processes for CO2 utilization. Science Advances, 2020, 10(23): 14147–14185

4
Tian S , Yan F , Zhang Z , Jiang J . Calcium-looping reforming of methane realizes in situ CO2 utilization with improved energy efficiency. ACS Catalysis, 2019, 5: eaav5077

5
Chai J , Liu Z , Zhang J , Sun J , Tian Z , Ji Y , Tang K , Zhou X , Cui G . A superior polymer electrolyte with rigid cyclic carbonate backbone for rechargeable lithium ion batteries. ACS Applied Materials & Interfaces, 2017, 9(21): 17897–17905

DOI

6
Dick G R , Komarova A O , Luterbacher J S . Controlling lignin solubility and hydrogenolysis selectivity by acetal-mediated functionalization. Green Chemistry, 2022, 24(3): 1285–1293

DOI

7
Alves M , Grignard B , Mereau R , Jerome C , Tassaing T , Detrembleur C . Organocatalyzed coupling of carbon dioxide with epoxides for the synthesis of cyclic carbonates: catalyst design and mechanistic studies. Catalysis Science & Technology, 2017, 7(13): 2651–2684

DOI

8
Zhang W , Dai J , Wu Y C , Chen J X , Shan S Y , Cai Z , Zhu J B . Highly reactive cyclic carbonates with a fused ring toward functionalizable and recyclable polycarbonates. ACS Macro Letters, 2022, 11(2): 173–178

DOI

9
Monica F D , Kleij A W . Mechanistic guidelines in nonreductive conversion of CO2: the case of cyclic carbonates. Catalysis Science & Technology, 2020, 10(11): 3483–3501

DOI

10
Liu Q , Wu L , Jackstell R , Beller M . Using carbon dioxide as a building block in organic synthesis. Nature Communications, 2015, 6(1): 5933

DOI

11
Jiang B , Liu J , Yang G , Zhang Z . Efficient conversion of CO2 into cyclic carbonates under atmospheric by halogen and metal-free poly (ionic liquids). Chinese Journal of Chemical Engineering, 2023, 55: 202–211

DOI

12
Song H , Wang Y , Xiao M , Liu L , Liu Y , Liu X , Gai H . Design of novel poly (ionic liquids) for the conversion of CO2 to cyclic carbonates under mild conditions without solvent. ACS Sustainable Chemistry & Engineering, 2019, 7(10): 9489–9497

DOI

13
Guo L , Lamb K J , North M . Recent developments in organocatalysed transformations of epoxides and carbon dioxide into cyclic carbonates. Green Chemistry, 2021, 23(1): 77–118

DOI

14
Andrea K A , Butler E D , Brown T R , Anderson T S , Jagota D , Rose C , Lee E M , Goulding S D , Murphy J N , Kerton F M . . Iron complexes for cyclic carbonate and polycarbonate formation: selectivity control from ligand design and metal-center geometry. Inorganic Chemistry, 2019, 58(16): 11231–11240

DOI

15
Wu Y , Song X , Xu S , Chen Y , Oderinde O , Gao L , Wei R , Xiao G . Chemical fixation of CO2 into cyclic carbonates catalyzed by bimetal mixed MOFs: the role of the interaction between Co and Zn. Dalton Transactions, 2020, 49(2): 312–321

DOI

16
Dhankhar S S , Ugale B , Nagaraja C M . Co-catalyst-free chemical fixation of CO2 into cyclic carbonates by using metal-organic frameworks as efficient heterogeneous catalysts. Chemistry, an Asian Journal, 2020, 15(16): 2403–2427

DOI

17
Sarkar S , Ghosh S , Islam S M A . Zn(II)-functionalized COF as a recyclable catalyst for the sustainable synthesis of cyclic carbonates and cyclic carbamates from atmospheric CO2. Organic & Biomolecular Chemistry, 2022, 20(8): 1707–1722

DOI

18
Haque N , Biswas S , Ghosh S , Chowdhury A H , Khan A , Islam S M . Zn(II)-embedded nanoporous covalent organic frameworks for catalytic conversion of CO2 under solvent-free conditions. ACS Applied Nano Materials, 2021, 4(8): 7663–7674

DOI

19
Li J , Han Y , Ji T , Wu N , Lin H , Jiang J , Zhu J . Porous metallosalen hypercrosslinked ionic polymers for cooperative CO2 cycloaddition conversion. Industrial & Engineering Chemistry Research, 2020, 59(2): 676–684

DOI

20
Zhang W , He Q , Chen Y , Luo R , Zhou X , Ji H . A metal-free hydroxyl functionalized quaternary phosphine type ionic liquid polymer for cycloaddition of CO2 and epoxides. Dalton Transactions, 2022, 51(4): 1303–1307

DOI

21
Liu K , Xu Z X , Huang H , Zhang Y D , Liu Y , Qiu Z H , Tong M M , Long Z Y , Chen G J . In situ synthesis of pyridinium-based ionic porous organic polymers with hydroxide anions and pyridinyl radicals for halogen-free catalytic fixation of atmospheric CO2. Green Chemistry, 2022, 24(1): 136–141

DOI

22
Wang H , Wang H , Wang Z , Tang L , Zeng G , Xu P , Chen M , Xiong T , Zhou C , Li X . . Covalent organic framework photocatalysts: structures and applications. Chemical Society Reviews, 2020, 49(12): 4135–4165

DOI

23
Wang Z , Zhang S , Chen Y , Zhang Z , Ma S . Covalent organic frameworks for separation applications. Chemical Society Reviews, 2020, 49(3): 708–735

DOI

24
Yang Z Z , Zhao Y , Ji G , Zhang H , Yu B , Gao X , Liu Z . Fluoro-functionalized polymeric ionic liquids: highly efficient catalysts for CO2 cycloaddition to cyclic carbonates under mild conditions. Green Chemistry, 2014, 16(8): 3724–3728

DOI

25
Chen J , Zhong M , Tao L , Liu L , Jayakumar S , Li C , Li H , Yang Q . The cooperation of porphyrin-based porous polymer and thermal-responsive ionic liquid for efficient CO2 cycloaddition reaction. Green Chemistry, 2018, 20(4): 903–911

DOI

26
Zhao Y , Zhao Y , Qiu J , Li Z , Wang H , Wang J . Facile grafting of imidazolium salt in covalent organic frameworks with enhanced catalytic activity for CO2 fixation and the Knoevenagel reaction. ACS Sustainable Chemistry & Engineering, 2020, 8(50): 18413–18419

DOI

27
Cao J , Shan W , Wang Q , Ling X , Li G , Lyu Y , Zhou Y , Wang J . Ordered porous poly(ionic liquid) crystallines: spacing confined ionic surface enhancing selective CO2 capture and fixation. ACS Applied Materials & Interfaces, 2019, 11(6): 6031–6041

DOI

28
Zhang Y , Yang D H , Qiao S , Han B H . Synergistic catalysis of ionic liquid-decorated covalent organic frameworks with polyoxometalates for CO2 cycloaddition reaction under mild conditions. Langmuir, 2021, 37(34): 10330–10339

DOI

29
Zhong H , Gao J , Sa R , Yang S , Wu Z , Wang R . Carbon dioxide conversion upgraded by host-guest cooperation between nitrogen-rich covalent organic framework and imidazolium-based ionic polymer. ChemSusChem, 2020, 13(23): 6050

DOI

30
Chang G , Yang L , Yang J , Huang Y , Cao K , Ma J , Wang D . A nitrogen-rich, azaindole-based microporous organic network: synergistic effect of local dipole-π and dipole-quadrupole interactions on carbon dioxide uptake. Polymer Chemistry, 2016, 7(37): 5768–5772

DOI

31
Zhu Y , Zhang W . Reversible tuning of pore size and CO2 adsorption in azobenzene functionalized porous organic polymers. Chemical Science, 2014, 5(12): 4957–4961

DOI

32
Meng F , Bi S , Sun Z , Jiang B , Wu D , Chen J S , Zhang F . Synthesis of ionic vinylene-linked covalent organic frameworks through quaternization-activated Knoevenagel condensation. Angewandte Chemie International Edition, 2021, 60(24): 13614–13620

DOI

33
Vyas V S , Haase F , Stegbauer L , Savasci G , Podjaski F , Ochsenfeld C , Lotsch B V . A tunable azine covalent organic framework platform for visible light-induced hydrogen generation. Nature Communications, 2015, 6(1): 8508

DOI

34
Xu Z X , Liu K , Huang H , Zhang Y D , Long Z Y , Tong M M , Chen Q J . Quaternization-induced catalyst-free synthesis of viologen-linked ionic polyacetylenes towards heterogeneous catalytic CO2 fixation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2022, 10(10): 5540–5549

DOI

35
Zhi Y F , Shao P P , Feng X , Xia H , Zhang Y M , Shi Z , Mu Y , Liu X M . Covalent organic frameworks: efficient, metal-free, heterogeneous organocatalysts for chemical fixation of CO2 under mild conditions. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(2): 374–382

DOI

36
Zhang Y W , A S , Zou Y , Luo X , Li Z , Xia H , Liu X , Mu Y . Gas uptake, molecular sensing and organocatalytic performances of a multifunctional carbazole-based conjugated microporous polymer. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(33): 13422–13430

DOI

37
Bhunia S , Bhanja P , Das S K , Sen T , Bhaumik A . Triazine containing N-rich microporous organic polymers for CO2 capture and unprecedented CO2/N2 selectivity. Journal of Solid State Chemistry, 2017, 247: 113–119

DOI

38
Dey S , Bhunia A , Breitzke H , Groszewicz P B , Buntkowsky G , Janiak C . Two linkers are better than one: enhancing CO2 capture and separation with porous covalent triazine-based frameworks from mixed nitrile linkers. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(7): 3609–3620

DOI

39
Coates G W , Moore D R . Discrete metal-based catalysts for the copolymerization of CO2 and epoxides: discovery, reactivity, optimization, and mechanism. Angewandte Chemie International Edition, 2004, 43(48): 6618–6639

DOI

40
Klaus S , Lehenmeier M W , Anderson C E , Rieger B . Recent advances in CO2/epoxide copolymerization-new strategies and cooperative mechanisms. Coordination Chemistry Reviews, 2011, 255(13-14): 1460–1479

DOI

41
Chen G J , Zhang Y D , Liu K , Liu X Q , Wu L , Zhong H , Dang X J , Tong M M , Long Z Y . In situ construction of phenanthroline-based cationic radical porous hybrid polymers for metal-free heterogeneous catalysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2021, 9(12): 7556–7565

DOI

Outlines

/