RESEARCH ARTICLE

A pseudocapacitive molecule-induced strategy to construct flexible high-performance asymmetric supercapacitors

  • Yingqi Heng 1 ,
  • Xiang Qin 1 ,
  • Heng Fang 1 ,
  • Genhui Teng 1 ,
  • Dawei Zhao 2 ,
  • Dongying Hu , 1,3
Expand
  • 1. School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
  • 2. Key Laboratory on Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang 110142, China
  • 3. State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
hdy@gxu.edu.cn; hdygxu@163.com

Received date: 27 Oct 2022

Accepted date: 14 Jan 2023

Published date: 15 Sep 2023

Copyright

2023 Higher Education Press

Abstract

The combination of high-voltage windows and bending stability remains a challenge for supercapacitors. Here, we present an “advantage-complementary strategy” using sodium lignosulfonate as a pseudocapacitive molecule to regulate the spatial stacking pattern of graphene oxide and the interfacial architectures of graphene oxide and polyaniline. Flexible and sustainable sodium lignosulfonate-based electrodes are successfully developed, showing perfect bending stability and high electronic conductivity and specific capacitance (521 F·g−1 at 0.5 A·g–1). Due to the resulting rational interfacial structure and stable ion-electron transport, the asymmetric supercapacitors provide a wide voltage window reaching 1.7 V, outstanding bending stability and high energy-power density of 83.87 Wh·kg–1 at 3.4 kW·kg–1. These properties are superior to other reported cases of asymmetric energy enrichment. The synergistic strategy of sodium lignosulfonate on graphene oxide and polyaniline is undoubtedly beneficial to advance the process for the construction of green flexible supercapacitors with remarkably wide voltage windows and excellent bending stability.

Cite this article

Yingqi Heng , Xiang Qin , Heng Fang , Genhui Teng , Dawei Zhao , Dongying Hu . A pseudocapacitive molecule-induced strategy to construct flexible high-performance asymmetric supercapacitors[J]. Frontiers of Chemical Science and Engineering, 2023 , 17(9) : 1208 -1220 . DOI: 10.1007/s11705-023-2304-1

Acknowledgements

This work was supported by the Natural Science Foundation of Guangxi (Grant No. 2018GXNSFBA138025) and the National Natural Science Foundation of China (Grant No. 32171720).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-023-2304-1 and is accessible for authorized users.
1
Li B, Yu M, Li Z, Yu C, Wang H, Li Q. Constructing flexible all-solid-state supercapacitors from 3D nanosheets active bricks via 3D manufacturing technology: a perspective review. Advanced Functional Materials, 2022, 32(29): 202201166

DOI

2
Zhao D, Zhu Y, Cheng W, Chen W, Wu Y, Yu H. Cellulose: cellulose-based flexible functional materials for emerging intelligent electronics. Advanced Materials, 2021, 33(28): 2000619

DOI

3
Lv T, Liu M, Zhu D, Gan L, Chen T. Nanocarbon-based materials for flexible all-solid-state supercapacitors. Advanced Materials, 2018, 30(17): e1705489

DOI

4
Du P, Liu H C, Yi C, Wang K, Gong X. Polyaniline-modified oriented graphene hydrogel film as the free-standing electrode for flexible solid-state supercapacitors. ACS Applied Materials & Interfaces, 2015, 7(43): 23932–23940

DOI

5
Yang C, Zhang L, Hu N, Yang Z, Wei H, Zhang Y. Reduced graphene oxide/polypyrrole nanotube papers for flexible all-solid-state supercapacitors with excellent rate capability and high energy density. Journal of Power Sources, 2016, 302: 39–45

DOI

6
Heng Y, Teng G, Chi Y, Hu D. Construction of biomass-derived hybrid organogel electrodes with a cross-linking conductive network for high-performance all-solid-state supercapacitors. Biomacromolecules, 2022, 23(3): 913–925

DOI

7
Zhao D, Chen C, Zhang Q, Chen W, Liu S, Wang Q, Liu Y, Li J, Yu H. High performance, flexible, solid-state supercapacitors based on a renewable and biodegradable mesoporous cellulose membrane. Advanced Energy Materials, 2017, 7(18): 1700739

DOI

8
Liu L, Yu X, Zhang W, Lv Q, Hou L, Fautrelle Y, Ren Z, Cao G, Lu X, Li X. Strong magnetic-field-engineered porous template for fabricating hierarchical porous Ni-Co-Zn-P nanoplate arrays as battery-type electrodes of advanced all-solid-state supercapacitors. ACS Applied Materials & Interfaces, 2022, 14(2): 2782–2793

DOI

9
Zhou L, Cao H, Zhu S, Hou L, Yuan C. Hierarchical micro-/mesoporous N- and O-enriched carbon derived from disposable cashmere: a competitive cost-effective material for high-performance electrochemical capacitors. Green Chemistry, 2015, 17(4): 2373–2382

DOI

10
Zhao D, Pang B, Zhu Y, Cheng W, Cao K, Ye D, Si C, Xu G, Chen C, Yu H. A stiffness-switchable, biomimetic smart material enabled by supramolecular reconfiguration. Advanced Materials, 2022, 34(10): 2107857

DOI

11
Jiang G, Wang G, Zhu Y, Cheng W, Xu G, Zhao D, Yu H. A scalable bacterial cellulose ionogel for multisensory electronic skin. Research, 2022, 2022: 9814767

DOI

12
Zhang Q, Chen C, Chen W, Pastel G, Guo X, Liu S, Wang Q, Liu Y, Li J, Yu H, Hu L. Nanocellulose-enabled, all-nanofiber, high-performance supercapacitor. ACS Applied Materials & Interfaces, 2019, 11(6): 5919–5927

DOI

13
Chen C, Zhang Y, Li Y, Dai J, Song J, Yao Y, Gong Y, Kierzewski I, Xie J, Hu L. All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy & Environmental Science, 2017, 10(2): 538–545

DOI

14
Bora A, Mohan K, Doley S, Dolui S K. Flexible asymmetric supercapacitor based on functionalized reduced graphene oxide aerogels with wide working potential window. ACS Applied Materials & Interfaces, 2018, 10(9): 7996–8009

DOI

15
Sahoo R, Pham D T, Lee T H, Luu T H T, Seok J, Lee Y H. Redox-driven route for widening voltage window in asymmetric supercapacitor. ACS Nano, 2018, 12(8): 8494–8505

DOI

16
Asl M S, Hadi R, Salehghadimi L, Tabrizi A G, Farhoudian S, Babapoor A, Pahlevani M. Flexible all-solid-state supercapacitors with high capacitance, long cycle life, and wide operational potential window: recent progress and future perspectives. Journal of Energy Storage, 2022, 50: 104223

DOI

17
MalekALuXShearingP RBrettD J LHeG. Strategic comparison of membrane-assisted and membrane-less water electrolyzers and their potential application in direct seawater splitting (DSS). Green Energy & Environment, 2022, 2468–0257

18
Liu Z, Zhao Z, Xu A, Li W, Qin Y. Facile preparation of graphene/polyaniline composite hydrogel film by electrodeposition for binder-free all-solid-state supercapacitor. Journal of Alloys and Compounds, 2021, 875: 159931

DOI

19
Wang H, Yan T, Liu P, Chen G, Shi L, Zhang J, Zhong Q, Zhang D. In situ creating interconnected pores across 3D graphene architectures and their application as high performance electrodes for flow-through deionization capacitors. Journal of Materials Chemistry A, 2014, 2: 4739–4750

DOI

20
Wang F, Dong X, Wang K, Duan W, Gao M, Zhai Z, Zhu C, Wang W. Laser-induced nitrogen-doped hierarchically porous graphene for advanced electrochemical energy storage. Carbon, 2019, 150: 396–407

DOI

21
Dang H X, Barz D P J. Graphene electrode functionalization for high performance hybrid energy storage with vanadyl sulfate redox electrolytes. Journal of Power Sources, 2022, 517: 230712

DOI

22
Lei H, Tu J, Li S, Huang Z, Luo Y, Yu Z, Jiao S. Graphene-encapsulated selenium@polyaniline nanowires with three-dimensional hierarchical architecture for high-capacity aluminum-selenium batteries. Journal of Materials Chemistry A, 2022, 10(28): 15146–15154

DOI

23
Lin D, Li Y. Recent advances of aqueous rechargeable zinc-iodine batteries: challenges, solutions, and prospects. Advanced Materials, 2022, 34(23): 2108856

DOI

24
Wang Y, Liu H, Ji X, Wang Q, Tian Z, Liu S. Recent advances in lignosulfonate filled hydrogel for flexible wearable electronics: a mini review. International Journal of Biological Macromolecules, 2022, 212: 393–401

DOI

25
Kai D, Tan M J, Chee P L, Chua Y K, Yap Y L, Loh X J. Towards lignin-based functional materials in a sustainable world. Green Chemistry, 2016, 18(5): 1175–1200

DOI

26
Ajjan F N, Casado N, Rębiś T, Elfwing A, Solin N, Mecerreyes D, Inganäs O. Inganäs. High performance PEDOT/lignin biopolymer composites for electrochemical supercapacitors. Journal of Materials Chemistry A, 2016, 4(5): 1838–1847

DOI

27
Peng Z, Zou Y, Xu S, Zhong W, Yang W. High-performance biomass-based flexible solid-state supercapacitor constructed of pressure-sensitive lignin-based and cellulose hydrogels. ACS Applied Materials & Interfaces, 2018, 10(26): 22190–22200

DOI

28
Mondal S, Rana U, Malik S. Reduced graphene oxide/Fe3O4/polyaniline nanostructures as electrode materials for an all-solid-state hybrid supercapacitor. Journal of Physical Chemistry C, 2017, 121(14): 7573–7583

DOI

29
Joshi R, Adhikari A, Dey A, Lahiri I. Green reduction of graphene oxide as a substitute of acidic reducing agents for supercapacitor applications. Materials Science and Engineering B, 2023, 287: 116128

DOI

30
Liu R, Ding T, Deng P, Yan X, Xiong F, Chen J, Wu Z. Preparation of LCST regulable DES-lignin-g-PNVCL thermo-responsive polymer by ARGET-ATRP. International Journal of Biological Macromolecules, 2022, 194: 358–365

DOI

31
Li Z, Shi Q, Ma X, Li Y, Wen K, Qin L, Chen H, Huang W, Zhang F, Lin Y, Marks T J, Huang H. Efficient room temperature catalytic synthesis of alternating conjugated copolymers via C–S bond activation. Nature Communications, 2022, 13(1): 144

DOI

32
Li W, Lu H, Zhang N, Ma M. Enhancing the properties of conductive polymer hydrogels by freeze-thaw cycles for high-performance flexible supercapacitors. ACS Applied Materials & Interfaces, 2017, 9(23): 20142–20149

DOI

33
Li R, Lu Z, Cai Y, Jiang F, Tang C, Chen Z, Zheng J, Pi J, Zhang R, Liu J, Chen Z B, Yang Y, Shi J, Hong W, Xia H. Switching of charge transport pathways via delocalization changes in single-molecule metallacycles junctions. Journal of the American Chemical Society, 2017, 139(41): 14344–14347

DOI

34
Zou Y, Zhang Z, Zhong W, Yang W. Hydrothermal direct synthesis of polyaniline, graphene/polyaniline and N-doped graphene/polyaniline hydrogels for high performance flexible supercapacitors. Journal of Materials Chemistry A, 2018, 6(19): 9245–9256

DOI

35
Kotal M, Kim H, Roy S, Oh I K. Sulfur and nitrogen co-doped holey graphene aerogel for structurally resilient solid-state supercapacitors under high compressions. Journal of Materials Chemistry A, 2017, 5(33): 17253–17266

DOI

36
Shi J L, Du W C, Yin Y X, Guo Y G, Wan L J. Hydrothermal reduction of three-dimensional graphene oxide for binder-free flexible supercapacitors. Journal of Materials Chemistry A, 2014, 2(28): 10830–10834

DOI

37
Chang L, Peng Z, Zhang T, Yu C, Zhong W. Nacre-inspired composite films with high mechanical strength constructed from MXenes and wood-inspired hydrothermal cellulose-based nanofibers for high performance flexible supercapacitors. Nanoscale, 2021, 13(5): 3079–3091

DOI

38
Yang Y, Zhu T, Shen L, Liu Y, Zhang D, Zheng B, Gong K, Zheng J, Gong X. Recent progress in the all-solid-state flexible supercapacitors. SmartMat, 2022, 3(3): 1103

DOI

39
Xu C, Jiang W Y, Guo L, Shen M, Li B, Wang J Q. High supercapacitance performance of nitrogen-doped Ti3C2Tx prepared by molten salt thermal treatment. Electrochimica Acta, 2022, 403: 139528

DOI

40
Augustyn V, Come J, Lowe M A, Kim J W, Taberna P L, Tolbert S H, Abruña H D, Simon P, Dunn B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nature Materials, 2013, 12(6): 518–522

DOI

41
Kim S K, Kim Y K, Lee H, Lee S B, Park H S. Superior pseudocapacitive behavior of confined lignin nanocrystals for renewable energy-storage materials. ChemSusChem, 2014, 7(4): 1196–1196

DOI

42
Dai L, Ma M, Xu J, Si C, Wang X, Liu Z, Ni Y. All-lignin-based hydrogel with fast pH-stimuli responsiveness for mechanical switching and actuation. Chemistry of Materials, 2020, 32(10): 4324–4330

DOI

43
Jin K, Zhang W, Wang Y, Guo X, Chen Z, Li L, Zhang Y, Wang Z, Chen J, Sun L, Zhang T. In-situ hybridization of polyaniline nanofibers on functionalized reduced graphene oxide films for high-performance supercapacitor. Electrochimica Acta, 2018, 285: 221–229

DOI

44
Zhu L, Hao C, Wang X, Guo Y. Fluffy Cotton-Like GO/Zn–Co–Ni Layered Double Hydroxides Form from a Sacrificed Template GO/ZIF-8 for High Performance Asymmetric Supercapacitors. ACS Sustainable Chemistry & Engineering, 2020, 8(31): 11618–11629

DOI

45
Jha S, Mehta S, Chen Y, Ma L, Renner P, Parkinson D Y, Liang H. Correction to “design and synthesis of lignin-based flexible supercapacitors”. ACS Sustainable Chemistry & Engineering, 2020, 8(25): 9597–9598

DOI

46
Choi B G, Yang M, Hong W H, Choi J W, Huh Y S. 3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano, 2012, 6(5): 4020–4028

DOI

47
Liu N, Su Y, Wang Z, Wang Z, Xia J, Chen Y, Zhao Z, Li Q, Geng F. Electrostatic-interaction-assisted construction of 3D networks of manganese dioxide nanosheets for flexible high-performance solid-state asymmetric supercapacitors. ACS Nano, 2017, 11(8): 7879–7888

DOI

Outlines

/