RESEARCH ARTICLE

In situ growth of phosphorized ZIF-67-derived amorphous CoP/Cu2O@CF electrocatalyst for efficient hydrogen evolution reaction

  • Ruiwen Qi ,
  • Xiao Liu ,
  • Hongkai Bu ,
  • Xueqing Niu ,
  • Xiaoyang Ji ,
  • Junwei Ma ,
  • Hongtao Gao
Expand
  • Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Sciences, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
majw15@lzu.edu.cn
gaohtao@qust.edu.cn

Received date: 16 Dec 2022

Accepted date: 03 Mar 2023

Published date: 15 Oct 2023

Copyright

2023 Higher Education Press

Abstract

Transition metal phosphides have been extensively studied for catalytic applications in water splitting. Herein, we report an in situ phosphorization of zeolitic imidazole frameworks (ZIF-67) to generate amorphous cobalt phosphide/ZIF-67 heterojunction on a self-supporting copper foam (CF) substrate with excellent performance for hydrogen evolution reaction (HER). The needle-leaf like copper hydroxide was anchored on CF surface, which acted as implantation to grow ZIF-67. The intermediate product was phosphorized to obtain final electrocatalyst (CoP/Cu2O@CF) with uniform particle size, exhibiting a rhombic dodecahedron structure with wrinkles on the surface. The electrochemical measurement proved that CoP/Cu2O@CF catalyst exhibited excellent HER activity and long-term stability in 1.0 mol·L–1 KOH solution. The overpotential was only 62 mV with the Tafel slope of 83 mV·dec–1 at a current density of 10 mA·cm–2, with a large electrochemical active surface area. It also showed competitive performance at large current which indicated the potential application to industrial water electrolysis to produce hydrogen. First-principle calculations illustrated that benefit from the construction of CoP/ZIF-67 heterojunction, the d-band center of CoP downshifted after bonding with ZIF-67 and the Gibbs free energy (ΔGH*) changed from –0.18 to –0.11 eV, confirming both decrease in overpotential and excellent HER activity. This work illustrates the efficient HER activity of CoP/Cu2O@CF catalyst, which will act as a potential candidate for precious metal electrocatalysts.

Cite this article

Ruiwen Qi , Xiao Liu , Hongkai Bu , Xueqing Niu , Xiaoyang Ji , Junwei Ma , Hongtao Gao . In situ growth of phosphorized ZIF-67-derived amorphous CoP/Cu2O@CF electrocatalyst for efficient hydrogen evolution reaction[J]. Frontiers of Chemical Science and Engineering, 2023 , 17(10) : 1430 -1439 . DOI: 10.1007/s11705-023-2320-1

Conflict of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 41573103) and the Shandong Natural Science Foundation (Grant Nos. ZR2021MB049, ZR2022QB211) of China.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-023-2320-1 and is accessible for authorized users.
1
Zhang X. The development trend of and suggestions for China’s hydrogen energy industry. Engineering, 2021, 7(6): 719–721

DOI

2
Wang J, Gao Y, Kong H, Kim J, Choi S, Ciucci F, Hao Y, Yang S, Shao Z, Lim J. Non-precious-metal catalysts for alkaline water electrolysis: operando characterizations, theoretical calculations, and recent advances. Chemical Society Reviews, 2020, 49(24): 9154–9196

DOI

3
Cheng N, Stambula S, Wang D, Banis M N, Liu J, Riese A, Xiao B, Li R, Sham T K, Liu L M, Botton G A, Sun X. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nature Communications, 2016, 7(1): 13638

DOI

4
Shi Y, Zhang B. Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chemical Society Reviews, 2016, 45(6): 1529–1541

DOI

5
Liang H, Liu J. Insights on the corrosion and degradation of MXenes as electrocatalysts for hydrogen evolution reaction. ChemCatChem, 2022, 14(6): e202101375

DOI

6
Theerthagiri J, Murthy A P, Lee S J, Karuppasamy K, Arumugam S R, Yu Y, Hanafiah M M, Kim H S, Mittal V, Choi M Y. Recent progress on synthetic strategies and applications of transition metal phosphides in energy storage and conversion. Ceramics International, 2021, 47(4): 4404–4425

DOI

7
Jiang Y, Lu Y, Lin J, Wang X, Shen Z. Water splitting: a hierarchical MoP nanoflake array supported on Ni foam: a bifunctional electrocatalyst for overall water splitting. Small Methods, 2018, 2(5): 1800028

DOI

8
Wang R, Dong X Y, Du J, Zhao J Y, Zang S Q. MOF-derived bifunctional Cu3P nanoparticles coated by a N,P-codoped carbon shell for hydrogen evolution and oxygen reduction. Advanced Materials, 2018, 30(6): 1703711

DOI

9
Liu T, Liu D, Qu F, Wang D, Zhang L, Ge R, Hao S, Ma Y, Du G, Asiri A M, Chen L, Sun X. Enhanced electrocatalysis for energy-efficient hydrogen production over CoP catalyst with nonelectroactive Zn as a promoter. Advanced Energy Materials, 2017, 7(15): 1700020

DOI

10
Guan C, Xiao W, Wu H, Liu X, Zang W, Zhang H, Ding J, Feng Y P, Pennycook S J, Wang J. Hollow Mo-doped CoP nanoarrays for efficient overall water splitting. Nano Energy, 2018, 48: 73–80

DOI

11
Guan C, Wu H, Ren W, Yang C, Liu X, Ouyang X, Song Z, Zhang Y, Pennycook S J, Cheng C, Wang J. Metal−organic framework-derived integrated nanoarrays for overall water splitting. Journal of Materials Chemistry A, 2018, 6(19): 9009–9018

DOI

12
Suo N, Han X, Chen C, He X, Dou Z, Lin Z, Cui L, Xiang J. Engineering vanadium phosphide by iron doping as bifunctional electrocatalyst for overall water splitting. Electrochimica Acta, 2020, 333: 135531

DOI

13
Wang S, McGuirk C M, d’Aquino A, Mason J A, Mirkin C A. Metal−organic framework nanoparticles. Advanced Materials, 2018, 30(37): 1800202

DOI

14
He T, Kong X J, Li J R. Chemically stable metal−organic frameworks: rational construction and application expansion. Accounts of Chemical Research, 2021, 54(15): 3083–3094

DOI

15
Jadhav H S, Bandal H A, Ramakrishna S, Kim H. Critical review, recent updates on zeolitic imidazolate framework-67 (ZIF-67) and its derivatives for electrochemical water splitting. Advanced Materials, 2022, 34(11): e2107072

DOI

16
Kharissova O V, Kharisov B I, Ulyand I E, García T H. Catalysis using metal−organic framework-derived nanocarbons: recent trends. Journal of Materials Research, 2020, 35(16): 2190–2207

DOI

17
Zhai Y, Ren X, Yan J, Liu S. High density and unit activity integrated in amorphous catalysts for electrochemical water splitting. Small Structures, 2020, 2(4): 2000096

DOI

18
Guo C, Shi Y, Lu S, Yu Y, Zhang B. Amorphous nanomaterials in electrocatalytic water splitting. Chinese Journal of Catalysis, 2021, 42(8): 1287–1296

DOI

19
Anantharaj S, Noda S. Amorphous catalysts and electrochemical water splitting: an untold story of harmony. Small, 2020, 16(2): e1905779

DOI

20
Yang M, Jiang Y, Qu M, Qin Y, Wang Y, Shen W, He R, Su W, Li M. Strong electronic couple engineering of transition metal phosphides-oxides heterostructures as multifunctional electrocatalyst for hydrogen production. Applied Catalysis B: Environmental, 2020, 269: 118803

DOI

21
Wang Z, Xiao B, Lin Z, Xu Y, Lin Y, Meng F, Zhang Q, Gu L, Fang B, Guo S, Zhong W. PtSe2/Pt heterointerface with reduced coordination for boosted hydrogen evolution reaction. Angewandte Chemie International Edition, 2021, 60(43): 23388–23393

DOI

22
Yu Z, Li Y, Martin-Diaconescu V, Simonelli L, Ruiz Esquius J, Amorim I, Araujo A, Meng L, Faria J L, Liu L. Highly efficient and stable saline water electrolysis enabled by self-supported nickel-iron phosphosulfide nanotubes with heterointerfaces and under-coordinated metal active sites. Advanced Functional Materials, 2022, 32(38): 2206138

DOI

23
Zhang L, Zheng Y, Wang J, Geng Y, Zhang B, He J, Xue J, Frauenheim T, Li M. Ni/Mo bimetallic-oxide-derived heterointerface-rich sulfide nanosheets with Co-doping for efficient alkaline hydrogen evolution by boosting volmer reaction. Small, 2021, 17(10): e2006730

DOI

24
Inta H R, Ghosh S, Mondal A, Tudu G, Koppisetti H V S R M, Mahalingam V. Ni0.85Se/MoSe2 interfacial structure: an efficient electrocatalyst for alkaline hydrogen evolution reaction. ACS Applied Energy Materials, 2021, 4(3): 2828–2837

DOI

25
Wang T, Tao L, Zhu X, Chen C, Chen W, Du S, Zhou Y, Zhou B, Wang D, Xie C, Long P, Li W, Wang Y, Chen R, Zou Y, Fu X Z, Li Y, Duan X, Wang S. Combined anodic and cathodic hydrogen production from aldehyde oxidation and hydrogen evolution reaction. Nature Catalysis, 2021, 5(1): 66–73

DOI

26
Guo X, Xing T, Lou Y, Chen J. Controlling ZIF-67 crystals formation through various cobalt sources in aqueous solution. Journal of Solid State Chemistry, 2016, 235: 107–112

DOI

27
Qazi U Y, Javaid R, Tahir N, Jamil A, Afzal A. Design of advanced self-supported electrode by surface modification of copper foam with transition metals for efficient hydrogen evolution reaction. International Journal of Hydrogen Energy, 2020, 45(58): 33396–33406

DOI

28
Jiang Y, Liang J, Yue L, Luo Y, Liu Q, Kong Q, Kong X, Asiri A M, Zhou K, Sun X. Reduced graphene oxide supported ZIF-67 derived CoP enables high-performance potassium ion storage. Journal of Colloid and Interface Science, 2021, 604: 319–326

DOI

29
Liu H, Guan J, Yang S, Yu Y, Shao R, Zhang Z, Dou M, Wang F, Xu Q. Metal−organic-framework-derived Co2P nanoparticle/multi-doped porous carbon as a trifunctional electrocatalyst. Advanced Materials, 2020, 32(36): e2003649

DOI

30
Zhang X, Zheng R, Jin M, Shi R, Ai Z, Amini A, Lian Q, Cheng C, Song S. NiCoSx@cobalt carbonate hydroxide obtained by surface sulfurization for efficient and stable hydrogen evolution at large current densities. ACS Applied Materials & Interfaces, 2021, 13(30): 35647–35656

DOI

31
Yang H, Chen Z, Guo P, Fei B, Wu R. B-doping-induced amorphization of LDH for large-current-density hydrogen evolution reaction. Applied Catalysis B: Environmental, 2020, 261: 118240

DOI

32
Shan X, Liu J, Mu H, Xiao Y, Mei B, Liu W, Lin G, Jiang Z, Wen L, Jiang L. An engineered superhydrophilic/superaerophobic electrocatalyst composed of the supported CoMoSx chalcogel for overall water splitting. Angewandte Chemie International Edition, 2020, 59(4): 1659–1665

DOI

33
Beltrán-Suito R, Menezes P W, Driess M. Amorphous outperforms crystalline nanomaterials: surface modifications of molecularly derived CoP electro(pre)catalysts for efficient water-splitting. Journal of Materials Chemistry A, 2019, 7(26): 15749–15756

DOI

34
Anjum M A R, Okyay M S, Kim M, Lee M H, Park N, Lee J S. Bifunctional sulfur-doped cobalt phosphide electrocatalyst outperforms all-noble-metal electrocatalysts in alkaline electrolyzer for overall water splitting. Nano Energy, 2018, 53: 286–295

DOI

35
Zhao Y, Jin B, Zheng Y, Jin H, Jiao Y, Qiao S Z. Charge state manipulation of cobalt selenide catalyst for overall seawater electrolysis. Advanced Energy Materials, 2018, 8(29): 1801926

DOI

36
Li J, Xu Y, Liang L, Ge R, Yang J, Liu B, Feng J, Li Y, Zhang J, Zhu M, Li S, Li W. Metal−organic frameworks-derived nitrogen-doped carbon with anchored dual-phased phosphides as efficient electrocatalyst for overall water splitting. Sustainable Materials and Technologies, 2022, 32: e00421

DOI

37
Song M, Zhang Z, Li Q, Jin W, Wu Z, Fu G, Liu X. Ni-foam supported Co(OH)F and Co-P nanoarrays for energy-efficient hydrogen production via urea electrolysis. Journal of Materials Chemistry A, 2019, 7(8): 3697–3703

DOI

38
Wei C, Sun S, Mandler D, Wang X, Qiao S Z, Xu Z J. Approaches for measuring the surface areas of metal oxide electrocatalysts for determining their intrinsic electrocatalytic activity. Chemical Society Reviews, 2019, 48(9): 2518–2534

DOI

39
McCrory C C, Jung S, Peters J C, Jaramillo T F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. Journal of the American Chemical Society, 2013, 135(45): 16977–16987

DOI

40
Kitchin J R, Norskov J K, Barteau M A, Chen J G. Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals. Journal of Chemical Physics, 2004, 120(21): 10240–10246

DOI

41
Medford A J, Vojvodic A, Hummelshøj J S, Voss J, Abild-Pedersen F, Studt F, Bligaard T, Nilsson A, Nørskov J K. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. Journal of Catalysis, 2015, 328: 36–42

DOI

42
Jiao S, Fu X, Huang H. Descriptors for the evaluation of electrocatalytic reactions: d-band theory and beyond. Advanced Functional Materials, 2021, 32(4): 2107651

DOI

Outlines

/