REVIEW ARTICLE

Insights into carbon-based materials for catalytic dehydrogenation of low-carbon alkanes and ethylbenzene

  • Sijia Xing 1 ,
  • Sixiang Zhai 1 ,
  • Lei Chen 1 ,
  • Huabin Yang 1,2 ,
  • Zhong-Yong Yuan , 1,2
Expand
  • 1. School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China
  • 2. Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
zyyuan@nankai.edu.cn

Received date: 18 Feb 2023

Accepted date: 29 Mar 2023

Published date: 15 Nov 2023

Copyright

2023 Higher Education Press

Abstract

Direct dehydrogenation with high selectivity and oxidative dehydrogenation with low thermal limit has been regarded as promising methods to solve the increasing demands of light olefins and styrene. Metal-based catalysts have shown remarkable performance for these reactions, such as Pt, CrOx, Co, ZrOx, Zn and V. Compared with metal-based catalysts, carbon materials with stable structure, rich pore texture and large surface area, are ideal platforms as the catalysts and the supports for dehydrogenation reactions. In this review, carbon materials applied in direct dehydrogenation and oxidative dehydrogenation reactions including ordered mesoporous carbon, carbon nanodiamond, carbon nanotubes, graphene and activated carbon, are summarized. A general introduction to the dehydrogenation mechanism and active sites of carbon catalysts is briefly presented to provide a deep understanding of the carbon-based materials used in dehydrogenation reactions. The unique structure of each carbon material is presented, and the diversified synthesis methods of carbon catalysts are clarified. The approaches for promoting the catalytic activity of carbon catalysts are elaborated with respect to preparation method optimization, suitable structure design and heteroatom doping. The regeneration mechanism of carbon-based catalysts is discussed for providing guidance on catalytic performance enhancement. In addition, carbon materials as the support of metal-based catalysts contribute to exploiting the excellent catalytic performance of catalysts due to superior structural characteristics. In the end, the challenges in current research and strategies for future improvements are proposed.

Cite this article

Sijia Xing , Sixiang Zhai , Lei Chen , Huabin Yang , Zhong-Yong Yuan . Insights into carbon-based materials for catalytic dehydrogenation of low-carbon alkanes and ethylbenzene[J]. Frontiers of Chemical Science and Engineering, 2023 , 17(11) : 1623 -1648 . DOI: 10.1007/s11705-023-2328-6

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 22179065, 22111530112).
1
Sheng J, Yan B, Lu W D, Qiu B, Gao X Q, Wang D, Lu A H. Oxidative dehydrogenation of light alkanes to olefins on metal-free catalysts. Chemical Society Reviews, 2021, 50(2): 1438–1468

DOI

2
Sattler J J, Ruiz-Martinez J, Santillan-Jimenez E, Weckhuysen B M. Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chemical Reviews, 2014, 114(20): 10613–10653

DOI

3
Zhong J W, Han J F, Wei Y X, Tian P, Guo X W, Song C S, Liu Z M. Recent advances of the nano-hierarchical SAPO-34 in the methanol-to-olefin (MTO) reaction and other applications. Catalysis Science & Technology, 2017, 7(21): 4905–4923

DOI

4
Yarulina I, De Wispelaere K, Bailleul S, Goetze J, Radersma M, Abou-Hamad E, Vollmer I, Goesten M, Mezari B, Hensen E J M, Martínez-Espín J S, Morten M, Mitchell S, Perez-Ramirez J, Olsbye U, Weckhuysen B M, Van Speybroeck V, Kapteijn F, Gascon J. Publisher correction: structure-performance descriptors and the role of Lewis acidity in the methanol-to-propylene process. Nature Chemistry, 2018, 10(8): 897

DOI

5
Munnik P, de Jongh P E, de Jong K P. Control and impact of the nanoscale distribution of supported cobalt particles used in Fischer-Tropsch catalysis. Journal of the American Chemical Society, 2014, 136(20): 7333–7340

DOI

6
Weststrate C J, van de Loosdrecht J, Niemantsverdriet J W. Spectroscopic insights into cobalt-catalyzed Fischer–Tropsch synthesis: a review of the carbon monoxide interaction with single crystalline surfaces of cobalt. Journal of Catalysis, 2016, 342: 1–16

DOI

7
Chen C, Hu Z P, Ren J T, Zhang S, Wang Z, Yuan Z Y. ZnO supported on high-silica HZSM-5 as efficient catalysts for direct dehydrogenation of propane to propylene. Molecular Catalysis, 2019, 476: 110508

DOI

8
Chen C, Sun M L, Hu Z P, Ren J T, Zhang S M, Yuan Z Y. New insight into the enhanced catalytic performance of ZnPt/HZSM-5 catalysts for direct dehydrogenation of propane to propylene. Catalysis Science & Technology, 2019, 9(8): 1979–1988

DOI

9
Hu Z P, Wang Y, Yang D, Yuan Z Y. CrOx supported on high-silica HZSM-5 for propane dehydrogenation. Journal of Energy Chemistry, 2020, 47: 225–233

DOI

10
Wang Y S, Hu Z P, Tian W W, Gao L J, Wang Z, Yuan Z Y. Framework-confined Sn in Si-beta stabilizing ultra-small Pt nanoclusters as direct propane dehydrogenation catalysts with high selectivity and stability. Catalysis Science & Technology, 2019, 9(24): 6993–7002

DOI

11
Wang Y, Suo Y, Lv X, Wang Z, Yuan Z Y. Enhanced performances of bimetallic Ga-Pt nanoclusters confined within silicalite-1 zeolite in propane dehydrogenation. Journal of Colloid and Interface Science, 2021, 593: 304–314

DOI

12
Wang Y, Suo Y, Ren J T, Wang Z, Yuan Z Y. Spatially isolated cobalt oxide sites derived from MOFs for direct propane dehydrogenation. Journal of Colloid and Interface Science, 2021, 594: 113–121

DOI

13
Guo F, Yang P, Pan Z, Cao X N, Xie Z, Wang X. Carbon-doped BN nanosheets for the oxidative dehydrogenation of ethylbenzene. Angewandte Chemie International Edition, 2017, 56(28): 8231–8235

DOI

14
Yao R, Herrera J E, Chen L H, Chin Y H C. Generalized mechanistic framework for ethane dehydrogenation and oxidative dehydrogenation on molybdenum oxide catalysts. ACS Catalysis, 2020, 10(12): 6952–6968

DOI

15
Ye L, Duan X, Xie K. Electrochemical oxidative dehydrogenation of ethane to ethylene in a solid oxide electrolyzer. Angewandte Chemie International Edition, 2021, 60(40): 21746–21750

DOI

16
Bikbaeva V, Perez O, Nesterenko N, Valtchev V. Ethane oxidative dehydrogenation with CO2 on thiogallates. Inorganic Chemistry Frontiers, 2022, 9(20): 5181–5187

DOI

17
LiBretto N J, Yang C, Ren Y, Zhang G, Miller J T. Identification of surface structures in Pt3Cr intermetallic nanocatalysts. Chemistry of Materials, 2019, 31(5): 1597–1609

DOI

18
Zhang Y, Zhou Y, Huang L, Zhou S, Sheng X, Wang Q, Zhang C. Structure and catalytic properties of the Zn-modified ZSM-5 supported platinum catalyst for propane dehydrogenation. Chemical Engineering Journal, 2015, 270: 352–361

DOI

19
Li X, Wang P, Wang H, Li C. Effects of the state of Co species in Co/Al2O3 catalysts on the catalytic performance of propane dehydrogenation. Applied Surface Science, 2018, 441: 688–693

DOI

20
Schreiber M W, Plaisance C P, Baumgartl M, Reuter K, Jentys A, Bermejo-Deval R, Lercher J A. Lewis-bronsted acid pairs in Ga/H-ZSM-5 to catalyze dehydrogenation of light alkanes. Journal of the American Chemical Society, 2018, 140(14): 4849–4859

DOI

21
Han S L, Otroshchenko T, Zhao D, Lund H, Rockstroh N, Vuong T H, Rabeah J, Rodemerck U, Linke D, Gao M L, Jiang G, Kondratenko E V. The effect of ZrO2 crystallinity in CrZrOx/SiO2 on non-oxidative propane dehydrogenation. Applied Catalysis A: General, 2020, 590: 117350

DOI

22
Jeon N, Oh J, Tayal A, Jeong B, Seo O, Kim S, Chung I, Yun Y. Effects of heat-treatment atmosphere and temperature on cobalt species in Co/Al2O3 catalyst for propane dehydrogenation. Journal of Catalysis, 2021, 404: 1007–1016

DOI

23
Yuan Y, Lobo R F, Xu B. Ga2O22+ stabilized by paired framework Al atoms in MFI: a highly reactive site in nonoxidative propane dehydrogenation. ACS Catalysis, 2022, 12(3): 1775–1783

DOI

24
Hu Z P, Qin G, Han J, Zhang W, Wang N, Zheng Y, Jiang Q, Ji T, Yuan Z Y, Xiao J, Wei Y, Liu Z. Atomic insight into the local structure and microenvironment of isolated Co-motifs in MFI zeolite frameworks for propane dehydrogenation. Journal of the American Chemical Society, 2022, 144(27): 12127–12137

DOI

25
Najari S, Saeidi S, Concepcion P, Dionysiou D D, Bhargava S K, Lee A F, Wilson K. Oxidative dehydrogenation of ethane: catalytic and mechanistic aspects and future trends. Chemical Society Reviews, 2021, 50(7): 4564–4605

DOI

26
Atanga M A, Rezaei F, Jawad A, Fitch M, Rownaghi A A. Oxidative dehydrogenation of propane to propylene with carbon dioxide. Applied Catalysis B: Environmental, 2018, 220: 429–445

DOI

27
Djinović P, Zavašnik J, Teržan J, Jerman I. Role of CO2 during oxidative dehydrogenation of propane over bulk and activated-carbon supported cerium and vanadium based catalysts. Catalysis Letters, 2021, 151(10): 2816–2832

DOI

28
Gambo Y, Adamu S, Abdulrasheed A A, Lucky R A, Ba-Shammakh M S, Hossain M M. Catalyst design and tuning for oxidative dehydrogenation of propane—a review. Applied Catalysis A: General, 2021, 609: 117914

DOI

29
Su D S, Perathoner S, Centi G. Nanocarbons for the development of advanced catalysts. Chemical Reviews, 2013, 113(8): 5782–5816

DOI

30
Li X, Yu J, Wageh S, Al-Ghamdi A A, Xie J. Graphene in photocatalysis: a review. Small, 2016, 12(48): 6640–6696

DOI

31
Hu C, Dai L. Doping of carbon materials for metal-free electrocatalysis. Advanced Materials, 2019, 31(7): 1804672

DOI

32
Li C, Wang G. Dehydrogenation of light alkanes to mono-olefins. Chemical Society Reviews, 2021, 50(7): 4359–4381

DOI

33
Watanabe R, Tsujioka M, Fukuhara C. Performance of non-stoichiometric perovskite catalyst (AxCrO3-δ, A: La, Pr, Nd) for dehydrogenation of propane under steam condition. Catalysis Letters, 2016, 146(12): 2458–2467

DOI

34
Dai Y, Gao X, Wang Q, Wan X, Zhou C, Yang Y. Recent progress in heterogeneous metal and metal oxide catalysts for direct dehydrogenation of ethane and propane. Chemical Society Reviews, 2021, 50(9): 5590–5630

DOI

35
James O O, Mandal S, Alele N, Chowdhury B, Maity S. Lower alkanes dehydrogenation: strategies and reaction routes to corresponding alkenes. Fuel Processing Technology, 2016, 149: 239–255

DOI

36
Iranshahi D, Salimi P, Pourmand Z, Saeidi S, Klemeš J J. Utilising a radial flow, spherical packed-bed reactor for auto thermal steam reforming of methane to achieve a high capacity of H2 production. Chemical Engineering and Processing, 2017, 120: 258–267

DOI

37
Nguyen T T, Aouine M, Millet J M M. Optimizing the efficiency of MoVTeNbO catalysts for ethane oxidative dehydrogenation to ethylene. Catalysis Communications, 2012, 21: 22–26

DOI

38
Rahman S T, Choi J R, Lee J H, Park S J. The role of CO2 as a mild oxidant in oxidation and dehydrogenation over catalysts: a review. Catalysts, 2020, 10(9): 1075

DOI

39
Chen D, Holmen A, Sui Z, Zhou X. Carbon mediated catalysis: a review on oxidative dehydrogenation. Chinese Journal of Catalysis, 2014, 35(6): 824–841

DOI

40
Qi W, Su D. Metal-free carbon catalysts for oxidative dehydrogenation reactions. ACS Catalysis, 2014, 4(9): 3212–3218

DOI

41
Zhao Z, Ge G, Li W, Guo X, Wang G. Modulating the microstructure and surface chemistry of carbocatalysts for oxidative and direct dehydrogenation: a review. Chinese Journal of Catalysis, 2016, 37(5): 644–670

DOI

42
Sun X, Han P, Li B, Mao S, Liu T, Ali S, Lian Z, Su D. Oxidative dehydrogenation reaction of short alkanes on nanostructured carbon catalysts: a computational account. Chemical Communications (Cambridge), 2018, 54(8): 864–875

DOI

43
Zhao T J, Sun W Z, Gu X Y, Rønning M, Chen D, Dai Y C, Yuan W K, Holmen A. Rational design of the carbon nanofiber catalysts for oxidative dehydrogenation of ethylbenzene. Applied Catalysis A, General, 2007, 323: 135–146

DOI

44
Zhang J, Liu X, Blume R, Zhang A, Schlögl R, Su D S. Surface-modified carbon nanotubes catalyze oxidative dehydrogenation of n-butane. Science, 2008, 322(5898): 73–77

DOI

45
Delgado J J, Chen X W, Frank B, Su D S, Schlögl R. Activation processes of highly ordered carbon nanofibers in the oxidative dehydrogenation of ethylbenzene. Catalysis Today, 2012, 186(1): 93–98

DOI

46
Niebrzydowska P, Janus R, Kuśtrowski P, Jarczewski S, Wach A, Silvestre-Albero A M, Rodríguez-Reinoso F. A simplified route to the synthesis of CMK-3 replica based on precipitation polycondensation of furfuryl alcohol in SBA-15 pore system. Carbon, 2013, 64: 252–261

DOI

47
Hu Z P, Yang D D, Wang Z, Yuan Z Y. State-of-the-art catalysts for direct dehydrogenation of propane to propylene. Chinese Journal of Catalysis, 2019, 40(9): 1233–1254

DOI

48
Huang R, Liu H Y, Zhang B S, Sun X Y, Liang C H, Su D S, Zong B N, Rong J F. Phosphate-modified carbon nanotubes in the oxidative dehydrogenation of isopentanes. ChemSusChem, 2014, 7(12): 3476–3482

DOI

49
Rao R, Yang M, Ling Q, Li C, Zhang Q, Yang H, Zhang A. A novel route of enhancing oxidative catalytic activity: hydroxylation of MWCNTs induced by sectional defects. Catalysis Science & Technology, 2014, 4(3): 665–671

DOI

50
Pelech I, Soares O S G P, Pereira M F R, Figueiredo J L. Oxidative dehydrogenation of isobutane on carbon xerogel catalysts. Catalysis Today, 2015, 249: 176–183

DOI

51
Qi W, Liu W, Zhang B, Gu X, Guo X, Su D. Oxidative dehydrierung an nanokohlenstoff: identifizierung und quantifizierung aktiver zentren durch chemische titration. Angewandte Chemie, 2013, 125(52): 14474–14478

DOI

52
Qi W, Liu W, Guo X, Schlögl R, Su D. Oxidative dehydrogenation on nanocarbon: intrinsic catalytic activity and structure-function relationships. Angewandte Chemie International Edition, 2015, 54(46): 13682–13685

DOI

53
Li B, Su D. The nucleophilicity of the oxygen functional groups on carbon materials: a DFT analysis. Chemistry, 2014, 20(26): 7890–7894

DOI

54
Mao S, Li B, Su D. The first principles studies on the reaction pathway of the oxidative dehydrogenation of ethane on the undoped and doped carbon catalyst. Journal of Materials Chemistry A, 2014, 2(15): 5287–5294

DOI

55
Wang R, Sun X, Zhang B, Sun X, Su D. Hybrid nanocarbon as a catalyst for direct dehydrogenation of propane: formation of an active and selective core–shell sp2/sp3 nanocomposite structure. Chemistry, 2014, 20(21): 6324–6331

DOI

56
Schwartz V, Fu W, Tsai Y T, Meyer H M III, Rondinone A J, Chen J, Wu Z, Overbury S H, Liang C. Oxygen-functionalized few-layer graphene sheets as active catalysts for oxidative dehydrogenation reactions. ChemSusChem, 2013, 6(5): 840–846

DOI

57
Li Y, Zhang Z, Wang J, Ma C, Yang H, Hao Z. Direct dehydrogenation of isobutane to isobutene over carbon catalysts. Chinese Journal of Catalysis, 2015, 36(8): 1214–1222

DOI

58
Guo X, Qi W, Liu W, Yan P, Li F, Liang C, Su D. Oxidative dehydrogenation on nanocarbon: revealing the catalytic mechanism using model catalysts. ACS Catalysis, 2017, 7(2): 1424–1427

DOI

59
Zhang J, Su D S, Blume R, Schlögl R, Wang R, Yang X, Gajović A. Surface chemistry and catalytic reactivity of a nanodiamond in the steam-free dehydrogenation of ethylbenzene. Angewandte Chemie International Edition, 2010, 49(46): 8640–8644

DOI

60
Hu Z P, Chen C, Ren J T, Yuan Z Y. Direct dehydrogenation of propane to propylene on surface-oxidized multiwall carbon nanotubes. Applied Catalysis A: General, 2018, 559: 85–93

DOI

61
Rao R, Ling Q, Dong H, Dong X, Li N, Zhang A. Effect of surface modification on multi-walled carbon nanotubes for catalytic oxidative dehydrogenation using CO2 as oxidant. Chemical Engineering Journal, 2016, 301: 115–122

DOI

62
Shi W, Peng Y, Steiner S A III, Li J, Plata D L. Carbon dioxide promotes dehydrogenation in the equimolar C2H2-CO2 reaction to synthesize carbon nanotubes. Small, 2018, 14(11): 1703482

DOI

63
Parent L R, Bakalis E, Proetto M, Li Y, Park C, Zerbetto F, Gianneschi N C. Tackling the challenges of dynamic experiments using liquid-cell transmission electron microscopy. Accounts of Chemical Research, 2018, 51(1): 3–11

DOI

64
Zheng Y, Huang X, Chen J, Wu K, Wang J, Zhang X. A review of conductive carbon materials for 3D printing: materials, technologies, properties, and applications. Materials, 2021, 14(14): 3911

DOI

65
Knyazheva O A, Baklanova O N, Lavrenov A V. Catalytic dehydrogenation on carbon. Solid Fuel Chemistry, 2020, 54(6): 345–353

DOI

66
Ma T Y, Liu L, Yuan Z Y. Direct synthesis of ordered mesoporous carbons. Chemical Society Reviews, 2013, 42(9): 3977–4003

DOI

67
Liu L, Zhu Y P, Su M, Yuan Z Y. Metal-free carbonaceous materials as promising heterogeneous catalysts. ChemCatChem, 2015, 7(18): 2765–2787

DOI

68
Liu L, Deng Q F, Agula B, Zhao X, Ren T Z, Yuan Z Y. Ordered mesoporous carbon catalyst for dehydrogenation of propane to propylene. Chemical Communications, 2011, 47(29): 8334–8336

DOI

69
Hu Z P, Ren J T, Yang D, Wang Z, Yuan Z Y. Mesoporous carbons as metal-free catalysts for propane dehydrogenation: effect of the pore structure and surface property. Chinese Journal of Catalysis, 2019, 40(9): 1385–1394

DOI

70
Liu L, Deng Q F, Agula B, Ren T Z, Liu Y P, Zhaorigetu B, Yuan Z Y. Synthesis of ordered mesoporous carbon materials and their catalytic performance in dehydrogenation of propane to propylene. Catalysis Today, 2012, 186(1): 35–41

DOI

71
Liu L, Deng Q F, Liu Y P, Ren T Z, Yuan Z Y. HNO3-activated mesoporous carbon catalyst for direct dehydrogenation of propane to propylene. Catalysis Communications, 2011, 16(1): 81–85

DOI

72
Zhang W, Zhao G, Muschin T, Bao A. Nitrogen‐doped mesoporous carbon materials for oxidative dehydrogenation of propane. Surface and Interface Analysis, 2020, 53(1): 100–107

DOI

73
Szewczyk I, Rokicińska A, Michalik M, Chen J, Jaworski A, Aleksis R, Pell A J, Hedin N, Slabon A, Kuśtrowski P. Electrochemical denitrification and oxidative dehydrogenation of ethylbenzene over N-doped mesoporous carbon: atomic level understanding of catalytic activity by 15N NMR. Chemistry of Materials, 2020, 32(17): 7263–7273

DOI

74
Li L, Zhu W, Liu Y, Shi L, Liu H, Ni Y, Liu S, Zhou H, Liu Z. Phosphorous-modified ordered mesoporous carbon for catalytic dehydrogenation of propane to propylene. RSC Advances, 2015, 5(69): 56304–56310

DOI

75
SongYLiuGYuanZ Y. N-, P-, and B-doped mesoporous carbons for direct dehydrogenation of propane. RSC Advances, 2016, 6(97): 94636–94642

76
Schwartz V, Xie H, Meyer H M III, Overbury S H, Liang C. Oxidative dehydrogenation of isobutane on phosphorous-modified graphitic mesoporous carbon. Carbon, 2011, 49(2): 659–668

DOI

77
Yin C, He J, Liu S. Carbon nanotubes derived from industrial resin for the oxidative dehydrogenation of ethylbenzene. ChemistrySelect, 2020, 5(22): 6674–6677

DOI

78
Bychko I, Abakumov A, Nikolenko A, Selyshchev O V, Zahn D R T, Khavrus V O, Tang J, Strizhak P. Ethane direct dehydrogenation over carbon nanotubes and reduced graphene oxide. Chemistry Select, 2021, 6(34): 8981–8984

DOI

79
Li J, Yu P, Xie J, Liu J, Wang Z, Wu C, Rong J, Liu H, Su D. Improving the alkene selectivity of nanocarbon-catalyzed oxidative dehydrogenation of n-butane by refinement of oxygen species. ACS Catalysis, 2017, 7(10): 7305–7311

DOI

80
Yuan H, Sun Z, Liu H, Zhang B, Chen C, Wang H, Yang Z, Zhang J, Wei F, Su D S. Immobilizing carbon nanotubes on SiC foam as a monolith catalyst for oxidative dehydrogenation reactions. ChemCatChem, 2013, 5(7): 1713–1717

DOI

81
Zhang Y, Wang J, Rong J, Diao J, Zhang J, Shi C, Liu H, Su D. A facile and efficient method to fabricate highly selective nanocarbon catalysts for oxidative dehydrogenation. ChemSusChem, 2017, 10(2): 353–358

DOI

82
Zhang Y, Huang R, Feng Z, Liu H, Shi C, Rong J, Zong B, Su D. Phosphate modified carbon nanotubes for oxidative dehydrogenation of n-butane. Journal of Energy Chemistry, 2016, 25(3): 349–353

DOI

83
Frank B, Zhang J, Blume R, Schlogl R, Su D S. Heteroatoms increase the selectivity in oxidative dehydrogenation reactions on nanocarbons. Angewandte Chemie International Edition, 2009, 48(37): 6913–6917

DOI

84
Liu W, Wang C, Herold F, Etzold B J M, Su D, Qi W. Oxidative dehydrogenation on nanocarbon: effect of heteroatom doping. Applied Catalysis B: Environmental, 2019, 258: 117982

DOI

85
Zhao Z, Dai Y, Ge G, Guo X, Wang G. Increased active sites and their accessibility of a N-doped carbon nanotube carbocatalyst with remarkably enhanced catalytic performance in direct dehydrogenation of ethylbenzene. RSC Advances, 2015, 5(65): 53095–53099

DOI

86
Zhao Z, Dai Y, Ge G, Wang G. Explosive decomposition of a melamine-cyanuric acid supramolecular assembly for fabricating defect-rich nitrogen-doped carbon nanotubes with significantly promoted catalysis. Chemistry, 2015, 21(22): 8004–8009

DOI

87
Wang Q, Wang H, Zhang Y, Wen G, Liu H, Su D. Syntheses and catalytic applications of the high-N-content, the cup-stacking and the macroscopic nitrogen doped carbon nanotubes. Journal of Materials Science and Technology, 2017, 33(8): 843–849

DOI

88
Cao T, Dai X, Liu W, Fu Y, Qi W. Carbon nanotubes modified by multi-heteroatoms polymer for oxidative dehydrogenation of propane: improvement of propene selectivity and oxidation resistance. Carbon, 2022, 189: 199–209

DOI

89
Li J, Yu P, Xie J, Zhang Y, Liu H, Su D, Rong J. Grignard reagent reduced nanocarbon material in oxidative dehydrogenation of n-butane. Journal of Catalysis, 2018, 360: 51–56

DOI

90
Hong G, Diao S, Antaris A L, Dai H. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chemical Reviews, 2015, 115(19): 10816–10906

DOI

91
Kumar S, Nehra M, Kedia D, Dilbaghi N, Tankeshwar K, Kim K H. Nanodiamonds: emerging face of future nanotechnology. Carbon, 2019, 143: 678–699

DOI

92
Shvidchenko A V, Eidelman E D, Vul A Y, Kuznetsov N M, Stolyarova D Y, Belousov S I, Chvalun S N. Colloids of detonation nanodiamond particles for advanced applications. Advances in Colloid and Interface Science, 2019, 268: 64–81

DOI

93
Zhou Q, Ge G, Guo Z, Liu Y, Zhao Z. Poly(imidazolium-methylene)-assisted grinding strategy to prepare nanocarbon-embedded network monoliths for carbocatalysis. ACS Catalysis, 2020, 10(24): 14604–14614

DOI

94
Mochalin V N, Shenderova O, Ho D, Gogotsi Y. The properties and applications of nanodiamonds. Nature Nanotechnology, 2011, 7(1): 11–23

DOI

95
Wood C S, Stevens M M. Improving the image of nanoparticles. Nature, 2016, 539(7630): 505–506

DOI

96
Ba H, Podila S, Liu Y, Mu X, Nhut J M, Papaefthimiou V, Zafeiratos S, Granger P, Pham-Huu C. Nanodiamond decorated few-layer graphene composite as an efficient metal-free dehydrogenation catalyst for styrene production. Catalysis Today, 2015, 249: 167–175

DOI

97
Diao J, Liu H, Feng Z, Zhang Y, Chen T, Miao C, Yang W, Su D S. Highly dispersed nanodiamonds supported on few-layer graphene as robust metal-free catalysts for ethylbenzene dehydrogenation reaction. Catalysis Science & Technology, 2015, 5(11): 4950–4953

DOI

98
Thanh T T, Ba H, Truong-Phuoc L, Nhut J M, Ersen O, Begin D, Janowska I, Nguyen D L, Granger P, Pham-Huu C. A few-layer graphene-graphene oxide composite containing nanodiamonds as metal-free catalysts. Journal of Materials Chemistry A, 2014, 2(29): 11349–11357

DOI

99
Roldán L, Benito A M, García-Bordejé E. Self-assembled graphene aerogel and nanodiamond hybrids as high performance catalysts in oxidative propane dehydrogenation. Journal of Materials Chemistry A, 2015, 3(48): 24379–24388

DOI

100
Ba H, Liu Y, Mu X, Doh W H, Nhut J M, Granger P, Pham-Huu C. Macroscopic nanodiamonds/β-SiC composite as metal-free catalysts for steam-free dehydrogenation of ethylbenzene to styrene. Applied Catalysis A: General, 2015, 499: 217–226

DOI

101
GeGWeiXGuoHZhaoZ. Assembly‐in‐foam approach to construct nanodiamond/carbon nanotube hybrid monolithic carbocatalysts for direct dehydrogenation of ethylbenzene to styrene. European Journal of Inorganic Chemistry, 2022, 2022(26).

102
Chen C, Hu Z P, Zhang S M, Yuan Z Y. Advance in the catalysts of direct dehydrogenation of propane to propylene. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(3): 639–652

103
Liu X, Frank B, Zhang W, Cotter T P, Schlogl R, Su D S. Carbon-catalyzed oxidative dehydrogenation of n-butane: selective site formation during sp3-to-sp2 lattice rearrangement. Angewandte Chemie International Edition, 2011, 50(14): 3318–3322

DOI

104
Sun X, Ding Y, Zhang B, Huang R, Chen D, Su D S. Insight into the enhanced selectivity of phosphate-modified annealed nanodiamond for oxidative dehydrogenation reactions. ACS Catalysis, 2015, 5(4): 2436–2444

DOI

105
Sun X, Ding Y, Zhang B, Huang R, Su D S. New insights into the oxidative dehydrogenation of propane on borate-modified nanodiamond. Chemical Communications, 2015, 51(44): 9145–9148

DOI

106
Liu Y, Ba H, Luo J, Wu K H, Nhut J M, Su D S, Pham-Huu C. Structure-performance relationship of nanodiamonds@nitrogen-doped mesoporous carbon in the direct dehydrogenation of ethylbenzene. Catalysis Today, 2018, 301: 38–47

DOI

107
Zhou Q, Guo X, Song C, Zhao Z. Defect-enriched N,O-codoped nanodiamond/carbon nanotube catalysts for styrene production via dehydrogenation of ethylbenzene. ACS Applied Nano Materials, 2019, 2(4): 2152–2159

DOI

108
Ge G, Wei X, Guo H, Zhao Z. An efficient nanodiamond-based monolithic foam catalyst prepared by a facile thermal impregnation strategy for direct dehydrogenation of ethylbenzene to styrene. Chinese Chemical Letters, 2023, 34(5): 107808

DOI

109
Ge G, Guo X, Song C, Zhao Z. A mutually isolated nanodiamond/porous carbon nitride nanosheet hybrid with enriched active sites for promoted catalysis in styrene production. Catalysis Science & Technology, 2020, 10(4): 1048–1055

DOI

110
Luo Z, Wan Q, Yu Z, Lin S, Xie Z, Wang X. Photo-fluorination of nanodiamonds catalyzing oxidative dehydrogenation reaction of ethylbenzene. Nature Communications, 2021, 12(1): 6542

DOI

111
Zhao W, He D W, Wang Y S, Du X, Xin H. Synthesis and electrochemical properties of three-dimensional graphene/polyaniline composites for supercapacitor electrode materials. Chinese Physics B, 2015, 24(4): 047204

DOI

112
Gao Y, Ma D, Wang C, Guan J, Bao X. Reduced graphene oxide as a catalyst for hydrogenation of nitrobenzene at room temperature. Chemical Communications, 2011, 47(8): 2432–2434

DOI

113
Gao Y, Hu G, Zhong J, Shi Z, Zhu Y, Su D S, Wang J, Bao X, Ma D. Nitrogen-doped sp2-hybridized carbon as a superior catalyst for selective oxidation. Angewandte Chemie International Edition, 2013, 52(7): 2109–2113

DOI

114
Eslek-Koyuncu D D. Microwave-assisted non-oxidative ethane dehydrogenation over different carbon materials. Diamond and Related Materials, 2020, 110: 108130

DOI

115
Tang S, Cao Z. Site-dependent catalytic activity of graphene oxides towards oxidative dehydrogenation of propane. Physical Chemistry Chemical Physics, 2012, 14(48): 16558–16565

DOI

116
Dathar G K, Tsai Y T, Gierszal K, Xu Y, Liang C, Rondinone A J, Overbury S H, Schwartz V. Identifying active functionalities on few-layered graphene catalysts for oxidative dehydrogenation of isobutane. ChemSusChem, 2014, 7(2): 483–491

DOI

117
Brooks A, Jenkins S J, Wrabetz S, McGregor J, Sacchi M. The dehydrogenation of butane on metal-free graphene. Journal of Colloid and Interface Science, 2022, 619: 377–387

DOI

118
Chen C, Sun M L, Hu Z P, Liu Y P, Zhang S M, Yuan Z Y. Nature of active phase of VOx catalysts supported on SiBeta for direct dehydrogenation of propane to propylene. Chinese Journal of Catalysis, 2020, 41(2): 276–285

DOI

119
Heidarinejad Z, Dehghani M H, Heidari M, Javedan G, Ali I, Sillanpää M. Methods for preparation and activation of activated carbon: a review. Environmental Chemistry Letters, 2020, 18(2): 393–415

DOI

120
Ao W, Fu J, Mao X, Kang Q, Ran C, Liu Y, Zhang H, Gao Z, Li J, Liu G, Dai J. Microwave assisted preparation of activated carbon from biomass: a review. Renewable & Sustainable Energy Reviews, 2018, 92: 958–979

DOI

121
MacDermid-Watts K, Pradhan R, Dutta A. Catalytic hydrothermal carbonization treatment of biomass for enhanced activated carbon: a review. Waste and Biomass Valorization, 2020, 12(5): 2171–2186

DOI

122
Pietrzak R, Bandosz T J. Activated carbons modified with sewage sludge derived phase and their application in the process of NO2 removal. Carbon, 2007, 45(13): 2537–2546

DOI

123
Karatepe N, Orbak İ, Yavuz R, Özyuğuran A. Sulfur dioxide adsorption by activated carbons having different textural and chemical properties. Fuel, 2008, 87(15–16): 3207–3215

DOI

124
Mudoga H L, Yucel H, Kincal N S. Decolorization of sugar syrups using commercial and sugar beet pulp based activated carbons. Bioresource Technology, 2008, 99(9): 3528–3533

DOI

125
Cui J, Zhang L. Metallurgical recovery of metals from electronic waste: a review. Journal of Hazardous Materials, 2008, 158(2–3): 228–256

DOI

126
Tsyntsarski B, Stoycheva I, Tsoncheva T, Genova I, Dimitrov M, Petrova B, Paneva D, Cherkezova-Zheleva Z, Budinova T, Kolev H, Gomis-Berenguer A, Ania C O, Mitov I, Petrov N. Activated carbons from waste biomass and low rank coals as catalyst supports for hydrogen production by methanol decomposition. Fuel Processing Technology, 2015, 137: 139–147

DOI

127
Matos I, Bernardo M, Fonseca I. Porous carbon: a versatile material for catalysis. Catalysis Today, 2017, 285: 194–203

DOI

128
Ma S, Li H, Zhang G, Iqbal T, Li K, Lu Q. Catalytic fast pyrolysis of walnut shell for alkylphenols production with nitrogen-doped activated carbon catalyst. Frontiers of Environmental Science & Engineering, 2020, 15(2): 25

DOI

129
Köse K Ö, Aydınol M K. Development of activated carbon/bimetallic transition metal phosphide composite materials for electrochemical capacitors and oxygen evolution reaction catalysis. International Journal of Energy Research, 2022, 46(15): 22078–22088

DOI

130
Hu Z P, Zhang L F, Wang Z, Yuan Z Y. Bean dregs-derived hierarchical porous carbons as metal-free catalysts for efficient dehydrogenation of propane to propylene. Journal of Chemical Technology and Biotechnology, 2018, 93(12): 3410–3417

DOI

131
Cheng Z, Wang Y, Jin D, Liu J, Wang W, Gu Y, Ni W, Feng Z, Wu M. Petroleum pitch-derived porous carbon as a metal-free catalyst for direct propane dehydrogenation to propylene. Catalysis Today, 2023, 410: 164–174

DOI

132
Hu Z P, Zhao H, Chen C, Yuan Z Y. Castanea mollissima shell-derived porous carbons as metal-free catalysts for highly efficient dehydrogenation of propane to propylene. Catalysis Today, 2018, 316: 214–222

DOI

133
Martin-Sanchez N, Soares O S G P, Pereira M F R, Sanchez-Montero M J, Figueiredo J L, Salvador F. Oxidative dehydrogenation of isobutane catalyzed by an activated carbon fiber cloth exposed to supercritical fluids. Applied Catalysis A: General, 2015, 502: 71–77

DOI

134
Büchele S, Zichittella G, Kanatakis S, Mitchell S, Pérez Ramírez J. Impact of heteroatom speciation on the activity and stability of carbon-based catalysts for propane dehydrogenation. ChemCatChem, 2021, 13(11): 2599–2608

DOI

135
de Jesús Díaz Velásquez J, Suárez L M C, Figueiredo J L. Oxidative dehydrogenation of isobutane over activated carbon catalysts. Applied Catalysis A: General, 2006, 311: 51–57

DOI

136
Zhang Y, Diao J, Rong J, Zhang J, Xie J, Huang F, Jia Z, Liu H, Su D S. An efficient metal-free catalyst for oxidative dehydrogenation reaction: activated carbon decorated with few-layer graphene. ChemSusChem, 2018, 11(3): 536–541

DOI

137
Ling Q, Wu R, Wang Z H, Liang H W, Lei Z, Zhao Z G, Ke Q P, Liu X C, Cui P. Promotion role of B doping in N,B co-doped humic acids-based porous carbon for enhancing catalytic performance of oxidative dehydrogenation of propane using CO2. Reaction Kinetics, Mechanisms and Catalysis, 2022, 135(4): 1785–1802

DOI

138
Delgado J, Su D, Rebmann G, Keller N, Gajovic A, Schlogl R. Immobilized carbon nanofibers as industrial catalyst for ODH reactions. Journal of Catalysis, 2006, 244(1): 126–129

DOI

139
Klepel O, Utgenannt S, Vormelchert C, König M, Meißner A, Hansen F, Bölte J H, Sieber T, Heinemann R, Bron M, Rokicińska A, Jarczewski S, Kuśtrowski P. Redox catalysts based on amorphous porous carbons. Microporous and Mesoporous Materials, 2021, 323: 111257

DOI

140
Cao X, Wu X, Liu Y, Geng H, Yu S, Liu S. Boron and nitrogen co-doped porous carbon nanospheres for oxidative dehydrogenation of ethane to ethylene. Carbon, 2022, 197: 120–128

DOI

141
Ba H, Truong Phuoc L, Liu Y, Duong Viet C, Nhut J M, Nguyen Dinh L, Granger P, Pham Huu C. Hierarchical carbon nanofibers/graphene composite containing nanodiamonds for direct dehydrogenation of ethylbenzene. Carbon, 2016, 96: 1060–1069

DOI

142
Liu Y, Luo J, Helleu C, Behr M, Ba H, Romero T, Hébraud A, Schlatter G, Ersen O, Su D S, Pham-Huu C. Hierarchical porous carbon fibers/carbon nanofibers monolith from electrospinning/CVD processes as a high effective surface area support platform. Journal of Materials Chemistry A, 2017, 5(5): 2151–2162

DOI

143
Dai X, Li F, Zhang X, Cao T, Lu X, Qi W. Oxidative dehydrogenation on nanocarbon: polydopamine hollow nanospheres as novel highly efficient catalysts. FlatChem, 2021, 25: 100220

DOI

144
Wang J, Wang L, Diao J, Xie X, Lin G, Jia Q, Liu H, Sui G. Fabrication of three dimensional SiC@C hybrid for efficient direct dehydrogenation of ethylbenzene to styrene. Journal of Materials Science and Technology, 2022, 103: 209–214

DOI

145
Janus P, Janus R, Dudek B, Drozdek M, Silvestre-Albero A, Rodríguez-Reinoso F, Kuśtrowski P. On mechanism of formation of SBA-15/furfuryl alcohol-derived mesoporous carbon replicas and its relationship with catalytic activity in oxidative dehydrogenation of ethylbenzene. Microporous and Mesoporous Materials, 2020, 299: 110118

DOI

146
Frank B, Morassutto M, Schomäcker R, Schlögl R, Su D S. Oxidative dehydrogenation of ethane over multiwalled carbon nanotubes. ChemCatChem, 2010, 2(6): 644–648

DOI

147
Wang Z, Yang B, Wang Y, Zhao Y, Cao X M, Hu P. Identifying the trend of reactivity for sp2 materials: an electron delocalization model from first principles calculations. Physical Chemistry Chemical Physics, 2013, 15(24): 9498–9502

DOI

148
Pham H N, Sattler J J, Weckhuysen B M, Datye A K. Role of Sn in the regeneration of Pt/γ-Al2O3 light alkane dehydrogenation catalysts. ACS Catalysis, 2016, 6(4): 2257–2264

DOI

149
Liu L, Lopez Haro M, Lopes C W, Rojas Buzo S, Concepcion P, Manzorro R, Simonelli L, Sattler A, Serna P, Calvino J J, Corma A. Structural modulation and direct measurement of subnanometric bimetallic PtSn clusters confined in zeolites. Nature Catalysis, 2020, 3(8): 628–638

DOI

150
Zhu Y, Kong X, Yin J, You R, Zhang B, Zheng H, Wen X, Zhu Y, Li Y W. Covalent-bonding to irreducible SiO2 leads to high-loading and atomically dispersed metal catalysts. Journal of Catalysis, 2017, 353: 315–324

DOI

151
Ombaka L M, Ndungu P, Nyamori V O. Usage of carbon nanotubes as platinum and nickel catalyst support in dehydrogenation reactions. Catalysis Today, 2013, 217: 65–75

DOI

152
Chen X, Peng M, Xiao D, Liu H, Ma D. Fully exposed metal clusters: fabrication and application in alkane dehydrogenation. ACS Catalysis, 2022, 12(20): 12720–12743

DOI

153
Yin P, Luo X, Ma Y, Chu S Q, Chen S, Zheng X, Lu J, Wu X J, Liang H W. Sulfur stabilizing metal nanoclusters on carbon at high temperatures. Nature Communications, 2021, 12(1): 3135

DOI

154
Huang F, Deng Y, Chen Y, Cai X, Peng M, Jia Z, Xie J, Xiao D, Wen X, Wang N, Jiang Z, Liu H, Ma D. Anchoring Cu1 species over nanodiamond-graphene for semi-hydrogenation of acetylene. Nature Communications, 2019, 10(1): 4431

DOI

155
Yu X H, Yi J L, Zhang R L, Wang F Y, Liu L. Hollow carbon spheres and their noble metal-free hybrids in catalysis. Frontiers of Chemical Science and Engineering, 2021, 15(6): 1380–1407

DOI

156
Liu H, Wang J, Feng Z, Lin Y, Zhang L, Su D. Facile synthesis of Au nanoparticles embedded in an ultrathin hollow graphene nanoshell with robust catalytic performance. Small, 2015, 10(38): 5059–5064

DOI

157
Agula B, Sun M, Liang S, Bao Y, Jia M, Xu F, Yuan Z Y. Oxidative dehydrogenation of propane over nanostructured mesoporous VOx/CexZr1-xO2 catalysts. Advanced Materials Science and Technology, 2022, 4(2): 049385

DOI

158
Cao T, Dai X, Li F, Liu W, Bai Y, Fu Y, Qi W. Efficient non-precious metal catalyst for propane dehydrogenation: atomically dispersed cobalt-nitrogen compounds on carbon nanotubes. ChemCatChem, 2021, 13(13): 3067–3073

DOI

159
Cao T, Dai X, Fu Y, Qi W. Coordination polymer-derived non-precious metal catalyst for propane dehydrogenation: highly dispersed zinc anchored on N-doped carbon. Applied Surface Science, 2023, 607: 155055

DOI

160
Wang H, Chai S, Li P, Yang Y, Wang X. Non-oxidative Propane dehydrogenation over vanadium doped graphitic carbon nitride catalysts. Catalysis Letters, 2023, 153(4): 1120–1129

DOI

161
Ballarini A, Bocanegra S, Mendez J, de Miguel S, Zgolicz P. Application of novel catalysts supported on carbonaceous materials in the direct non-oxidative dehydrogenation of n-butane to olefins. Inorganic Chemistry Communications, 2022, 142: 109638

DOI

162
Chernyak S A, Kustov A L, Stolbov D N, Tedeeva M A, Isaikina O Y, Maslakov K I, Usol’tseva N V, Savilov S V. Chromium catalysts supported on carbon nanotubes and graphene nanoflakes for CO2-assisted oxidative dehydrogenation of propane. Applied Surface Science, 2022, 578: 152099

DOI

163
Kong N, Fan X, Liu F, Wang L, Lin H, Li Y, Lee S T. Single vanadium atoms anchored on graphitic carbon nitride as a high-performance catalyst for non-oxidative propane dehydrogenation. ACS Nano, 2020, 14(5): 5772–5779

DOI

164
Sun X Y, Xue J H, Ren Y, Li X Y, Zhou L J, Li B, Zhao Z. Catalytic property and stability of subnanometer Pt cluster on carbon nanotube in direct propane dehydrogenation. Chinese Journal of Chemistry, 2021, 39(3): 661–665

DOI

165
Obunai R, Tamura K, Ogino I, Mukai S R, Ueda W. Mo-V-O nanocrystals synthesized in the confined space of a mesoporous carbon. Applied Catalysis A: General, 2021, 624: 118294

DOI

166
Xu S L, Shen S C, Wei Z Y, Zhao S, Zuo L J, Chen M X, Wang L, Ding Y W, Chen P, Chu S Q, Lin Y, Qian K, Liang H W. A library of carbon-supported ultrasmall bimetallic nanoparticles. Nano Research, 2020, 13(10): 2735–2740

DOI

Outlines

/