Frontiers of Chemical Science and Engineering >
Silica-based nanoarchitecture for an optimal combination of photothermal and chemodynamic therapy functions of Cu2–xS cores with red emitting carbon dots
Received date: 15 Jun 2023
Accepted date: 09 Aug 2023
Published date: 15 Dec 2023
Copyright
This study introduces multifunctional silica nanoparticles that exhibit both high photothermal and chemodynamic therapeutic activities, in addition to luminescence. The activity of the silica nanoparticles is derived from their plasmonic properties, which are a result of infusing the silica nanoparticles with multiple Cu2–xS cores. This infusion process is facilitated by a recoating of the silica nanoparticles with a cationic surfactant. The key factors that enable the internal incorporation of the Cu2–xS cores and the external deposition of red-emitting carbon dots are identified. The Cu2–xS cores within the silica nanoparticles exhibit both self-boosting generation of reactive oxygen species and high photothermal conversion efficacy, which are essential for photothermal and chemodynamic activities. The silica nanoparticles’ small size (no more than 70 nm) and high colloidal stability are prerequisites for their cell internalization. The internalization of the red-emitting silica nanoparticles within cells is visualized using fluorescence microscopy techniques. The chemodynamic activity of the silica nanoparticles is associated with their dark cytotoxicity, and the mechanisms of cell death are evaluated using an apoptotic assay. The photothermal activity of the silica nanoparticles is demonstrated by significant cell death under near-infrared (1064 nm) irradiation.
Alexey Stepanov , Svetlana Fedorenko , Kirill Kholin , Irek Nizameev , Alexey Dovzhenko , Rustem Zairov , Tatiana Gerasimova , Alexandra Voloshina , Anna Lyubina , Guzel Sibgatullina , Dmitry Samigullin , Asiya Mustafina . Silica-based nanoarchitecture for an optimal combination of photothermal and chemodynamic therapy functions of Cu2–xS cores with red emitting carbon dots[J]. Frontiers of Chemical Science and Engineering, 2023 , 17(12) : 2144 -2155 . DOI: 10.1007/s11705-023-2362-4
1 |
Kim M, Lee J H. Plasmonic photothermal nanoparticles for niomedical applications. Advancement of Science, 2019, 6: 1900471
|
2 |
Nikam A N, Pandey A, Fernandes G, Kulkarni S, Mutalik S P, Padya B S, George S D, Mutalik S. Copper sulphide based heterogeneous nanoplatforms for multimodal therapy and imaging of cancer: recent advances and toxicological perspectives. Coordination Chemistry Reviews, 2020, 419: 213356
|
3 |
Sun H, Zhang Y, Chen S, Wang R, Chen Q, Li J, Luo Y, Wang X, Chen H. Photothermal Fenton nanocatalysts for synergetic cancer therapy in the second near-infrared window. ACS Applied Materials & Interfaces, 2020, 12(27): 30145–30154
|
4 |
Goel S, Chen F, Cai W. Synthesis and biomedical applications of copper sulfide nanoparticles: from sensors to theranostics. Small, 2014, 10(4): 631–645
|
5 |
Tian Q, Jiang F, Zou R, Liu Q, Chen Z, Zhu M, Yang S, Wang J, Wang J, Hu J. Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo. ACS Nano, 2011, 5(12): 9761–9771
|
6 |
Marin R, Skripka A, Besteiro L V, Benayas A, Wang Z, Govorov A O, Canton P, Vetrone F. Highly efficient copper sulfide-based near-infrared photothermal agents: exploring the limits of macroscopic heat conversion. Small, 2018, 14(49): 1803282
|
7 |
Li Y, Lu W, Huang Q, Li C, Chen W. Copper sulfide nanoparticles for photothermal ablation of tumor cells. Nanomedicine, 2010, 5(8): 1161–1171
|
8 |
Yan C, Tian Q, Yang S. Recent advances in the rational design of copper chalcogenide to enhance the photothermal conversion efficiency for the photothermal ablation of cancer cells. RSC Advances, 2017, 7(60): 37887–37897
|
9 |
Li S L, Chu X, Dong H L, Hou H Y, Liu Y. Recent advances in augmenting Fenton chemistry of nanoplatforms for enhanced chemodynamic therapy. Coordination Chemistry Reviews, 2023, 479: 215004
|
10 |
Behzadi S, Serpooshan V, Tao W, Hamaly M A, Alkawareek M Y, Dreaden E C, Brown D, Alkilany A M, Farokhzad O C, Mahmoudi M. Cellular uptake of nanoparticles: journey inside the cell. Chemical Society Reviews, 2017, 46(14): 4218–4244
|
11 |
Xu M, Yang G, Bi H, Xu J, Dong S, Jia T, Wang Z, Zhao R, Sun Q, Gai S.
|
12 |
Wang J, Shah Z H, Zhang S, Lu R. Silica-based nanocomposites via reverse microemulsions: classifications, preparations, and applications. Nanoscale, 2014, 6(9): 4418–4437
|
13 |
Wei W, Wei M, Liu S. Silica nanoparticles as a carrier for signal amplification. Reviews in Analytical Chemistry, 2012, 31(3–4): 163–176
|
14 |
Yu M, Zhao Z. Plasmon-enhanced up-conversion luminescence and oxygen vacancy defect-induced yellow light in annealed Cu8S5@SiO2@Er2O3 nanocomposites. Journal of Luminescence, 2020, 225: 117361
|
15 |
Yu M, Tang P, Zhang Q, Zhao Z, Huang S. Plasmon-enhanced up-conversion luminescence in multiple Cu2–xS@SiO2-embedded Er(OH)CO3 composites. Journal of Alloys and Compounds, 2021, 853: 156906
|
16 |
Liu K, Liu K, Liu J, Ren Q, Zhao Z, Wu X, Li D, Yuan F, Ye K, Li B. Copper chalcogenide materials as photothermal agents for cancer treatment. Nanoscale, 2020, 12(5): 2902–2913
|
17 |
Wang L, Ma X, Cai K, Li X. Morphological effect of copper sulfide nanoparticles on their near infrared laser activated photothermal and photodynamic performance. Materials Research Express, 2019, 6(10): 105406
|
18 |
Mutalik C, Okoro G, Krisnawati D I, Jazidie A, Rahmawati E Q, Rahayu D, Hsu W T, Kuo T R. Copper sulfide with morphology-dependent photodynamic and photothermal antibacterial activities. Journal of Colloid and Interface Science, 2022, 607: 1825–1835
|
19 |
Dimitriev O, Slominskii Y, Giancaspro M, Rizzi F, Depalo N, Fanizza E, Yoshida T. Giancaspro, Rizzi F, Depalo N, Fanizza E, Yoshida T. Assembling near-infrared dye on the surface of near-infrared silica-coated copper sulphide plasmonic nanoparticles. Nanomaterials, 2023, 13(3): 510
|
20 |
Fanizza E, Mastrogiacomo R, Pugliese O, Guglielmelli A, Sio L D, Castaldo R, Scavo M P, Giancaspro M, Rizzi F, Gentile G.
|
21 |
Luo B, Huang X, Ye Y, Cai J, Feng Y, Cai X, Wang X. CuS NP-based nanocomposite with photothermal and augmented-photodynamic activity for magnetic resonance imaging-guided tumor synergistic therapy. Journal of Inorganic Chemistry, 2022, 235: 111940
|
22 |
Wang Y, An L, Lin J, Tian Q, Yang S. A hollow Cu9S8 theranostic nanoplatform based on a combination of increased active sites and photothermal performance in enhanced chemodynamic therapy. Chemical Engineering Journal, 2020, 385: 123925
|
23 |
Fedorenko S, Stepanov A, Bochkova O, Kholin K, Dovjenko A, Zairov R, Nizameev I, Gerasimova T, Strelnik I, Voloshina A.
|
24 |
Fedorenko S, Farvaeva D, Stepanov A, Bochkova O, Kholin K, Nizameev I, Drobyshev S, Gerasimova T, Voloshina A, Fanizza E.
|
25 |
Ren G, Yu L, Zhu B, Tang M, Chai F, Wang C, Su Z. Orange emissive carbon dots for colorimetric and fluorescent sensing of 2,4,6-trinitrophenol by fluorescence conversion. RSC Advances, 2018, 8(29): 16095–16102
|
26 |
Davydov N, Mustafina A, Burilov V, Zvereva E, Katsyuba S, Vagapova L, Konovalov A, Antipin I. Complex formation of d-metal ions at the interface of TbIII -doped silica nanoparticles as a basis of substrate-responsive TbIII-centered luminescence. ChemPhysChem, 2012, 13(14): 3357–3364
|
27 |
Donahue N D, Acar H, Wilhelm S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Advanced Drug Delivery Reviews, 2019, 143: 68–96
|
28 |
Manzanares D, Ceña V. Endocytosis: the nanoparticle and submicron nanocompounds gateway into the cell. Pharmaceutics, 2020, 12(4): 371
|
29 |
Augustine R, Hasan A, Primavera R, Wilson R J, Thakor A S, Kevadiya B D. Cellular uptake and retention of nanoparticles: insights on particle properties and interaction with cellular components. Materials Today. Communications, 2020, 25: 101692
|
30 |
Fedorenko S V, Mustafina A R, Mukhametshina A R, Jilkin M E, Mukhametzyanov T A, Solovieva A O, Pozmogova T N, Shestopalova L V, Shestopalov M A, Kholin K V.
|
31 |
Elistratova J, Mukhametshina A, Kholin K, Nizameev I, Mikhailov M, Sokolov M, Khairullin R, Miftakhova R, Shammas G, Kadirov M.
|
32 |
de la Torre C, Gavara R, Garcia-Fernandez A, Mikhaylov M, Sokolov M N, Miravet J F, Sancenon F, Martinez-Manez R, Galindo F. Enhancement of photoactivity and cellular uptake of (Bu4N)2[Mo6I8(CH3COO)6] complex by loading on porous MCM-41 support. Photodynamic studies as an anticancer agent. Biomaterials Advances, 2022, 140: 213057
|
33 |
Zhang Z, Zhu H, Peng N, Song J, Sun R, Wang J, Zhu F, Wang Y. Red emissive carbon dots-based probe for rapid identification and continuous tracking of Gram-positive bacteria in tumor cells. Materials Letters, 2023, 341: 134233
|
34 |
Wang X, Cao Y, Hu X, Cai L, Wang H, Fang G, Wang S. A novel fluorescent biomimetic sensor based on cerium, nitrogen co-doped carbon quantum dots embedded in cobalt-based metal organic framework@molecularly imprinted polymer for selective and sensitive detection of oxytetracycline. Microchemical Journal, 2023, 190: 108606
|
35 |
Luo F, Zhu M, Liu Y, Sun J, Gao F. Ratiometric and visual determination of copper ions with fluorescent nanohybrids of semiconducting polymer nanoparticles and carbon dots. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2023, 295: 122574
|
36 |
Wang Y, Wu R, Zhang Y, Cheng S, Zhang Y. High quantum yield nitrogen doped carbon dots for Ag+ sensing and bioimaging. Journal of Molecular Structure, 2023, 1283: 135212
|
37 |
Sajwan R K, Solanki P R. Gold@carbon quantum dots nanocomposites based two-in-one sensor: a novel approach for sensitive detection of aminoglycosides antibiotics in food samples. Food Chemistry, 2023, 415: 135590
|
38 |
Bochkova O, Dovjenko A, Zairov R, Kholin K, Biktimirova R, Fedorenko S, Nizameev I, Laskin A, Voloshina A, Lyubina A.
|
39 |
Yu Y, Song M, Chen C, Du Y, Li C, Han Y, Yan F, Shi Z, Feng S. Bortezomib-encapsulated CuS/carbon dot nanocomposites for enhanced photothermal therapy via stabilization of polyubiquitinated substrates in the proteasomal degradation pathway. ACS Nano, 2020, 14(8): 10688–10703
|
40 |
Roper D K, Ahn W, Hoepfner M. Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. Journal of Physical Chemistry C, 2007, 111(9): 3636–3641
|
41 |
Ain N, Abdul Nasir J, Khan Z, Butler I S, Rehman Z. Copper sulfide nanostructures: synthesis and biological applications. RSC Advances, 2022, 12(12): 7550–7567
|
42 |
Zhang L, Pan H, Li Y, Li F, Huang X. Constructing Cu7S4@SiO2/DOX multifunctional nanoplatforms for synergistic photothermal-chemotherapy on melanoma tumors. Frontiers in Bioengineering and Biotechnology Sec. Biomaterials, 2020, 8: 579439
|
43 |
An N, Wang Y, Li M, Lin H, Qu F. The synthesis of core-shell Cu9S5@mSiO2-ICG@PEG-LA for photothermal and photodynamic therapy. New Journal of Chemistry, 2018, 42(22): 18318–18327
|
44 |
Tang Z, Liu Y, He M, Bu W. Chemodynamic therapy: tumour microenvironment mediated Fenton and Fenton-like reactions. Angewandte Chemie International Edition, 2019, 58(4): 946–956
|
45 |
Gao F, Liu J, Gong P, Yang Y, Jiang Y. Carbon dots as potential antioxidants for the scavenging of multi-reactive oxygen and nitrogen species. Chemical Engineering Journal, 2023, 462: 142338
|
46 |
Zhang K, Meng X, Yang Z, Dong H, Zhang X. Enhanced cancer therapy by hypoxia-responsive copper metal-organic frameworks nanosystem. Biomaterials, 2020, 258: 120278
|
47 |
Komarnicka U K, Pucelik B, Wojtala D, Lesiów M K, Stochel G, Kyzioł A. Evaluation of anticancer activity in vitro of a stable copper(I) complex with phosphine-peptide conjugate. Scientific Reports, 2021, 11(1): 23943
|
48 |
Tsvetkov T, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, Rossen J, Joesch-Cohen L, Humeidi R, Spangler Ryan D, Eaton J K, Frenkel E, Kocak M, Corsello S M, Lutsenko S, Kanarek N, Santagata S, Golub T R. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science, 2022, 375(6586): 1254–1261
|
49 |
McBride H M, Neuspiel M, Wasiak S. Mitochondria: more than just a powerhouse. Current Biology, 2006, 16(14): R551–R560
|
/
〈 | 〉 |