RESEARCH ARTICLE

Oxidative coupling of methane by Mn-Na2WO4/γ-Al2O3 catalyst: effect of Mn/W ratio

  • Hasan Oliaei Torshizi ,
  • Ali Nakhaei Pour ,
  • Alireza Salimi ,
  • Melika Ghadamyari
Expand
  • Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
a.nakhaei@um.ac.ir, nakhaeipoura@yahoo.com

Received date: 02 Jul 2023

Accepted date: 17 Aug 2023

Copyright

2024 Higher Education Press

Abstract

In this study, Mn-Na2WO4/γ-Al2O3 catalysts with varying ratios of Mn/W were prepared using the dry impregnation method. These catalysts were then tested for their suitability in the oxidative coupling of methane reaction. The X-ray photoelectron results revealed the presence of the tetrahedral WO42– phase in all prepared catalysts. It is believed that the presence of this phase is associated with high catalyst activity, indicating the potential of the catalysts for the desired reaction. The activity results show that the catalyst with a high Mn/W ratio exhibited higher activity at 800 °C, whereas the catalyst with a low Mn/W ratio showed greater activity at 850 °C. This suggests that the Mn/W ratio influences the reaction temperature at which the catalyst is most active. Furthermore, the X-ray diffraction results of the treated catalysts revealed that the catalyst with a high Mn/W ratio exhibited more MnAl2O4 at 800 °C, whereas the catalyst with a low Mn/W ratio contained more MnWO4 at 850 °C. The results suggest that the presence of MnAl2O4 sites may promote a more facile Mn2+ ↔ Mn3+ cycle at lower temperatures than the MnWO4 site, potentially contributing to the enhanced catalyst activity in the oxidative coupling of methane reaction at 800 °C.

Cite this article

Hasan Oliaei Torshizi , Ali Nakhaei Pour , Alireza Salimi , Melika Ghadamyari . Oxidative coupling of methane by Mn-Na2WO4/γ-Al2O3 catalyst: effect of Mn/W ratio[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(1) : 1 . DOI: 10.1007/s11705-023-2367-z

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

The authors of this work appreciate the financial support of the Ferdowsi University of Mashhad Research Council, Mashhad, Iran (Grant No. 68841) and (OCM project No. 23346).
1
Heilig G K . The greenhouse gas methane (CH4): sources and sinks, the impact of population growth, possible interventions. Population and Environment, 1994, 16(2): 109–137

DOI

2
Eren T , Polat C . Natural gas underground storage and oil recovery with horizontal wells. Journal of Petroleum Science Engineering, 2020, 187: 106753

DOI

3
Karakaya C , Kee R J . Progress in the direct catalytic conversion of methane to fuels and chemicals. Progress in Energy and Combustion Science, 2016, 55: 60–97

DOI

4
Mousavi M , Nakhaei Pour A . Performance and structural features of LaNi0.5Co0.5O3 perovskite oxides for the dry reforming of methane: influence of the preparation method. New Journal of Chemistry, 2019, 43(27): 10763–10773

DOI

5
Nakhaei Pour A , Housaindokht M R , Kamali Shahri S M . Fischer-Tropsch synthesis over cobalt/CNTs catalysts: functionalized support and catalyst preparation effect on activity and kinetic parameters. Industrial & Engineering Chemistry Research, 2018, 57(41): 13639–13649

DOI

6
Nakhaei Pour A , Karimi J , Taghipoor S , Gholizadeh M , Hashemian M . Fischer-Tropsch synthesis over CNT-supported cobalt catalyst: effect of magnetic field. Journal of the Indian Chemical Society, 2017, 14(7): 1477–1488

7
Behrooz M , Peyrovi M H , Nakhaei Pour A . Direct partial oxidation (dpo) of methane to higher hydrocarbons by modified h-Zsm5 catalyst. Reaction Kinetics and Catalysis Letters, 2001, 73(1): 127–133

DOI

8
Liu Y , Osta E H , Poryvaev A S , Fedin M V , Longo A , Nefedov A , Kosinov N . Direct conversion of methane to zeolite-templated carbons, light hydrocarbons, and hydrogen. Carbon, 2023, 201: 535–541

DOI

9
Nakhaei Pour A , Housaindokht M R . A new kinetic model for direct CO2 hydrogenation to higher hydrocarbons on a precipitated iron catalyst: effect of catalyst particle size. Journal of Energy Chemistry, 2017, 26(3): 359–367

DOI

10
Gambo Y , Jalil A , Triwahyono S , Abdulrasheed A . Recent advances and future prospect in catalysts for oxidative coupling of methane to ethylene: a review. Journal of Industrial and Engineering Chemistry, 2018, 59: 218–229

DOI

11
Ortiz-Bravo C A , Chagas C A , Toniolo F S . Oxidative coupling of methane (OCM): an overview of the challenges and opportunities for developing new technologies. Journal of Natural Gas Science and Engineering, 2021, 96: 104254

DOI

12
Karakaya C , Zhu H , Loebick C , Weissman J G , Kee R J . A detailed reaction mechanism for oxidative coupling of methane over Mn/Na2WO4/SiO2 catalyst for non-isothermal conditions. Catalysis Today, 2018, 312: 10–22

DOI

13
Sourav S , Wang Y , Kiani D , Baltrusaitis J , Fushimi R R , Wachs I E . New mechanistic and reaction pathway insights for oxidative coupling of methane (OCM) over supported Na2WO4/SiO2 catalysts. Angewandte Chemie International Edition, 2021, 60(39): 21502–21511

DOI

14
Wu J , Li S , Niu J , Fang X . Mechanistic study of oxidative coupling of methane over Mn2O3-Na2WO4SiO2 catalyst. Applied Catalysis A, General, 1995, 124(1): 9–18

DOI

15
Zhao G , Ni J , Si J , Sun W , Lu Y . Low-temperature light-off MnOx-Na2WO4-based catalysts: a step forward to OCM process industrialization. ChemPhysChem, 2022, 23(22): e202200365

DOI

16
Gu S , Kang J , Lee T , Shim J , Choi J W , Suh D J , Lee H , Yoo C , Baik H , Choi J , Ha J M . Na2WO4/Mn supported on all-silica delaminated zeolite for the optimal oxidative coupling of methane via the effective stabilization of tetrahedral WO4: elucidating effects of support precursors with different crystal structures, Al-addition, and morphologies. Chemical Engineering Journal, 2023, 457: 141057

DOI

17
Jaroenpanon K , Tiyatha W , Chukeaw T , Sringam S , Witoon T , Wattanakit C , Chareonpanich M , Faungnawakij K , Seubsai A . Synthesis of Na2WO4-MnxOy supported on SiO2 or La2O3 as fiber catalysts by electrospinning for oxidative coupling of methane. Arabian Journal of Chemistry, 2022, 15(2): 103577

DOI

18
Shahri S M K , Nakhaei Pour A . Ce-promoted Mn/Na2WO4/SiO2 catalyst for oxidative coupling of methane at atmospheric pressure. Journal of Natural Gas Chemistry, 2010, 19(1): 47–53

DOI

19
Nguyen T N , Seenivasan K , Nakanowatari S , Mohan P , Tran T P N , Nishimura S , Takahashi K , Taniike T . Factors to influence low-temperature performance of supported Mn-Na2WO4 in oxidative coupling of methane. Molecular Catalysis, 2021, 516: 111976

DOI

20
Ortiz-Bravo C A , Figueroa S J , Portela R , Chagas C A , Bañares M A , Toniolo F S . Elucidating the structure of the W and Mn sites on the Mn-Na2WO4/SiO2 catalyst for the oxidative coupling of methane (OCM) at real reaction temperatures. Journal of Catalysis, 2022, 408: 423–435

DOI

21
Yildiz M , Aksu Y , Simon U , Kailasam K , Goerke O , Rosowski F , Schomäcker R , Thomas A , Arndt S . Enhanced catalytic performance of MnxOy-Na2WO4/SiO2 for the oxidative coupling of methane using an ordered mesoporous silica support. Chemical Communications (Cambridge), 2014, 50(92): 14440–14442

DOI

22
Kiani D , Sourav S , Baltrusaitis J , Wachs I E . Oxidative coupling of methane (OCM) by SiO2-supported tungsten oxide catalysts promoted with Mn and Na. ACS Catalysis, 2019, 9(7): 5912–5928

DOI

23
Arndt S , Otremba T , Simon U , Yildiz M , Schubert H , Schomäcker R . Mn-Na2WO4/SiO2 as catalyst for the oxidative coupling of methane. What is really known? Applied Catalysis A, General, 2012, 425: 53–61

DOI

24
Yıldız M . Mesoporous TiO2-rutile supported MnxOy-Na2WO4: preparation, characterization and catalytic performance in the oxidative coupling of methane. Journal of Industrial and Engineering Chemistry, 2019, 76: 488–499

DOI

25
Baidya T , Van Vegten N , Verel R , Jiang Y , Yulikov M , Kohn T , Jeschke G , Baiker A . SrO·Al2O3 mixed oxides: a promising class of catalysts for oxidative coupling of methane. Journal of Catalysis, 2011, 281(2): 241–253

DOI

26
Sourav S , Wang Y , Kiani D , Baltrusaitis J , Fushimi R R , Wachs I E . Resolving the types and origin of active oxygen species present in supported Mn-Na2WO4/SiO2 catalysts for oxidative coupling of methane. ACS Catalysis, 2021, 11(16): 10288–10293

DOI

27
Aydin Z , Zanina A , Kondratenko V A , Rabeah J , Li J , Chen J , Li Y , Jiang G , Lund H , Bartling S . . Effects of N2O and water on activity and selectivity in the oxidative coupling of methane over Mn-Na2WO4/SiO2: role of oxygen species. ACS Catalysis, 2022, 12(2): 1298–1309

DOI

28
Sun N , Zhang J , Ling L , Zhang R , Jia L , Li D , Wang B . Effect of different oxygen species on the oxidative coupling of methane over TiO2 catalysts. Applied Catalysis A, General, 2023, 650: 118998

DOI

29
Sourav S , Kiani D , Wang Y , Baltrusaitis J , Fushimi R R , Wachs I E . Molecular structure and catalytic promotional effect of Mn on supported Na2WO4/SiO2 catalysts for oxidative coupling of methane (OCM) reaction. Catalysis Today, 2023, 416: 113837

DOI

30
Yildiz M , Simon U , Otremba T , Aksu Y , Kailasam K , Thomas A , Schomäcker R , Arndt S . Support material variation for the MnxOy-Na2WO4/SiO2 catalyst. Catalysis Today, 2014, 228: 5–14

DOI

31
JiangZ CGongHLiS B. Methane activation over Mn2O3-Na2WO4/SiO2 catalyst and oxygen spillover. In: Studies in Surface Science and Catalysis. Elsevier, 1997, 481–490

32
Yan B , Lin L , Wu J , Lei F . Photoluminescence of rare earth phosphors Na0.5Gd0.5WO4:RE3+ and Na0.5Gd0.5(Mo0.75W0.25)O4:RE3+ (RE = Eu, Sm, Dy). Journal of Fluorescence, 2011, 21(1): 203–211

DOI

33
Tiyatha W , Chukeaw T , Sringam S , Witoon T , Chareonpanich M , Rupprechter G , Seubsai A . Oxidative coupling of methane—comparisons of MnTiO3-Na2WO4 and MnOx-TiO2-Na2WO4 catalysts on different silica supports. Scientific Reports, 2022, 12(1): 2595

DOI

34
Xu B , Yang Y , Xu Y , Han B , Wang Y , Liu X , Yan Z . Synthesis and characterization of mesoporous Si-modified alumina with high thermal stability. Microporous and Mesoporous Materials, 2017, 238: 84–89

DOI

35
Kidamorn P , Tiyatha W , Chukeaw T , Niamnuy C , Chareonpanich M , Sohn H , Seubsai A . Synthesis of value-added chemicals via oxidative coupling of methanes over Na2WO4-TiO2-MnOx/SiO2 catalysts with alkali or alkali earth oxide additives. ACS Omega, 2020, 5(23): 13612–13620

DOI

36
Abdalla Z E A , Li B , Tufail A . Preparation of phosphate promoted Na2WO4/Al2O3 catalyst and its application for oxidative desulfurization. Journal of Industrial and Engineering Chemistry, 2009, 15(6): 780–783

DOI

37
Vamvakeros A , Matras D , Jacques S D , di Michiel M , Middelkoop V , Cong P , Price S W , Bull C L , Senecal P , Beale A M . Real-time tomographic diffraction imaging of catalytic membrane reactors for the oxidative coupling of methane. Catalysis Today, 2021, 364: 242–255

DOI

38
Ismagilov I , Matus E , Kuznetsov V , Kerzhentsev M , Yasnik S , Larina T , Prosvirin I , Navarro R , Fierro J , Gerritsen G . Effect of preparation mode on the properties of Mn-Na-W/SiO2 catalysts for oxidative coupling of methane: conventional methods vs. POSS nanotechnology. Eurasian Chemico-Technological Journal, 2016, 18(2): 93–110

DOI

39
Bayer V , Podloucky R , Franchini C , Allegretti F , Xu B , Parteder G , Ramsey M G , Surnev S , Netzer F P . Formation of Mn3O4 (001) on MnO (001): surface and interface structural stability. Physical Review B: Condensed Matter and Materials Physics, 2007, 76(16): 165428

DOI

40
Scofield J H . Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. Journal of Electron Spectroscopy and Related Phenomena, 1976, 8(2): 129–137

DOI

41
Elkins T W , Hagelin-Weaver H E . Characterization of Mn-Na2WO4/SiO2 and Mn-Na2WO4/MgO catalysts for the oxidative coupling of methane. Applied Catalysis A, General, 2015, 497: 96–106

DOI

42
Kim G J , Ausenbaugh J T , Hwang H T . Effect of TiO2 on the performance of Mn/Na2WO4 catalysts in oxidative coupling of methane. Industrial & Engineering Chemistry Research, 2021, 60(10): 3914–3921

DOI

43
Gu S , Oh H S , Choi J W , Suh D J , Jae J , Choi J , Ha J M . Effects of metal or metal oxide additives on oxidative coupling of methane using Na2WO4/SiO2 catalysts: reducibility of metal additives to manipulate the catalytic activity. Applied Catalysis A, General, 2018, 562: 114–119

DOI

44
Schwarz H . Chemistry with methane: concepts rather than recipes. Angewandte Chemie International Edition, 2011, 50(43): 10096–10115

DOI

45
Zanina A , Kondratenko V A , Lund H , Li J , Chen J , Li Y , Jiang G , Kondratenko E V . Performance-defining factors of (MnOx)-M2WO4/SiO2 (M = Na, K, Rb, or Cs) catalysts in oxidative coupling of methane. Journal of Catalysis, 2023, 419: 68–79

DOI

46
Wang P , Zhao G , Liu Y , Lu Y . TiO2-doped Mn2O3-Na2WO4/SiO2 catalyst for oxidative coupling of methane: solution combustion synthesis and MnTiO3-dependent low-temperature activity improvement. Applied Catalysis A, General, 2017, 544: 77–83

DOI

47
Jodaian V , Mirzaei M . Ce-promoted Na2WO4/TiO2 catalysts for the oxidative coupling of methane. Inorganic Chemistry Communications, 2019, 100: 97–100

DOI

48
Li S B . Oxidative coupling of methane over W-Mn/SiO2 catalyst. Chinese Journal of Chemistry, 2001, 19(1): 16–21

DOI

49
Wang Y , Sourav S , Malizia J P , Thompson B , Wang B , Kunz M R , Nikolla E , Fushimi R . Deciphering the mechanistic role of individual oxide phases and their combinations in supported Mn-Na2WO4 catalysts for oxidative coupling of methane. ACS Catalysis, 2022, 12(19): 11886–11898

DOI

50
Si J , Zhao G , Lan T , Ni J , Sun W , Liu Y , Lu Y . Insight into the role of Na2WO4 in a low-temperature light-off Mn7SiO12-Na2WO4/cristobalite catalyst for oxidative coupling of methane. ACS Catalysis, 2022, 13(2): 1033–1044

DOI

Outlines

/