Frontiers of Chemical Science and Engineering >
Activated carbon induced oxygen vacancies-engineered nickel ferrite with enhanced conductivity for supercapacitor application
Received date: 10 May 2023
Accepted date: 30 Jun 2023
Published date: 15 Dec 2023
Copyright
NiFe2O4 is a kind of bimetallic oxide possessing excellent theoretical capacity and application prospect in the field of supercapacitors. Whereas, due to the inherent poor conductivity of metal oxides, the performance of NiFe2O4 is not ideal in practice. Oxygen vacancies can not only enhance the conductivities of NiFe2O4 but also provide better adsorption of OH, which is beneficial to the electrochemical performances. Hence, oxygen vacancies engineered NiFe2O4 (NiFe2O4‒δ) is obtained through a two-step method, including a hydrothermal reaction and a further heat treatment in activated carbon bed. Results of electron paramagnetic resonance spectra indicate that more oxygen vacancies exist in the treated NiFe2O4‒δ than the original one. UV-Vis diffuse reflectance spectra prove that the treated NiFe2O4‒δ owns better conductivity than the original NiFe2O4. As for the electrochemical performances, the treated NiFe2O4‒δ performs a high specific capacitance of 808.02 F∙g‒1 at 1 A∙g‒1. Moreover, the asymmetric supercapacitor of NiFe2O4‒δ//active carbon displays a high energy density of 17.7 Wh∙kg‒1 at the power density of 375 W∙kg‒1. This work gives an effective way to improve the conductivity of metal oxides, which is beneficial to the application of metal oxides in supercapacitors.
Key words: nickel ferrite; oxygen vacancy; high conductivity; supercapacitor
Xicheng Gao , Jianqiang Bi , Linjie Meng , Lulin Xie , Chen Liu . Activated carbon induced oxygen vacancies-engineered nickel ferrite with enhanced conductivity for supercapacitor application[J]. Frontiers of Chemical Science and Engineering, 2023 , 17(12) : 2088 -2100 . DOI: 10.1007/s11705-023-2352-6
1 |
Lama Tamang T, Mohamed S G, Dhakal G, Shim J J. Morphology controlling of manganese-cobalt-sulfide nanoflake arrays using polyvinylpyrrolidone capping agent to enhance the performance of hybrid supercapacitors. Journal of Colloid and Interface Science, 2022, 624: 494–504
|
2 |
Wang Q, Qu Z, Chen S, Zhang D. Metal organic framework derived P-doping CoS@C with sulfide defect to boost high-performance asymmetric supercapacitors. Journal of Colloid and Interface Science, 2022, 624: 385–393
|
3 |
Lv H, Xiao Z, Zhai S, Hao J, Tong Y, Wang G, An Q. Construction of nickel ferrite nanoparticle-loaded on carboxymethyl cellulose-derived porous carbon for efficient pseudocapacitive energy storage. Journal of Colloid and Interface Science, 2022, 622: 327–335
|
4 |
Dharmasiri B, Stanfield M K, Randall J D, Usman K A S, Qin S A, Razal J M, Doeven E H, Francis P S, Eyckens D J, Yin Y, Andersson G G, Henderson L C. Multifunctional polymeric surface coatings of carbon fibre electrodes for enhanced energy storage performance. Chemical Engineering Journal, 2022, 447: 137560
|
5 |
Pang H, Wang M, Sun P, Zhang W, Wang D, Zhang R, Qiao L, Wang W, Gao M, Li Y, Chen J, Liang K, Kong B. Super-assembled compressible carbon frameworks featuring enriched heteroatom defect sites for flexible Zn-air batteries. NPG Asia Materials, 2023, 15(1): 15
|
6 |
Zhang H, Wang J, Duan H, Ren J, Zhao H, Zhou C, Qi J. Mn3+ partially substituting the Ni3+ of NiCo2O4 enhance the charge transfer kinetics and reaction activity for hybrid supercapacitor. Applied Surface Science, 2022, 597: 153617
|
7 |
Li Y, Zhu G, Xu X, Chen L, Lu T, Hill J P, Pan L, Yamauchi Y. Embedding metal-organic frameworks for the design of flexible hybrid supercapacitors by electrospinning: synthesis of highly graphitized carbon nanofibers containing metal oxide nanoparticles. Small Structures, 2022, 3(9): 2200015
|
8 |
Liu J, Wang Z, Liu Q, Li S, Wang D, Zheng Z. Rational design of freestanding and high-performance thick electrode from carbon foam modified with polypyrrole/polydopamine for supercapacitors. Chemical Engineering Journal, 2022, 447: 137562
|
9 |
Chen J, Liu B, Cai H, Liu S, Yamauchi Y, Jun S C. Covalently interlayer-confined organic-inorganic heterostructures for aqueous potassium ion supercapacitors. Small, 2023, 19(4): 2204275
|
10 |
Zhou Y, Wei L, Li C, Han Y, Xu J, Jia Z, Sun J, Chen H, Song Y, Ouyang X, Wang X, Zhu J, Fu Y. Nanostructure and phase engineering integration of amorphous Ni-Co sulfide/crystalline MnS/rGO cathode and ultra-small Fe2O3 nanodots/rGO anode for all-solid-state asymmetric supercapacitors. Journal of Energy Storage, 2022, 45: 103765
|
11 |
Guo M, Sun J, Liu Y, Huangfu C, Wang R, Han C, Qu Z, Wang N, Zhao L, Zheng Q. Optimizing Fe2O3-based supercapacitor cathode with tunable surface pseudocapacitance via facile in situ vulcanization process. Journal of Electroanalytical Chemistry, 2021, 901: 115785
|
12 |
Bandgar S B, Vadiyar M M, Ling Y C, Chang J Y, Han S H, Ghule A V, Kolekar S S. Metal precursor dependent synthesis of NiFe2O4 thin films for high-performance flexible symmetric supercapacitor. ACS Applied Energy Materials, 2018, 1(2): 638–648
|
13 |
Mordina B, Kumar R, Neeraj N S, Srivastava A K, Setua D K, Sharma A. Binder free high performance hybrid supercapacitor device based on nickel ferrite nanoparticles. Journal of Energy Storage, 2020, 31: 101677
|
14 |
Yu Z Y, Chen L F, Yu S H. Growth of NiFe2O4 nanoparticles on carbon cloth for high performance flexible supercapacitors. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(28): 10889–10894
|
15 |
Schmidt R, Basu A, Brinkman A W, Klusek Z, Datta P K. Electron-hopping modes in NiMn2O4+δ materials. Applied Physics Letters, 2005, 86(7): 073501
|
16 |
Yoon S J, Lee S H, Kim K H, Ahn K S. Electrical and magnetic properties of spinel ZnCr2−xFexO4 (0 ≤ x ≤ 1.0). Materials Chemistry and Physics, 2002, 73(2–3): 330–334
|
17 |
Zhang A, Gao R, Hu L, Zang X, Yang R, Wang S, Yao S, Yang Z, Hao H, Yan Y M. Rich bulk oxygen vacancies-engineered MnO2 with enhanced charge transfer kinetics for supercapacitor. Chemical Engineering Journal, 2021, 417: 129186
|
18 |
Xu L, Pan G, Yu C, Li J, Gong Z, Lu T, Pan L. Co-doped MnO2 with abundant oxygen vacancies as a cathode for superior aqueous magnesium ion storage. Inorganic Chemistry Frontiers, 2023, 10(6): 1748–1757
|
19 |
Ferreira L S, Silva T R, Silva V D, Simões T A, Araújo A J M, Morales M A, Macedo D A. Proteic sol-gel synthesis, structure and battery-type behavior of Fe-based spinels (MFe2O4, M = Cu, Co, Ni). Advanced Powder Technology, 2020, 31(2): 604–613
|
20 |
Zhang K, Zeng H Y, Li H B, Xu S, Lv S B, Wang M X. Controllable preparation of CuCo2S4 nanotube arrays for high-performance hybrid supercapacitors. Electrochimica Acta, 2022, 404: 139681
|
21 |
Gu J, Fan X, Liu X, Li S, Wang Z, Tang S, Yuan D. Mesoporous manganese oxide with large specific surface area for high-performance asymmetric supercapacitor with enhanced cycling stability. Chemical Engineering Journal, 2017, 324: 35–43
|
22 |
Gao X, Wang W, Bi J, Chen Y, Hao X, Sun X, Zhang J. Morphology-controllable preparation of NiFe2O4 as high performance electrode material for supercapacitor. Electrochimica Acta, 2019, 296: 181–189
|
23 |
Carpenter G, Sen R, Malviya N, Gupta N. Microwave-assisted synthesis and characterization of nickel ferrite nanoparticles. AIP Conference Proceedings, 2015, 1675: 020029
|
24 |
Stella C, Prabhakar D, Prabhu M, Soundararajan N, Ramachandran K. Oxygen vacancies induced room temperature ferromagnetism and gas sensing properties of Co-doped TiO2 nanoparticles. Journal of Materials Science Materials in Electronics, 2016, 27(2): 1636–1644
|
25 |
Wang C, Sui G, Guo D, Li J, Zhuang Y, Guo W, Zhou Y, Yang X, Chai D F. Inverted design of oxygen vacancies modulated NiCo2O4 and Co3O4 microspheres with superior specific surface area as competitive bifunctional materials for supercapacitor and hydrogen evolution reaction. Journal of Energy Storage, 2022, 49: 104083
|
26 |
Wang C, Sui G, Guo D, Li J, Ma X, Zhuang Y, Chai D F. Oxygen vacancies-rich NiCo2O4‒4x nanowires assembled on porous carbon derived from cigarette ash: a competitive candidate for hydrogen evolution reaction and supercapacitor. Journal of Energy Storage, 2022, 50: 104280
|
27 |
Sharifi S, Yazdani A, Rahimi K. Effect of Co2+ content on supercapacitance properties of hydrothermally synthesized Ni1‒xCoxFe2O4 nanoparticles. Materials Science in Semiconductor Processing, 2020, 108: 104902
|
28 |
Boukhemikhem Z, Brahimi R, Rekhila G, Fortas G, Boudjellal L, Trari M. The photocatalytic hydrogen formation and NO2− oxidation on the hetero-junction Ag/NiFe2O4 prepared by chemical route. Renewable Energy, 2020, 145: 2615–2620
|
29 |
Aafiya M, Abushad M, Arshad S, Naseem H, Ahmed A, Ansari V K, Chakradhary S, Husain W. Synthesis and role of structural disorder on the optical, magnetic and dielectric properties of Zn doped NiFe2O4 nanoferrites. Journal of Molecular Structure, 2022, 1253: 132205
|
30 |
He L, Ling Z. Studies of temperature dependent AC impedance of a negative temperature coefficient Mn-Co-Ni-O thin film thermistor. Applied Physics Letters, 2011, 98(24): 242112
|
31 |
Nayak P, Nayak S K, Satpathy B. Structural, electro-chemical and conduction mechanism in spinel NiFe2O4/NFO supercapacitor electrode material. Materials Science in Semiconductor Processing, 2022, 143: 106543
|
32 |
Gao X, Bi J, Gao J, Meng L, Xie L, Liu C. Partial sulfur doping induced lattice expansion of NiFe2O4 with enhanced electrochemical capacity for supercapacitor application. Electrochimica Acta, 2022, 426: 140739
|
33 |
Munonde T S, Zheng H, Matseke M S, Nomngongo P N, Wang Y, Tsiakaras P. A green approach for enhancing the electrocatalytic activity and stability of NiFe2O4/CB nanospheres towards hydrogen production. Renewable Energy, 2020, 154: 704–714
|
34 |
Ma Q, Cui F, Zhang J, Qi X, Cui T. Surface engineering of Co3O4 nanoribbons forming abundant oxygen-vacancy for advanced supercapacitor. Applied Surface Science, 2022, 578: 152001
|
35 |
Wang D G, Liang Z, Gao S, Qu C, Zou R. Metal-organic framework-based materials for hybrid supercapacitor application. Coordination Chemistry Reviews, 2020, 404: 213093
|
36 |
Nagarani S, Sasikala G, Satheesh K, Yuvaraj M, Jayavel R. Synthesis and characterization of binary transition metal oxide/reduced graphene oxide nanocomposites and its enhanced electrochemical properties for supercapacitor applications. Journal of Materials Science Materials in Electronics, 2018, 29(14): 11738–11748
|
37 |
Yang P, Wu Z, Jiang Y, Pan Z, Tian W, Jiang L, Hu L. Fractal (NixCo1−x)9Se8 nanodendrite arrays with highly exposed (011) surface for wearable, all-solid-state supercapacitor. Advanced Energy Materials, 2018, 8(26): 1801392
|
38 |
Jiang J, Li Z, He X, Hu Y, Li F, Huang P, Wang C. Novel skutterudite CoP3 based asymmetric supercapacitor with super high energy density. Small, 2020, 16(31): 2000180
|
39 |
Xie M, Zhou M, Zhang Y, Du C, Chen J, Wan L. Freestanding trimetallic Fe-Co-Ni phosphide nanosheet arrays as an advanced electrode for high-performance asymmetric supercapacitors. Journal of Colloid and Interface Science, 2022, 608: 79–89
|
40 |
Shang Y, Ma S, Wei Y, Yang H, Xu Z. Flower-like ternary metal of Ni-Co-Mn hydroxide combined with carbon nanotube for supercapacitor. Ionics, 2020, 26(7): 3609–3619
|
41 |
Samuel E, Aldalbahi A, El-Newehy M, El-Hamshary H, Yoon S S. Nickel ferrite beehive-like nanosheets for binder-free and high-energy-storage supercapacitor electrodes. Journal of Alloys and Compounds, 2021, 852: 156929
|
42 |
Huang T, Cui W, Qiu Z, Hu Z, Zhang Z. 2D porous layered NiFe2O4 by a facile hydrothermal method for asymmetric supercapacitor. Ionics, 2021, 27(3): 1347–1355
|
43 |
Malarvizhi M, Meyvel S, Sandhiya M, Sathish M, Dakshana M, Sathya P, Thillaikkarasi D, Karthikeyan S. Design and fabrication of cobalt and nickel ferrites based flexible electrodes for high-performance energy storage applications. Inorganic Chemistry Communications, 2021, 123: 108344
|
44 |
Askari M B, Salarizadeh P. Binary nickel ferrite oxide (NiFe2O4) nanoparticles coated on reduced graphene oxide as stable and high-performance asymmetric supercapacitor electrode material. International Journal of Hydrogen Energy, 2020, 45(51): 27482–27491
|
45 |
Wei Y, Zou X, Cen C, Zhang B, Xiang B, Hao J, Wang B, Deng M, Hu Q, Wei S. Controlling the electrochemical activity of dahlia-like β-NiS@rGO by interface polarization. Dalton Transactions, 2023, 52(5): 1345–1356
|
46 |
Zhang M, Chen Y, Yang D, Li J. High performance MnO2 supercapacitor material prepared by modified electrodeposition method with different electrodeposition voltages. Journal of Energy Storage, 2020, 29: 101363
|
47 |
Zhang S, Yin B, Wang Z, Peter F. Super long-life all solid-state asymmetric supercapacitor based on NiO nanosheets and α-Fe2O3 nanorods. Chemical Engineering Journal, 2016, 306: 193–203
|
48 |
Cai W, Lai T, Dai W, Ye J. A facile approach to fabricate flexible all-solid-state supercapacitors based on MnFe2O4/graphene hybrids. Journal of Power Sources, 2014, 255: 170–178
|
49 |
Yang S, Han Z, Sun J, Yang X, Hu X, Li C, Cao B. Controllable ZnFe2O4/reduced graphene oxide hybrid for high-performance supercapacitor electrode. Electrochimica Acta, 2018, 268: 20–26
|
50 |
Sethi M, Shenoy U S, Bhat D K. A porous graphene-NiFe2O4 nanocomposite with high electrochemical performance and high cycling stability for energy storage applications. Nanoscale Advances, 2020, 2(9): 4229–4241
|
/
〈 | 〉 |