REVIEW ARTICLE

Catalytic combustion of volatile organic compounds using perovskite oxides catalysts—a review

  • Shan Wang 1,2 ,
  • Ping Xiao 2 ,
  • Jie Yang 2 ,
  • Sónia A.C. Carabineiro 3 ,
  • Marek Wiśniewski 4 ,
  • Junjiang Zhu , 2 ,
  • Xinying Liu , 1,5
Expand
  • 1. Institute for the Development of Energy for African Sustainability, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1710, South Africa
  • 2. Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
  • 3. LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
  • 4. Physicochemistry of Carbon Materials Research Group, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
  • 5. Zhijiang College of Zhejiang University of Technology, Shaoxing 312030, China
jjzhu@wtu.edu.cn
liux@unisa.ac.za

Received date: 14 Jan 2023

Accepted date: 09 Mar 2023

Published date: 15 Nov 2023

Copyright

2023 Higher Education Press

Abstract

With the rapid development of industry, volatile organic compounds (VOCs) are gaining attention as a class of pollutants that need to be eliminated due to their adverse effects on the environment and human health. Catalytic combustion is the most popular technology used for the removal of VOCs as it can be adapted to different organic emissions under mild conditions. This review first introduces the hazards of VOCs, their treatment technologies, and summarizes the treatment mechanism issues. Next, the characteristics and catalytic performance of perovskite oxides as catalysts for VOC removal are expounded, with a special focus on lattice distortions and surface defects caused by metal doping and surface modifications, and on the treatment of different VOCs. The challenges and the prospects regarding the design of perovskite oxides catalysts for the catalytic combustion of VOCs are also discussed. This review provides a reference base for improving the performance of perovskite catalysts to treat VOCs.

Cite this article

Shan Wang , Ping Xiao , Jie Yang , Sónia A.C. Carabineiro , Marek Wiśniewski , Junjiang Zhu , Xinying Liu . Catalytic combustion of volatile organic compounds using perovskite oxides catalysts—a review[J]. Frontiers of Chemical Science and Engineering, 2023 , 17(11) : 1649 -1676 . DOI: 10.1007/s11705-023-2324-x

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

The financial support provided by the following organisations is gratefully acknowledged: the National Natural Science Foundation of China (Grant Nos. 21976141, 22102123, 42277485); the Department of Science and Technology of Hubei Province (Grant No. 2021CFA034); the Department of Education of Hubei Province (Grant Nos. T2020011, Q20211712); the Opening Project of Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing (Grant No. STRZ202101) and the South Africa National Research Foundation (No. 137947). SACC acknowledges Fundação para a Ciência e a Tecnologia (FCT), Portugal for Scientific Employment Stimulus-Institutional Call (Grant No. CEEC-INST/00102/2018) and Associate Laboratory for Green Chemistry-LAQV financed by national funds from FCT/MCTES (Grant Nos. UIDB/50006/2020 and UIDP/5006/2020).
1
Li X, Zhang L, Yang Z, Wang P, Yan Y, Ran J. Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: a review. Separation and Purification Technology, 2020, 235(18): 116213

DOI

2
Randazzo A, Asensio-Ramos M, Melián G V, Venturi S, Padrón E, Hernández P A, Pérez N M, Tassi F. Volatile organic compounds (VOCs) in solid waste landfill cover soil: chemical and isotopic composition vs. degradation processes. Science of the Total Environment, 2020, 726(15): 138326

DOI

3
Ajmal Z, Naciri Y, Ahmad M, Hsini A, Bouziani A, Laabd M, Raza W, Murtaza A, Kumar A, Ullah S, Al-Sehemi A G, Al-Ghamdi A A, Qadeer A, Hayat A, Djellabi R. Use of conductive polymer-supported oxide-based photocatalysts for efficient VOCs & SVOCs removal in gas/liquid phase. Journal of Environmental Chemical Engineering, 2022, 11(1): 108935

DOI

4
Ghavami M, Aghbolaghy M, Soltan J, Chen N. Room temperature oxidation of acetone by ozone over alumina-supported manganese and cobalt mixed oxides. Frontiers of Chemical Science and Engineering, 2020, 14(6): 937–947

DOI

5
Kamal M S, Razzak S A, Hossain M M. Catalytic oxidation of volatile organic compounds (VOCs)—a review. Atmospheric Environment, 2016, 140: 117–134

DOI

6
Zhou L, Zhang B, Li Z, Zhang X, Liu R, Yun J. Amorphous-microcrystal combined manganese oxides for efficiently catalytic combustion of VOCs. Molecular Catalysis, 2020, 489: 110920

DOI

7
Contarino R, Brighina S, Fallico B, Cirvilleri G, Parafati L, Restuccia C. Volatile organic compounds (VOCs) produced by biocontrol yeasts. Food Microbiology, 2019, 82: 70–74

DOI

8
Dolai S, Bhunia S K, Beglaryan S S, Kolusheva S, Zeiri L, Jelinek R. Colorimetric polydiacetylene-aerogel detector for volatile organic compounds (VOCs). ACS Applied Materials & Interfaces, 2017, 9(3): 2891–2898

DOI

9
Salar-García M J, Ortiz-Martínez V M, Hernández-Fernández F J, de los Ríos A P, Quesada-Medina J. Ionic liquid technology to recover volatile organic compounds (VOCs). Journal of Hazardous Materials, 2017, 321(5): 484–499

DOI

10
Zhang W, Li G, Yin H, Zhao K, Zhao H, An T. Adsorption and desorption mechanism of aromatic VOCs onto porous carbon adsorbents for emission control and resource recovery: recent progress and challenges. Environmental Science: Nano, 2022, 9(1): 81–104

DOI

11
Gelles T, Krishnamurthy A, Adebayo B, Rownaghi A, Rezaei F. Abatement of gaseous volatile organic compounds: a material perspective. Catalysis Today, 2020, 350(15): 3–18

DOI

12
Wu X, Han R, Liu Q, Su Y, Lu S, Yang L, Song C, Ji N, Ma D, Lu X. A review of confined-structure catalysts in the catalytic oxidation of VOCs: synthesis, characterization, and applications. Catalysis Science & Technology, 2021, 11(16): 5374–5387

DOI

13
Hu C, Zhu Q, Jiang Z, Chen L, Wu R. Catalytic combustion of dilute acetone over Cu-doped ceria catalysts. Chemical Engineering Journal, 2009, 152(2): 583–590

DOI

14
Han Y, Wang Y, Chai F, Ma J, Li L. Biofilters for the co-treatment of volatile organic compounds and odors in a domestic waste landfill site. Journal of Cleaner Production, 2020, 277(20): 124012

DOI

15
Alharbi N S, Hu B, Hayat T, Rabah S O, Alsaedi A, Zhuang L, Wang X. Efficient elimination of environmental pollutants through sorption-reduction and photocatalytic degradation using nanomaterials. Frontiers of Chemical Science and Engineering, 2020, 14(6): 1124–1135

DOI

16
Lee J E, Ok Y S, Tsang D C W, Song J, Jung S, Park Y. Recent advances in volatile organic compounds abatement by catalysis and catalytic hybrid processes: a critical review. Science of the Total Environment, 2020, 719(1): 137405

DOI

17
Shrubsole C, Dimitroulopoulou S, Foxall K, Gadeberg B, Doutsi A. IAQ guidelines for selected volatile organic compounds (VOCs) in the UK. Building and Environment, 2019, 165: 106382

DOI

18
Zhang X, Gao B, Fang J, Zou W, Dong L, Cao C, Zhang J, Li Y, Wang H. Chemically activated hydrochar as an effective adsorbent for volatile organic compounds (VOCs). Chemosphere, 2019, 218: 680–686

DOI

19
Zhang J, Xu X, Zhao S, Meng X, Xiao F. Recent advances of zeolites in catalytic oxidations of volatile organic compounds. Catalysis Today, 2022, 410(5): 56–67

20
Huang X, Han D, Cheng J, Chen X, Zhou Y, Liao H, Dong W, Yuan C. Characteristics and health risk assessment of volatile organic compounds (VOCs) in restaurants in Shanghai. Environmental Science and Pollution Research International, 2020, 27(1): 490–499

DOI

21
Liao W, Liang Z, Yu Y, Li G, Li Y, An T. Pollution profiles, removal performance and health risk reduction of malodorous volatile organic compounds emitted from municipal leachate treating process. Journal of Cleaner Production, 2021, 315(15): 128141

DOI

22
Li R, Yuan J, Li X, Zhao S, Lu W, Wang H, Zhao Y. Health risk assessment of volatile organic compounds (VOCs) emitted from landfill working surface via dispersion simulation enhanced by probability analysis. Environmental Pollution, 2023, 316(1): 120535

DOI

23
Paciência I, Madureira J, Rufo J, Moreira A, Fernandes E. A systematic review of evidence and implications of spatial and seasonal variations of volatile organic compounds (VOC) in indoor human environments. Journal of Toxicology and Environmental Health: Part B, 2016, 19(2): 47–64

DOI

24
Xuan L, Ma Y, Xing Y, Meng Q, Song J, Chen T, Wang H, Wang P, Zhang Y, Gao P. Source, temporal variation and health risk of volatile organic compounds (VOCs) from urban traffic in harbin, China. Environmental Pollution, 2021, 270(1): 116074

DOI

25
Li X, Niu Y, Su H, Qi Y. Simple thermocatalytic oxidation degradation of VOCs. Catalysis Letters, 2022, 152(6): 1801–1818

DOI

26
Zhang Y, Qi J, Sun Y, Zhu Z, Wang C, Sun X, Li J. Anchoring nanosized MOFs at the interface of porous millimeter beads and their enhanced adsorption mechanism for VOCs. Journal of Cleaner Production, 2022, 353(15): 131631

DOI

27
Shen X, Du X, Yang D, Ran J, Yang Z, Chen Y. Influence of physical structures and chemical modification on VOCs adsorption characteristics of molecular sieves. Journal of Environmental Chemical Engineering, 2021, 9(6): 106729

DOI

28
Chen B, Dai Y, Ruan X, Xi Y, He G. Integration of molecular dynamic simulation and free volume theory for modeling membrane VOC/gas separation. Frontiers of Chemical Science and Engineering, 2018, 12(2): 296–305

DOI

29
Cabanes A, Fullana A. New methods to remove volatile organic compounds from post-consumer plastic waste. Science of the Total Environment, 2021, 758(1): 144066

DOI

30
Yan Y, Wang M, Jin B, Yang J, Li S. Performance evaluation and microbial community analysis of the biofilter for removing grease and volatile organic compounds in the kitchen exhaust fume. Bioresource Technology, 2021, 319: 124132

DOI

31
Salazar Gómez J I, Lohmann H, Krassowski J. Determination of volatile organic compounds from biowaste and co-fermentation biogas plants by single-sorbent adsorption. Chemosphere, 2016, 153: 48–57

DOI

32
Li P, Kim S, Jin J, Do H C, Park J H. Efficient photodegradation of volatile organic compounds by iron-based metal-organic frameworks with high adsorption capacity. Applied Catalysis B: Environmental, 2020, 263: 118284

DOI

33
Zhu L, Shen D, Luo K. A critical review on VOCs adsorption by different porous materials: species, mechanisms and modification methods. Journal of Hazardous Materials, 2020, 389(5): 122102

DOI

34
Yan Y, Huang P, Zhang H. Preparation and characterization of novel carbon molecular sieve membrane/PSSF composite by pyrolysis method for toluene adsorption. Frontiers of Chemical Science and Engineering, 2019, 13(4): 772–783

DOI

35
Bo L, Sun S. Microwave-assisted catalytic oxidation of gaseous toluene with a Cu–Mn–Ce/cordierite honeycomb catalyst. Frontiers of Chemical Science and Engineering, 2019, 13(2): 385–392

DOI

36
Wang Y, Dou Y, Wu Z, Tian Y, Xiong Y, Zhao J, Fang D, Huang F, Cheng Y, Zhong J. Ultrafast-laser-treated poly(3,4-ethylenedioxythiophene): poly (styrenesulfonate) electrodes with enhanced conductivity and transparency for semitransparent perovskite solar cells. Frontiers of Chemical Science and Engineering, 2023, 17(2): 206–216

DOI

37
Ye C, Fang T, Long X, Wang H, Chen S, Zhou J. Non-thermal plasma synthesis of supported Cu–Mn–Ce mixed oxide catalyst towards highly improved catalytic performance for volatile organic compound oxidation. Environmental Science and Pollution Research International, 2022, 30(5): 11994–12004

DOI

38
Krichevskaya M, Preis S, Moiseev A, Pronina N, Deubener J. Gas-phase photocatalytic oxidation of refractory VOCs mixtures: through the net of process limitations. Catalysis Today, 2017, 280(1): 93–98

DOI

39
Zhang J, Hu Y, Qin J, Yang Z, Fu M. TiO2-UiO-66-NH2 nanocomposites as efficient photocatalysts for the oxidation of VOCs. Chemical Engineering Journal, 2020, 385(1): 123814

DOI

40
Wang Y, Ding L, Shi Q, Liu S, Qian L, Yu Z, Wang H, Lei J, Gao Z, Long H, Charles Xu C. Volatile organic compounds (VOC) emissions control in iron ore sintering process: recent progress and future development. Chemical Engineering Journal, 2022, 448(15): 137601

DOI

41
Wang Q, Yeung K L, Bañares M A. Ceria and its related materials for VOC catalytic combustion: a review. Catalysis Today, 2020, 356(1): 141–154

DOI

42
Lu C, Wey M. Simultaneous removal of VOC and NO by activated carbon impregnated with transition metal catalysts in combustion flue gas. Fuel Processing Technology, 2007, 88(6): 557–567

DOI

43
Hermia J, Vigneron S. Catalytic incineration for odour abatement and VOC destruction. Catalysis Today, 1993, 17(1–2): 349–358

DOI

44
Abidi M, Hajjaji A, Bouzaza A, Trablesi K, Makhlouf H, Rtimi S, Assadi A, Bessais B. Simultaneous removal of bacteria and volatile organic compounds on Cu2O-NPs decorated TiO2 nanotubes: competition effect and kinetic studies. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 400(1): 112722

DOI

45
Kim S, Kirakosyan A, Choi J, Kim J H. Detection of volatile organic compounds (VOCs), aliphatic amines, using highly fluorescent organic-inorganic hybrid perovskite nanoparticles. Dyes and Pigments, 2017, 147: 1–5

DOI

46
Campesi M A, Luzi C D, Barreto G F, Martínez O M. Evaluation of an adsorption system to concentrate VOC in air streams prior to catalytic incineration. Journal of Environmental Management, 2015, 154(1): 216–224

DOI

47
Yang L, Li Y, Sun Y, Wang W, Shao Z. Perovskite oxides in catalytic combustion of volatile organic compounds: recent advances and future prospects. Energy & Environmental Materials, 2021, 5(3): 751–776

DOI

48
Ribeiro B M, Pinto J F, Suppino R S, Marçola L, Landers R, Tomaz E. Catalytic oxidation at pilot-scale: efficient degradation of volatile organic compounds in gas phase. Journal of Hazardous Materials, 2019, 365(5): 581–589

DOI

49
He C, Cheng J, Zhang X, Douthwaite M, Pattisson S, Hao Z. Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources. Chemical Reviews, 2019, 119(7): 4471–4568

DOI

50
Li K, Luo X. Research progress on catalytic combustion of volatile organic compounds in industrial waste gas. Catalysts, 2023, 13(2): 268

DOI

51
Hosono Y, Saito H, Higo T, Watanabe K, Ito K, Tsuneki H, Maeda S, Hashimoto K, Sekine Y. Co-CeO2 interaction induces the Mars-van Krevelen mechanism in dehydrogenation of ethane. Journal of Physical Chemistry C, 2021, 125(21): 11411–11418

DOI

52
Liu J, Li X, Li R, Zhao Q, Ke J, Xiao H, Wang L, Liu S, Tadé M, Wang S. Facile synthesis of tube-shaped Mn-Ni-Ti solid solution and preferable Langmuir-Hinshelwood mechanism for selective catalytic reduction of NOx by NH3. Applied Catalysis A: General, 2018, 549(5): 289–301

DOI

53
Song L, Yue H, Ma K, Liu W, Tian W, Liu C, Tang S, Liang B. FeSTi superacid catalyst for NH3-SCR with superior resistance to metal poisons in flue gas. ACS Sustainable Chemistry & Engineering, 2020, 8(45): 16878–16888

DOI

54
Toko K, Ito K, Saito H, Hosono Y, Murakami K, Misaki S, Higo T, Ogo S, Tsuneki H, Maeda S, Hashimoto K, Nakai H, Sekine Y. Catalytic dehydrogenation of ethane over doped perovskite via the Mars-van Krevelen mechanism. Journal of Physical Chemistry C, 2020, 124(19): 10462–10469

DOI

55
Cheng M, Jiang B, Yao S, Han J, Zhao S, Tang X, Zhang J, Wang T. Mechanism of NH3 selective catalytic reduction reaction for NOx removal from diesel engine exhaust and hydrothermal stability of Cu–Mn/zeolite catalysts. Journal of Physical Chemistry C, 2018, 122(1): 455–464

DOI

56
Yue S, Wu C, Li K. A new insight on the NO-CO reaction at the electronic level: homogeneous, E–R, and L–H mechanisms. Journal of Molecular Modeling, 2022, 29(1): 26

DOI

57
Kong J, Yang T, Rui Z, Ji H. Perovskite-based photocatalysts for organic contaminants removal: current status and future perspectives. Catalysis Today, 2019, 327(1): 47–63

DOI

58
Fu Z, Liu L, Song Y, Ye Q, Cheng S, Kang T, Dai H. Catalytic oxidation of carbon monoxide, toluene, and ethyl acetate over the xPd/OMS-2 catalysts: effect of Pd loading. Frontiers of Chemical Science and Engineering, 2017, 11(2): 185–196

DOI

59
Rastegarpanah A, Meshkani F, Liu Y, Deng J, Jing L, Pei W, Zhang K, Hou Z, Han Z, Rezaei M, Dai H. Toluene oxidation over the M–Al (M = Ce, La, Co, Ce–La, and Ce–Co) catalysts derived from the modified “One-Pot” evaporation-induced self-assembly method: effects of microwave or ultrasound irradiation and noble-metal loading on catalytic activity and stability. Industrial & Engineering Chemistry Research, 2020, 59(13): 5624–5635

DOI

60
Carabineiro S A C, Chen X, Martynyuk O, Bogdanchikova N, Avalos-Borja M, Pestryakov A, Tavares P B, Órfão J J M, Pereira M F R, Figueiredo J L. Gold supported on metal oxides for volatile organic compounds total oxidation. Catalysis Today, 2015, 244(15): 103–114

DOI

61
Yang H, Deng J, Xie S, Jiang Y, Dai H, Au C T. Au/MnOx/3DOM SiO2: highly active catalysts for toluene oxidation. Applied Catalysis A: General, 2015, 507: 139–148

DOI

62
Lou B Z, Shakoor N, Adeel M, Zhang P, Huang L L, Zhao Y W, Zhao W C, Jiang Y Q, Rui Y K. Catalytic oxidation of volatile organic compounds by non-noble metal catalyst: current advancement and future prospectives. Journal of Cleaner Production, 2022, 363(20): 132523

DOI

63
Voorhoeve R J H, Johnson D W Jr, Remeika J P, Gallagher P K. Perovskite oxides: materials science in catalysis. Science, 1977, 195(4281): 827–833

DOI

64
De K S, Balasubramanian M R. Cubic hypovanadate perovskite as an oxidation catalyst. Journal of Catalysis, 1983, 81(2): 482–484

DOI

65
Irusta S, Pina M P, Menéndez M, Santamaría J. Development and application of perovskite‐based catalytic membrane reactors. Catalysis Letters, 1998, 54(1): 69–78

DOI

66
Sun Y, Liu Z, Zhang W, Chu X, Cong Y, Huang K, Feng S. Unfolding B–O–B bonds for an enhanced ORR performance in ABO3‐type perovskites. Small, 2019, 15(29): 1803513

DOI

67
Wang S, Xu X, Zhu J, Tang D, Zhao Z. Effect of preparation method on physicochemical properties and catalytic performances of LaCoO3 perovskite for CO oxidation. Journal of Rare Earths, 2019, 37(9): 970–977

DOI

68
Capdevila-Cortada M. Describing perovskite catalysts. Nature Catalysis, 2018, 1(10): 737

DOI

69
Zhu J, Li H, Zhong L, Xiao P, Xu X, Yang X, Zhao Z, Li J. Perovskite oxides: preparation, characterizations, and applications in heterogeneous catalysis. ACS Catalysis, 2014, 4(9): 2917–2940

DOI

70
Jia T, Zeng Z, Lin H Q, Duan Y, Ohodnicki P. First-principles study on the electronic, optical and thermodynamic properties of ABO3 (A = La, Sr, B = Fe, Co) perovskites. RSC Advances, 2017, 7(62): 38798–38804

DOI

71
Zhao Q, Zheng Y, Song C, Liu Q, Ji N, Ma D, Lu X. Novel monolithic catalysts derived from in-situ decoration of Co3O4 and hierarchical Co3O4@MnOx on Ni foam for VOC oxidation. Applied Catalysis B: Environmental, 2020, 265(15): 118552

DOI

72
Lee J G, Naden A B, Savaniu C D, Connor P A, Payne J L M, Skelton J, Gibbs A S, Hui J C, Parker S, Irvine J T S. Use of interplay between A-site non-stoichiometry and hdroxide doping to deliver novel proton-conducting perovskite oxides. Advanced Energy Materials, 2021, 11(37): 2101337

DOI

73
Ji Q, Bi L, Zhang J, Cao H, Zhao X. The role of oxygen vacancies of ABO3 perovskite oxides in the oxygen reduction reaction. Energy & Environmental Science, 2020, 13(5): 1408–1428

DOI

74
Goldschmidt V M. Die gesetze der krystallochemie. Naturwissenschaften, 1926, 14(21): 477–485

DOI

75
Hwang J, Feng Z, Charles N, Wang X, Lee D, Stoerzinger K A, Muy S, Rao R R, Lee D, Jacobs R, Morgan D, Shao-Horn Y. Tuning perovskite oxides by strain: electronic structure, properties, and functions in (electro)catalysis and ferroelectricity. Materials Today, 2019, 31: 100–118

DOI

76
Neha P R, Prasad R, Singh S V. Singh S V. A review on catalytic oxidation of soot emitted from diesel fuelled engines. Journal of Environmental Chemical Engineering, 2020, 8(4): 103945

DOI

77
Wu Z, Wang L, Hu Y, Han H, Li X, Wang Y. The preparation, characterization, and catalytic performance of porous fibrous LaFeO3 perovskite made from a sunflower seed shell template. Frontiers of Chemical Science and Engineering, 2020, 14(6): 967–975

DOI

78
Polo-Garzon F, Wu Z. Acid-base catalysis over perovskites: a review. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(7): 2877–2894

DOI

79
Dai Z, Li D, Ao Z, Wang S, An T. Theoretical exploration of VOCs removal mechanism by carbon nanotubes through persulfate-based advanced oxidation processes: adsorption and catalytic oxidation. Journal of Hazardous Materials, 2021, 405(5): 124684

DOI

80
Retuerto M, Calle-Vallejo F, Pascual L, Lumbeeck G, Fernandez-Diaz M T, Croft M, Gopalakrishnan J, Peña M A, Hadermann J, Greenblatt M, Rojas S. La1.5Sr0.5NiMn0.5Ru0.5O6 double perovskite with enhanced ORR/OER bifunctional catalytic activity. ACS Applied Materials & Interfaces, 2019, 11(24): 21454–21464

DOI

81
Li C, Wang Y, Jin C, Lu J, Sun J, Yang R. Prepation of perovskite oxides/(CoFe)P2 heterointerfaces to improve oxygen evolution activity of La0.8Sr1.2Co0.2Fe0.8O4+δ layered perovskite oxide. International Journal of Hydrogen Energy, 2020, 45(43): 22959–22964

DOI

82
van der Vaart D R, Marchand E G, Bagely-Pride A. Thermal and catalytic incineration of volatile organic compounds. Critical Reviews in Environmental Science and Technology, 1994, 24(3): 203–236

DOI

83
Zheng Y, Chen Y, Wu E, Liu X, Huang B, Xue H, Cao C, Luo Y, Qian Q, Chen Q. Amorphous boron dispersed in LaCoO3 with large oxygen vacancies for efficient catalytic propane oxidation. Chemistry, 2021, 27(14): 4738–4745

DOI

84
Cheng Q, Kang K, Li Y, Wang J, Wang Z, Selishchev D, Wang X, Zhang G. Achieving efficient toluene mineralization over ordered porous LaMnO3 catalyst: the synergistic effect of high valence manganese and surface lattice oxygen. Applied Surface Science, 2023, 615(1): 156248

DOI

85
Giroir-Fendler A, Alves-Fortunato M, Richard M, Wang C, Díaz J A, Gil S, Zhang C, Can F, Bion N, Guo Y. Synthesis of oxide supported LaMnO3 perovskites to enhance yields in toluene combustion. Applied Catalysis B: Environmental, 2016, 180: 29–37

DOI

86
Meng Q, Wang W, Weng X, Liu Y, Wang H, Wu Z. Active oxygen species in Lan+1NinO3n+1 layered perovskites for catalytic oxidation of toluene and methane. Journal of Physical Chemistry C, 2016, 120(6): 3259–3266

DOI

87
Weng X, Wang W, Meng Q, Wu Z. An ultrafast approach for the syntheses of defective nanosized lanthanide perovskites for catalytic toluene oxidation. Catalysis Science & Technology, 2018, 8(17): 4364–4372

DOI

88
Pan K, Pan G, Chong S, Chang M. Removal of VOCs from gas streams with double perovskite-type catalysts. Journal of Environmental Sciences (China), 2018, 69: 205–216

DOI

89
Chen H, Cui W, Li D, Tian Q, He J, Liu Q, Chen X, Cui M, Qiao X, Zhang Z, Tang J, Fei Z. Selectively etching lanthanum to engineer surface cobalt-enriched LaCoO3 perovskite catalysts for toluene combustion. Industrial & Engineering Chemistry Research, 2020, 59(23): 10804–10812

DOI

90
Liu L, Sun J, Ding J, Zhang Y, Jia J, Sun T. Catalytic oxidation of VOCs over SmMnO3 perovskites: catalyst synthesis, change mechanism of active species, and degradation path of toluene. Inorganic Chemistry, 2019, 58(20): 14275–14283

DOI

91
Rousseau S, Loridant S, Delichere P, Boreave A, Deloume J P, La Vernoux. P1−xSrxCo1−yFeyO3 perovskites prepared by sol–gel method: characterization and relationships with catalytic properties for total oxidation of toluene. Applied Catalysis B: Environmental, 2009, 88(3): 438–447

DOI

92
Liu Y, Dai H, Du Y, Deng J, Zhang L, Zhao Z, Au C T. Controlled preparation and high catalytic performance of three-dimensionally ordered macroporous LaMnO3 with nanovoid skeletons for the combustion of toluene. Journal of Catalysis, 2012, 287: 149–160

DOI

93
Jiang Y, Xie S, Yang H, Deng J, Liu Y, Dai H. Mn3O4-Au/3DOM La0.6Sr0.4CoO3: high-performance catalysts for toluene oxidation. Catalysis Today, 2017, 281(3): 437–446

DOI

94
Zhang J, Tan D, Meng Q, Weng X, Wu Z. Structural modification of LaCoO3 perovskite for oxidation reactions: the synergistic effect of Ca2+ and Mg2+ co-substitution on phase formation and catalytic performance. Applied Catalysis B: Environmental, 2015, 172–173: 18–26

DOI

95
Xiao P, Zhu J, Li H, Jiang W, Wang T, Zhu Y, Zhao Y, Li J. Effect of textural structure on the catalytic performance of LaCoO3 for CO oxidation. ChemCatChem, 2014, 6(6): 1774–1781

DOI

96
Jing Y, Aluru N R. The role of A-site ion on proton diffusion in perovskite oxides (ABO3). Journal of Power Sources, 2020, 445(1): 227327

DOI

97
Xiao P, Xu X, Zhu J, Zhu Y. In situ generation of perovskite oxides and carbon composites: a facile, effective and generalized route to prepare catalysts with improved performance. Journal of Catalysis, 2020, 383: 88–96

DOI

98
Sim Y, Kwon D, An S, Ha J, Oh T S, Jung J C. Catalytic behavior of ABO3 perovskites in the oxidative coupling of methane. Molecular Catalysis, 2020, 489: 110925

DOI

99
Liu L, Li J, Zhang H, Li L, Zhou P, Meng X, Guo M, Jia J, Sun T. In situ fabrication of highly active γ-MnO2/SmMnO3 catalyst for deep catalytic oxidation of gaseous benzene, ethylbenzene, toluene, and o-xylene. Journal of Hazardous Materials, 2019, 362(15): 178–186

DOI

100
Huang H, Liu Y, Tang W, Chen Y. Catalytic activity of nanometer La1−xSrxCoO3 (x = 0, 0.2) perovskites towards VOCs combustion. Catalysis Communications, 2008, 9(1): 55–59

DOI

101
Liu Y, Dai H, Deng J, Zhang L, Zhao Z, Li X, Wang Y, Xie S, Yang H, Guo G. Controlled generation of uniform spherical LaMnO3, LaCoO3, Mn2O3, and Co3O4 nanoparticles and their high catalytic performance for carbon monoxide and toluene oxidation. Inorganic Chemistry, 2013, 52(15): 8665–8676

DOI

102
Liu Y, Dai H, Du Y, Deng J, Zhang L, Zhao Z. Lysine-aided PMMA-templating preparation and high performance of three-dimensionally ordered macroporous LaMnO3 with mesoporous walls for the catalytic combustion of toluene. Applied Catalysis B: Environmental, 2012, 119–120(30): 20–31

DOI

103
Pereñíguez R, Hueso J L, Holgado J P, Gaillard F, Caballero A. Reactivity of LaNi1−yCoyO3−δ perovskite systems in the deep oxidation of toluene. Catalysis Letters, 2009, 131(1): 164–169

DOI

104
Ding Y, Wang S, Zhang L, Chen Z, Wang M, Wang S. A facile method to promote LaMnO3 perovskite catalyst for combustion of methane. Catalysis Communications, 2017, 97: 88–92

DOI

105
Zhou Y, Lu H, Zhang H, Chen Y. Catalytic properties of LaBO3 perovskite catalysts in VOCs combustion. China Environmental Science, 2012, 32: 1772–1777 (in Chinese)

106
Wu M, Chen S, Xiang W. Oxygen vacancy induced performance enhancement of toluene catalytic oxidation using LaFeO3 perovskite oxides. Chemical Engineering Journal, 2020, 387: 124101

DOI

107
Oshima T, Yokoi T, Eguchi M, Maeda K. Synthesis and photocatalytic activity of K2CaNaNb3O10, a new Ruddlesden-Popper phase layered perovskite. Dalton Transactions, 2017, 46(32): 10594–10601

DOI

108
Liu S, Sun C, Chen J, Xiao J, Luo J. A high-performance Ruddlesden-Popper perovskite for bifunctional oxygen electrocatalysis. ACS Catalysis, 2020, 10(22): 13437–13444

DOI

109
Du X, Zou G, Wang X. Low-temperature synthesis of Ruddlesden-Popper type layered perovskite LaxCa3−xMn2O7 for methane combustion. Catalysis Surveys from Asia, 2015, 19(1): 17–24

DOI

110
Wu M, Li H, Ma S, Chen S, Xiang W. Boosting the surface oxygen activity for high performance iron-based perovskite oxide. Science of the Total Environment, 2021, 795(15): 148904

DOI

111
Pogue E A, Bond J, Imperato C, Abraham J B S, Drichko N, McQueen T M. A gold(I) oxide double perovskite: Ba2AuIO6. Journal of the American Chemical Society, 2021, 143(45): 19033–19042

DOI

112
Kumar U, Upadhyay S, Alvi P A. Study of reaction mechanism, structural, optical and oxygen vacancy-controlled luminescence properties of Eu-modified Sr2SnO4 Ruddlesden popper oxide. Physica B: Condensed Matter, 2021, 604(1): 412708

DOI

113
Schön A, Dacquin J P, Dujardin C, Granger P. Catalytic activity and thermal stability of LaFe1−xCuxO3 and La2CuO4 perovskite solids in three-way-catalysis. Topics in Catalysis, 2017, 60(3): 300–306

DOI

114
Du X, Zou G, Zhang Y, Wang X. A novel strategy for low-temperature synthesis of Ruddlesden-Popper type layered perovskite La3Mn2O7+δ for methane combustion. Journal of Materials Chemistry A, 2013, 1(29): 8411–8416

DOI

115
Wang Y, Xue Y, Zhao C, Zhao D, Liu F, Wang K, Dionysiou D D. Catalytic combustion of toluene with La0.8Ce0.2MnO3 supported on CeO2 with different morphologies. Chemical Engineering Journal, 2016, 300(15): 300–305

DOI

116
Niu J, Deng J, Liu W, Zhang L, Wang G, Dai H, He H, Zi X. Nanosized perovskite-type oxides La1−xSrxMO3−δ (M = Co, Mn; x = 0, 0.4) for the catalytic removal of ethylacetate. Catalysis Today, 2007, 126(3): 420–429

DOI

117
Arandiyan H, Dai H, Deng J, Liu Y, Bai B, Wang Y, Li X, Xie S, Li J. Three-dimensionally ordered macroporous La0.6Sr0.4MnO3 with high surface areas: active catalysts for the combustion of methane. Journal of Catalysis, 2013, 307: 327–339

DOI

118
Pérez H A, López C A, Cadús L E, Agüero F N. Catalytic feasibility of Ce-doped LaCoO3 systems for chlorobenzene oxidation: an analysis of synthesis method. Journal of Rare Earths, 2021, 40(6): 897–905

DOI

119
He F, Chen J, Liu S, Huang Z, Wei G, Wang G, Cao Y, Zhao K. La1–xSrxFeO3 perovskite-type oxides for chemical-looping steam methane reforming: identification of the surface elements and redox cyclic performance. International Journal of Hydrogen Energy, 2019, 44(21): 10265–10276

DOI

120
Liu M, Yang X, Tian Z, Wang H, Yin L, Chen J, Guan Q, Yang H, Zhang Q. Insights into the role of strontium in catalytic combustion of toluene over La1−xSrxCoO3 perovskite catalysts. Physical Chemistry Chemical Physics, 2022, 24(6): 3686–3694

DOI

121
Zhang C, Wang C, Zhan W, Guo Y, Guo Y, Lu G, Baylet A, Giroir-Fendler A. Catalytic oxidation of vinyl chloride emission over LaMnO3 and LaB0.2Mn0.8O3 (B = Co, Ni, Fe) catalysts. Applied Catalysis B: Environmental, 2013, 129: 509–516

DOI

122
Shao J, Zeng G, Li Y. Effect of Zn substitution to a LaNiO3−δ perovskite structured catalyst in ethanol steam reforming. International Journal of Hydrogen Energy, 2017, 42(27): 17362–17375

DOI

123
Zhang F, Zhang X, Jiang G, Li N, Hao Z, Qu S. H2S selective catalytic oxidation over Ce substituted La1−xCexFeO3 perovskite oxides catalyst. Chemical Engineering Journal, 2018, 348(15): 831–839

DOI

124
Gao S, Liu N, Liu J, Chen W, Liang X, Yuan Y. Synthesis of higher alcohols by CO hydrogenation over catalysts derived from LaCo1–xMnxO3 perovskites: effect of the partial substitution of Co by Mn. Fuel, 2020, 261(1): 116415

DOI

125
Seguel J, Leal E, Zarate X, Saavedra-Torres M, Schott E, Díaz de León J N, Blanco E, Escalona N, Pecchi G, Sepúlveda C. Conversion of levulinic acid over Ag substituted LaCoO3 perovskite. Fuel, 2021, 301(1): 121071

DOI

126
Liu Y, Siron M, Lu D, Yang J, dos Reis R, Cui F, Gao M, Lai M, Lin J, Kong Q, Lei T, Kang J, Jin J, Ciston J, Yang P. Self-assembly of two-dimensional perovskite nanosheet building blocks into ordered Ruddlesden-Popper perovskite phase. Journal of the American Chemical Society, 2019, 141(33): 13028–13032

DOI

127
Arandiyan H, Wang Y, Sun H, Rezaei M, Dai H. Ordered meso- and macroporous perovskite oxide catalysts for emerging applications. Chemical Communications, 2018, 54(50): 6484–6502

DOI

128
Zhao L, Huang Y, Zhang J, Jiang L, Wang Y. Al2O3-modified CuO-CeO2 catalyst for simultaneous removal of NO and toluene at wide temperature range. Chemical Engineering Journal, 2020, 397(1): 125419

DOI

129
Liu Y, Deng J, Xie S, Wang Z, Dai H. Catalytic removal of volatile organic compounds using ordered porous transition metal oxide and supported noble metal catalysts. Chinese Journal of Catalysis, 2016, 37(8): 1193–1205

DOI

130
Feng C, Gao Q, Xiong G, Chen Y, Pan Y, Fei Z, Li Y, Lu Y, Liu C, Liu Y. Defect engineering technique for the fabrication of LaCoO3 perovskite catalyst via urea treatment for total oxidation of propane. Applied Catalysis B: Environmental, 2022, 304: 121005

DOI

131
Dai L, Lu X, Chu G, He C, Zhan W, Zhou G. Surface tuning of LaCoO3 perovskite by acid etching to enhance its catalytic performance. Rare Metals, 2021, 40(3): 555–562

DOI

132
Yang Q, Wang D, Wang C, Li X, Li K, Peng Y, Li J. Facile surface improvement method for LaCoO3 for toluene oxidation. Catalysis Science & Technology, 2018, 8(12): 3166–3173

DOI

133
Yang J, Shi L, Li L, Fang Y, Pan C, Zhu Y, Liang Z, Hoang S, Li Z, Guo Y. Surface modification of macroporous La0.8Sr0.2CoO3 perovskite oxides integrated monolithic catalysts for improved propane oxidation. Catalysis Today, 2021, 376(15): 168–176

DOI

134
Zhang H, Gao X, Gong B, Shao S, Tu C, Pan J, Wang Y, Dai Q, Guo Y, Wang X. Catalytic combustion of CVOCs over MoOx/CeO2 catalysts. Applied Catalysis B: Environmental, 2022, 310(15): 121240

DOI

135
Lee D, Tan J, Chae K H, Jeong B, Soon A, Ahn S J, Kim J, Moon J. Chemically driven enhancement of oxygen reduction electrocatalysis in supported perovskite oxides. Journal of Physical Chemistry Letters, 2017, 8(1): 235–242

DOI

136
Feng X, Qu Z, Gao H. Premixed lean methane/air combustion in a catalytic porous foam burner supported with perovskite LaMn0.4Co0.6O3 catalyst with different support materials and pore densities. Fuel Processing Technology, 2016, 150: 117–125

DOI

137
Gao B, Deng J, Liu Y, Zhao Z, Li X, Wang Y, Dai H. Mesoporous LaFeO3 catalysts for the oxidation of toluene and carbon monoxide. Chinese Journal of Catalysis, 2013, 34(12): 2223–2229

DOI

138
Wang Y, Xie S, Deng J, Deng S, Wang H, Yan H, Dai H. Morphologically controlled synthesis of porous spherical and cubic LaMnO3 with high activity for the catalytic removal of toluene. ACS Applied Materials & Interfaces, 2014, 6(20): 17394–17401

DOI

139
Huang J, Wang K, Huang X, Huang J. Deep oxidation of benzene over LaCoO3 catalysts synthesized via a salt-assisted sol-gel process. Molecular Catalysis, 2020, 493: 111073

DOI

140
Luo Y, Zuo J, Lin D, Qian Q, Zheng Y, Feng X, Huang B, Chen Q. Anchoring Pt on surface/bulk of LaCoO3 nanotubes via one step of coaxial electrospinning for efficient total propane oxidation. Molecular Catalysis, 2019, 475: 110504

DOI

141
Zheng Y, Feng X, Lin D, Wu E, Luo Y, You Y, Huang B, Qian Q, Chen Q. Insights into the low-temperature synthesis of LaCoO3 derived from Co(CH3COO)2 via electrospinning for catalytic propane oxidation. Chinese Journal of Chemistry, 2020, 38(2): 144–150

DOI

142
Li M, Zhang C, Fan L, Lian Y, Niu X, Zhu Y. Enhanced catalytic oxidation of toluene over manganese oxide modified by lanthanum with a coral-like hierarchical structure nanosphere. ACS Applied Materials & Interfaces, 2021, 13(8): 10089–10100

DOI

143
Miniajluk N, Trawczyński J, Zawadzki M. Properties and catalytic performance for propane combustion of LaMnO3 prepared under microwave-assisted glycothermal conditions: effect of solvent diols. Applied Catalysis A: General, 2017, 531: 119–128

DOI

144
Yang J, Hu S, Shi L, Hoang S, Yang W, Fang Y, Liang Z, Pan C, Zhu Y, Li L, Wu J, Hu J, Guo Y. Oxygen vacancies and Lewis acid sites synergistically promoted catalytic methane combustion over perovskite oxides. Environmental Science & Technology, 2021, 55(13): 9243–9254

DOI

145
Roozbahani H, Maghsoodi S, Raei B, Kootenaei A S, Azizi Z. Effects of catalyst preparation methods on the performance of La2MMnO6 (M = Co, Ni) double perovskites in catalytic combustion of propane. Korean Journal of Chemical Engineering, 2022, 39(3): 586–595

DOI

146
Doroftei C, Leontie L. Synthesis and characterization of some nanostructured composite oxides for low temperature catalytic combustion of dilute propane. RSC Advances, 2017, 7(45): 27863–27871

DOI

147
Chen H, Wei G, Liang X, Liu P, Xi Y, Zhu J. Facile surface improvement of LaCoO3 perovskite with high activity and water resistance towards toluene oxidation: Ca substitution and citric acid etching. Catalysis Science & Technology, 2020, 10(17): 5829–5839

DOI

148
Li X, Dai H, Deng J, Liu Y, Zhao Z, Wang Y, Yang H, Au C T. In situ PMMA-templating preparation and excellent catalytic performance of Co3O4/3DOM La0.6Sr0.4CoO3 for toluene combustion. Applied Catalysis A: General, 2013, 458(10): 11–20

DOI

149
Wang S, Zhu J, Carabineiro S A C, Xiao P, Zhu Y. Selective etching of in-situ formed La2O3 particles to prepare porous LaCoO3 perovskite for catalytic combustion of ethyl acetate. Applied Catalysis A: General, 2022, 635: 118554

DOI

150
Lu Y, Dai Q, Wang X. Catalytic combustion of chlorobenzene on modified LaMnO3 catalysts. Catalysis Communications, 2014, 54: 114–117

DOI

151
He C, Yu Y, Shen Q, Chen J, Qiao N. Catalytic behavior and synergistic effect of nanostructured mesoporous CuO-MnOx-CeO2 catalysts for chlorobenzene destruction. Applied Surface Science, 2014, 297: 59–69

DOI

152
Zhang C, Hua W, Wang C, Guo Y, Guo Y, Lu G, Baylet A, Giroir-Fendler A. The effect of A-site substitution by Sr, Mg and Ce on the catalytic performance of LaMnO3 catalysts for the oxidation of vinyl chloride emission. Applied Catalysis B: Environmental, 2013, 134–135: 310–315

DOI

153
Zhang C, Wang C, Gil S, Boreave A, Retailleau L, Guo Y, Valverde J L, Giroir-Fendler A. Catalytic oxidation of 1,2-dichloropropane over supported LaMnOx oxides catalysts. Applied Catalysis B: Environmental, 2017, 201: 552–560

DOI

154
Cetin E, Odabasi M, Seyfioglu R. Ambient volatile organic compound (VOC) concentrations around a petrochemical complex and a petroleum refinery. Science of the Total Environment, 2003, 312(1): 103–112

DOI

155
Liu R, Chen J, Li G, An T. Using an integrated decontamination technique to remove VOCs and attenuate health risks from an e-waste dismantling workshop. Chemical Engineering Journal, 2017, 318(15): 57–63

DOI

156
Shayegan Z, Haghighat F, Lee C S. Surface fluorinated Ce-doped TiO2 nanostructure photocatalyst: a trap and remove strategy to enhance the VOC removal from indoor air environment. Chemical Engineering Journal, 2020, 401(1): 125932

DOI

157
Zhang Z, Kong Z, Liu H, Chen Y. Mayenite supported perovskite monoliths for catalytic combustion of methyl methacrylate. Frontiers of Chemical Science and Engineering, 2014, 8(1): 87–94

DOI

158
Stanchovska S, Markov P, Tenchev K, Stoyanova R, Zhecheva E, Naydenov A. Preparation and characterization of palladium containing nickel-iron-cobalt perovskite catalysts for the complete oxidation of C1–C6 alkanes. Reaction Kinetics, Mechanisms and Catalysis, 2017, 122(2): 931–942

DOI

159
Chang H, Bjørgum E, Mihai O, Yang J, Lein H L, Grande T, Raaen S, Zhu Y, Holmen A, Chen D. Effects of oxygen mobility in La-Fe-based perovskites on the catalytic activity and selectivity of methane oxidation. ACS Catalysis, 2020, 10(6): 3707–3719

DOI

160
Zhang C, Zeng K, Wang C, Liu X, Wu G, Wang Z, Wang D. LaMnO3 perovskites via a facile nickel substitution strategy for boosting propane combustion performance. Ceramics International, 2020, 46(5): 6652–6662

DOI

161
Zhang R, Li P, Xiao R, Liu N, Chen B. Insight into the mechanism of catalytic combustion of acrylonitrile over Cu-doped perovskites by an experimental and theoretical study. Applied Catalysis B: Environmental, 2016, 196: 142–154

DOI

162
Bao Z, Fung V, Moon J, Hood Z D, Rochow M, Kammert J, Polo-Garzon F, Wu Z. Revealing the interplay between “intelligent behavior” and surface reconstruction of non-precious metal doped SrTiO3 catalysts during methane combustion. Catalysis Today, 2023, 416: 113672

DOI

163
Fan L, Li M, Zhang C, Ismail A, Hu B, Zhu Y. Effect of Cu/Co ratio in CuaCo1−aOx (a = 0.1, 0.2, 0.4, 0.6) flower structure on its surface properties and catalytic performance for toluene oxidation. Journal of Colloid and Interface Science, 2021, 599: 404–415

DOI

164
Kim K H, Szulejko J E, Raza N, Kumar V, Vikrant K, Tsang D C W, Bolan N S, Ok Y S, Khan A. Identifying the best materials for the removal of airborne toluene based on performance metrics—a critical review. Journal of Cleaner Production, 2019, 241(20): 118408

DOI

165
Li M, Zhang W, Zhang X, Lian Y, Niu X, Zhu Y. Influences of different surface oxygen species on oxidation of toluene and/or benzene and their reaction pathways over Cu-Mn metal oxides. Journal of Colloid and Interface Science, 2023, 630: 301–316

DOI

166
Lv C, Zhang J, Yan L, Chen H, Hu M. Boosting sulfur tolerance and catalytic performance in toluene combustion via enhanced-mechanism of Ce-Fe dopants incorporation of LaCoO3 perovskite. Journal of Environmental Chemical Engineering, 2022, 10(5): 108372

DOI

167
Yi H, Miao L, Xu J, Zhao S, Xie X, Du C, Tang T, Tang X. Palladium particles supported on porous CeMnO3 perovskite for catalytic oxidation of benzene. Colloids and Surfaces A, 2021, 623(20): 126687

DOI

168
Chen H, Wei G, Liang X, Liu P, He H, Xi Y, Zhu J. The distinct effects of substitution and deposition of Ag in perovskite LaCoO3 on the thermally catalytic oxidation of toluene. Applied Surface Science, 2019, 489(30): 905–912

DOI

169
Zhao A, Ren Y, Wang H, Qu Z. Enhancement of toluene oxidation performance over La1–xCoO3–δ perovskite by lanthanum non-stoichiometry. Journal of Environmental Sciences (China), 2023, 127: 811–823

DOI

170
Liu L, Zhang H, Jia J, Sun T, Sun M. Direct molten polymerization synthesis of highly active samarium manganese perovskites with different morphologies for VOC removal. Inorganic Chemistry, 2018, 57(14): 8451–8457

DOI

171
Yang J, Li L, Yang X, Song S, Li J, Jing F, Chu W. Enhanced catalytic performances of in situ-assembled LaMnO3/δ-MnO2 hetero-structures for toluene combustion. Catalysis Today, 2019, 327(1): 19–27

DOI

172
Azalim S, Franco M, Brahmi R, Giraudon J M, Lamonier J F. Removal of oxygenated volatile organic compounds by catalytic oxidation over Zr-Ce-Mn catalysts. Journal of Hazardous Materials, 2011, 188(1): 422–427

DOI

173
Huang X, Wang C, Zhu B, Lin L, He L. Exploration of sources of OVOCs in various atmospheres in southern China. Environmental Pollution, 2019, 249: 831–842

DOI

174
Belzunce P S, Cadús L E, Durán F G. Obtaining stable suspensions for washcoating in microchannels: study of the variables involved and their effects on the catalyst. Chemical Engineering and Processing, 2019, 146: 107666

DOI

175
Martínez A H, Lopez E, Cadús L E, Agüero F N. Elucidation of the role of support in Rh/perovskite catalysts used in ethanol steam reforming reaction. Catalysis Today, 2021, 372(15): 59–69

DOI

176
Guo M, Li K, Zhang H, Min X, Hu X, Guo W, Jia J, Sun T. Enhanced catalytic activity of oxygenated VOC deep oxidation on highly active in-situ generated GdMn2O5/GdMnO3 catalysts. Journal of Colloid and Interface Science, 2020, 578(15): 229–241

DOI

177
Shipilovskikh S A, Rubtsov A E, Malkov A V. Oxidative dehomologation of aldehydes with oxygen as a terminal oxidant. Organic Letters, 2017, 19(24): 6760–6762

DOI

178
Ding J, Liu J, Yang Y, Zhao L, Yu Y. Understanding A-site tuning effect on formaldehyde catalytic oxidation over La-Mn perovskite catalysts. Journal of Hazardous Materials, 2022, 422(15): 126931

DOI

179
Xu Y, Dhainaut J, Dacquin J P, Mamede A S, Marinova M, Lamonier J F, Vezin H, Zhang H, Royer S. La1–x(Sr, Na, K)xMnO3 perovskites for HCHO oxidation: the role of oxygen species on the catalytic mechanism. Applied Catalysis B: Environmental, 2021, 287(15): 119955

DOI

180
Xu Y, Dhainaut J, Rochard G, Dacquin J P, Mamede A S, Giraudon J M, Lamonier J F, Zhang H, Royer S. Hierarchical porous ε-MnO2 from perovskite precursor: application to the formaldehyde total oxidation. Chemical Engineering Journal, 2020, 388(15): 124146

DOI

181
Li J, Shi Y, Fu X, Huang J, Zhang Y, Deng S, Zhang F. Hierarchical ZSM-5 based on fly ash for the low-temperature purification of odorous volatile organic compound in cooking fumes. Reaction Kinetics, Mechanisms and Catalysis, 2019, 128(1): 289–314

DOI

182
Li J, Shi Y, Fu X, Shu Y, Huang J, Zhu J, Tian G, Hu J. Active oxygen species and oxidation mechanism over Ce-doped LaMn0.8Ni0.2O3/hierarchical ZSM-5 in pentanal oxidation. Journal of Rare Earths, 2021, 39(9): 1062–1072

DOI

183
Huang X, Zhang B, Xia S, Han Y, Wang C, Yu G, Feng N. Sources of oxygenated volatile organic compounds (OVOCs) in urban atmospheres in north and south china. Environmental Pollution, 2020, 261: 114152

DOI

184
Zhu R, Liu B, Wang S, Huang X, Schuarca R L, He W, Cybulskis V J, Bond J Q. Understanding the mechanism(s) of ketone oxidation on VOx/γ-Al2O3. Journal of Catalysis, 2021, 404: 109–127

DOI

185
Mu X, Ding H, Pan W, Zhou Q, Du W, Qiu K, Ma J, Zhang K. Research progress in catalytic oxidation of volatile organic compound acetone. Journal of Environmental Chemical Engineering, 2021, 9(4): 105650

DOI

186
Li S, Wang D, Wu X, Chen Y. Recent advance on VOCs oxidation over layered double hydroxides derived mixed metal oxides. Chinese Journal of Catalysis, 2020, 41(4): 550–560

DOI

187
Rezlescu N, Rezlescu E, Popa P D, Doroftei C, Ignat M. Partial substitution of manganese with cerium in SrMnO3 nano-perovskite catalyst. Effect of the modification on the catalytic combustion of dilute acetone. Materials Chemistry and Physics, 2016, 182: 332–337

DOI

188
Cai Y, Zhu X, Hu W, Zheng C, Yang Y, Chen M, Gao X. Plasma-catalytic decomposition of ethyl acetate over LaMO3 (M = Mn, Fe, and Co) perovskite catalysts. Journal of Industrial and Engineering Chemistry, 2019, 70(25): 447–452

DOI

189
Qin Y, Shen F, Zhu T, Hong W, Liu X. Catalytic oxidation of ethyl acetate over LaBO3 (B = Co, Mn, Ni, Fe) perovskites supported silver catalysts. RSC Advances, 2018, 8(58): 33425–33431

DOI

190
Zhu X, Zhang S, Yang Y, Zheng C, Zhou J, Gao X, Tu X. Enhanced performance for plasma-catalytic oxidation of ethyl acetate over La1−xCexCoO3+δ catalysts. Applied Catalysis B: Environmental, 2017, 213: 97–105

DOI

191
Ikhlaq A, Kasprzyk-Hordern B. Catalytic ozonation of chlorinated VOCs on ZSM-5 zeolites and alumina: formation of chlorides. Applied Catalysis B: Environmental, 2017, 200: 274–282

DOI

192
Zhao J, Xi W, Tu C, Dai Q, Wang X. Catalytic oxidation of chlorinated VOCs over Ru/TixSn1–x catalysts. Applied Catalysis B: Environmental, 2020, 263: 118237

DOI

193
De Rivas B, López-Fonseca R, Gutiérrez-Ortiz M Á, Gutiérrez-Ortiz J I. Combustion of chlorinated VOCs using κ-CeZrO4 catalysts. Catalysis Today, 2011, 176(1): 470–473

DOI

194
Yang P, Shi Z, Yang S, Zhou R. High catalytic performances of CeO2-CrOx catalysts for chlorinated VOCs elimination. Chemical Engineering Science, 2015, 126(14): 361–369

DOI

195
Wang W, Meng Q, Xue Y, Weng X, Sun P, Wu Z. Lanthanide perovskite catalysts for oxidation of chloroaromatics: secondary pollution and modifications. Journal of Catalysis, 2018, 366: 213–222

DOI

196
Zhang C, Cao H, Wang C, He M, Zhan W, Guo Y. Catalytic mechanism and pathways of 1,2-dichloropropane oxidation over LaMnO3 perovskite: an experimental and DFT study. Journal of Hazardous Materials, 2021, 402(15): 123473

DOI

197
Weng X, Meng Q, Liu J, Jiang W, Pattisson S, Wu Z. Catalytic oxidation of chlorinated organics over lanthanide perovskites: effects of phosphoric acid etching and water vapor on chlorine desorption behavior. Environmental Science & Technology, 2019, 53(2): 884–893

DOI

198
He C, Pan K, Chang M. Catalytic oxidation of trichloroethylene from gas streams by perovskite-type catalysts. Environmental Science and Pollution Research International, 2018, 25(12): 11584–11594

DOI

199
Pan K, He C, Chang M. Oxidation of TCE by combining perovskite-type catalyst with DBD. IEEE Transactions on Plasma Science, 2019, 47(2): 1152–1163

DOI

200
Ding J, Liu J, Yang Y, Wang Z, Yu Y. Reaction mechanism of dichloromethane oxidation on LaMnO3 perovskite. Chemosphere, 2021, 277: 130194

DOI

Outlines

/