RESEARCH ARTICLE

Vanadium oxide cathode with synergistic engineering of calcium-ion intercalation and polyaniline coating for high performance zinc-ion batteries

  • Lin Zhang 1 ,
  • Xinghua Qin 2 ,
  • Lang Wang 2 ,
  • Zifang Zhao , 3 ,
  • Liwei Mi , 1 ,
  • Qiongqiong Lu , 4,5
Expand
  • 1. Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, China
  • 2. Institute of Materials and Technology, Dalian Maritime University, Dalian 116026, China
  • 3. School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453000, China
  • 4. Institute of Materials, Henan Academy of Sciences, Zhengzhou 450046, China
  • 5. Leibniz Institute for Solid State and Materials Research (IFW) Dresden E.V., Dresden 01069, Germany
zzf@hist.edu.cn
mlwzzu@163.com
qiongqiong.lu@hotmail.com

Received date: 28 Sep 2022

Accepted date: 13 Dec 2022

Published date: 15 Sep 2023

Copyright

2023 Higher Education Press

Abstract

Vanadium oxides as cathode for zinc-ion batteries have attracted much attention because of their high theoretical capacity, flexible layered structure and abundant resources. However, cathodes are susceptible to the collapse of their layered structure and the dissolution of vanadium after repeated long cycles, which worsen their capacities and cycling stabilities. Herein, a synergistic engineering of calcium-ion intercalation and polyaniline coating was developed to achieve the superior electrochemical performance of vanadium pentoxide for zinc-ion batteries. The pre-intercalation of calcium-ion between vanadium pentoxide layers as pillars increase the crystal structure’s stability, while the polyaniline coating on the cathodes improves the conductivity and inhibits the dissolution of vanadium. This synergistic engineering enables that the battery system based-on the polyaniline coated calcium vanadate cathode to deliver a high capacity of 406.4 mAh·g−1 at 1 A·g−1, an ultralong cycle life over 6000 cycles at 10 A·g−1 with 93% capacity retention and high-rate capability. The vanadium oxide cathode with synergistic engineering of calcium-ion intercalation and polyaniline coating was verified to effectively improve the electrochemical performance of zinc-ion batteries.

Cite this article

Lin Zhang , Xinghua Qin , Lang Wang , Zifang Zhao , Liwei Mi , Qiongqiong Lu . Vanadium oxide cathode with synergistic engineering of calcium-ion intercalation and polyaniline coating for high performance zinc-ion batteries[J]. Frontiers of Chemical Science and Engineering, 2023 , 17(9) : 1244 -1253 . DOI: 10.1007/s11705-022-2293-5

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 22101309, 52103277 and U1804126), the Key Scientific and Technological Project of Henan Province (Grant No. 222102240001), and the Startup Research of Henan Academy of Sciences (Grant No. 231817001).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://dx.doi.org/10.1007/s11705-022-2293-5 and is accessible for authorized users.
1
Jin G, Zhang J, Dang B, Wu F, Li J. Engineering zirconium-based metal-organic framework-801 films on carbon cloth as shuttle-inhibiting interlayers for lithium–sulfur batteries. Frontiers of Chemical Science and Engineering, 2022, 16(4): 511–522

DOI

2
Li Y, Gao T, Ni D, Zhou Y, Yousaf M, Guo Z, Zhou J, Zhou P, Wang Q, Guo S. Two birds with one stone: interfacial engineering of multifunctional janus separator for lithium–sulfur batteries. Advanced Materials, 2022, 34(5): 2107638

DOI

3
Bi W, Huang J, Wang M, Jahrman E P, Seidler G T, Wang J, Wu Y, Gao G, Wu G, Cao G. V2O5 conductive polymer nanocables with built-in local electric field derived from interfacial oxygen vacancies for high energy density supercapacitors. Journal of Materials Chemistry A, 2019, 7(30): 17966–17973

DOI

4
Sim G J, Ma K, Huang Z, Huang S, Wang Y, Yang H. Two-dimensional SnS2 nanosheets on Prussian blue template for high performance sodium ion batteries. Frontiers of Chemical Science and Engineering, 2019, 13(3): 493–500

DOI

5
Du M, Liu C, Zhang F, Dong W, Zhang X, Sang Y, Wang J J, Guo Y G, Liu H, Wang S. Tunable layered (Na,Mn)V8O20·nH2O cathode material for high-performance aqueous zinc ion batteries. Advanced Science, 2020, 7(13): 2000083

6
Ruan P, Xu X, Zheng D, Chen X, Yin X, Liang S, Wu X, Shi W, Cao X, Zhou J. Promoting reversible dissolution/deposition of MnO2 for high-energy-density zinc batteries via enhancing cut-off voltage. ChemSusChem, 2022, 15(18): 202201118

DOI

7
Zeng X, Mao J, Hao J, Liu J, Liu S, Wang Z, Wang Y, Zhang S, Zheng T, Liu J, Rao P, Guo Z. Electrolyte design for in situ construction of highly Zn2+ conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions. Advanced Materials, 2021, 33(11): 2007416

DOI

8
Wang N, Wan H, Duan J, Wang X, Tao L, Zhang J, Wang H. A review of zinc-based battery from alkaline to acid. Materials Today Advances, 2021, 11: 100149

DOI

9
Chen S, Li K, Hui K S, Zhang J. Regulation of lamellar structure of vanadium oxide via polyaniline intercalation for high-performance aqueous zinc-ion battery. Advanced Functional Materials, 2020, 30(43): 2003890

DOI

10
Pan Q, Dong R, Lv H, Sun X, Song Y, Liu X X. Fundamental understanding of the proton and zinc storage in vanadium oxide for aqueous zinc-ion batteries. Chemical Engineering Journal, 2021, 419: 129491

DOI

11
Yang H, Ning P, Zhu Z, Yuan L, Jia W, Wen J, Xu G, Li Y, Cao H. Water-steam activation toward oxygen-deficient vanadium oxides for enhancing zinc ion storage. Journal of Materials Chemistry A, 2021, 9(43): 24517–24527

DOI

12
Liu S, Zhu H, Zhang B, Li G, Zhu H, Ren Y, Geng H, Yang Y, Liu Q, Li C C. Tuning the kinetics of zinc-ion insertion/extraction in V2O5 by in situ polyaniline intercalation enables improved aqueous zinc-ion storage performance. Advanced Materials, 2020, 32(26): 2001113

DOI

13
Yin C, Pan C, Liao X, Pan Y, Yuan L. Regulating the interlayer spacing of vanadium oxide by in situ polyaniline intercalation enables an improved aqueous zinc-ion storage performance. ACS Applied Materials & Interfaces, 2021, 13(33): 39347–39354

DOI

14
Zhao H, Fu Q, Yang D, Sarapulova A, Pang Q, Meng Y, Wei L, Ehrenberg H, Wei Y, Wang C, Chen G. In operando synchrotron studies of NH4+ preintercalated V2O5·nH2O nanobelts as the cathode material for aqueous rechargeable zinc batteries. ACS Nano, 2020, 14(9): 11809–11820

DOI

15
Zhu K, Wu T, Huang K. A high capacity bilayer cathode for aqueous Zn-ion batteries. ACS Nano, 2019, 13(12): 14447–14458

DOI

16
Xia C, Guo J, Li P, Zhang X, Alshareef H N. Highly stable aqueous zinc-ion storage using a layered calcium vanadium oxide bronze cathode. Angewandte Chemie International Edition, 2018, 57(15): 3943–3948

DOI

17
Ruan P, Liang S, Lu B, Fan H J, Zhou J. Design strategies for high-energy-density aqueous zinc batteries. Angewandte Chemie International Edition, 2022, 61(17): 202200598

DOI

18
Liu X, Zhang H, Geiger D, Han J, Varzi A, Kaiser U, Moretti A, Passerini S. Calcium vanadate sub-microfibers as highly reversible host cathode material for aqueous zinc-ion batteries. Chemical Communications, 2019, 55(16): 2265–2268

DOI

19
Li R, Xing F, Li T, Zhang H, Yan J, Zheng Q, Li X. Intercalated polyaniline in V2O5 as a unique vanadium oxide bronze cathode for highly stable aqueous zinc ion battery. Energy Storage Materials, 2021, 38: 590–598

DOI

20
Zhao H, Fu Q, Luo X, Wu X, Indris S, Bauer M, Wang Y, Ehrenberg H, Knapp M, Wei Y. Unraveling a cathode/anode compatible electrolyte for high-performance aqueous rechargeable zinc batteries. Energy Storage Materials, 2022, 50: 464–472

DOI

21
Hu T, Feng Z, Zhang Y, Liu Y, Sun J, Zheng J, Jiang H, Wang P, Dong X, Meng C. “Double guarantee mechanism” of Ca2+-intercalation and rGO-integration ensures hydrated vanadium oxide with high performance for aqueous zinc-ion batteries. Inorganic Chemistry Frontiers, 2021, 8(1): 79–89

DOI

22
Li X, Chen Z, Yang Y, Liang S, Lu B, Zhou J. The phosphate cathodes for aqueous zinc-ion batteries. Inorganic Chemistry Frontiers, 2022, 9(16): 3986–3998

DOI

23
Liu S, Kang L, Kim J M, Chun Y T, Zhang J, Jun S C. Recent advances in vanadium-based aqueous rechargeable zinc-ion batteries. Advanced Energy Materials, 2020, 10(25): 2000477

DOI

24
Batyrbekuly D, Laïk B, Pereira Ramos J P, Bakenov Z, Baddour Hadjean R. A porous puckered V2O5 polymorph as new high performance cathode material for aqueous rechargeable zinc batteries. Journal of Energy Chemistry, 2021, 61: 459–468

DOI

25
Wang X, Wang L, Zhang B, Feng J, Zhang J, Ou X, Hou F, Liang J. A flexible carbon nanotube@V2O5 film as a high-capacity and durable cathode for zinc ion batteries. Journal of Energy Chemistry, 2021, 59: 126–133

DOI

26
Chen S, Nian Q, Zheng L, Xiong B Q, Wang Z, Shen Y, Ren X. Highly reversible aqueous zinc metal batteries enabled by fluorinated interphases in localized high concentration electrolytes. Journal of Materials Chemistry A, 2021, 9(39): 22347–22352

DOI

27
Fu Q, Wang J, Sarapulova A, Zhu L, Missyul A, Welter E, Luo X, Ding Z, Knapp M, Ehrenberg H, Dsoke S. Electrochemical performance and reaction mechanism investigation of V2O5 positive electrode material for aqueous rechargeable zinc batteries. Journal of Materials Chemistry A, 2021, 9(31): 16776–16786

DOI

28
Li R, Zhang H, Zheng Q, Li X. Porous V2O5 yolk-shell microspheres for zinc ion battery cathodes: activation responsible for enhanced capacity and rate performance. Journal of Materials Chemistry A, 2020, 8(10): 5186–5193

DOI

29
Wei T, Li Q, Yang G, Wang C. An electrochemically induced bilayered structure facilitates long-life zinc storage of vanadium dioxide. Journal of Materials Chemistry A, 2018, 6(17): 8006–8012

DOI

30
Wu B, Wu Y, Lu Z, Zhang J, Han N, Wang Y, Li X M, Lin M, Zeng L. A cation selective separator induced cathode protective layer and regulated zinc deposition for zinc ion batteries. Journal of Materials Chemistry A, 2021, 9(8): 4734–4743

DOI

31
Du M, Zhang F, Zhang X, Dong W, Sang Y, Wang J, Liu H, Wang S. Calcium ion pinned vanadium oxide cathode for high-capacity and long-life aqueous rechargeable zinc-ion batteries. Science China Chemistry, 2020, 63(12): 1767–1776

DOI

32
Zeng J, Zhang Z, Guo X, Li G. A conjugated polyaniline and water co-intercalation strategy boosting zinc-ion storage performances for rose-like vanadium oxide architectures. Journal of Materials Chemistry A, 2019, 7(37): 21079–21084

DOI

33
Chen H, Chen L, Meng J, Yang Z, Wu J, Rong Y, Deng L, Shi Y. Synergistic effects in V3O7/V2O5 composite material for high capacity and long cycling life aqueous rechargeable zinc ion batteries. Journal of Power Sources, 2020, 474: 228569

DOI

34
Li Y, Huang Z, Kalambate P K, Zhong Y, Huang Z, Xie M, Shen Y, Huang Y. V2O5 nanopaper as a cathode material with high capacity and long cycle life for rechargeable aqueous zinc-ion battery. Nano Energy, 2019, 60: 752–759

DOI

35
Dai Y, Liao X, Yu R, Li J, Li J, Tan S, He P, An Q, Wei Q, Chen L, Hong X, Zhao K, Ren Y, Wu J, Zhao Y, Mai L. Quicker and more Zn2+ storage predominantly from the interface. Advanced Materials, 2021, 33(26): 2100359

DOI

36
Xu W, Zhao X, Tang J, Zhang C, Gao Y, Sasaki S I, Tamiaki H, Li A, Wang X F. Synthesis of Chl@Ti3C2 composites as an anode material for lithium storage. Frontiers of Chemical Science and Engineering, 2020, 15(3): 709–716

DOI

37
Song J, Xu K, Liu N, Reed D, Li X. Crossroads in the renaissance of rechargeable aqueous zinc batteries. Materials Today, 2021, 45: 191–212

DOI

38
Wang N, Qiu X, Xu J, Huang J, Cao Y, Wang Y. Cathode materials challenge varied with different electrolytes in zinc batteries. ACS Materials Letters, 2022, 4(1): 190–204

DOI

39
Yu L, Miao J, Jin Y, Lin Jerry Y S. A comparative study on polypropylene separators coated with different inorganic materials for lithium-ion batteries. Frontiers of Chemical Science and Engineering, 2017, 11(3): 346–352

DOI

40
Huang J, Qiu X, Wang N, Wang Y. Aqueous rechargeable zinc batteries: challenges and opportunities. Current Opinion in Electrochemistry, 2021, 30: 100801

DOI

41
Service R F. Zinc aims to beat lithium batteries at storing energy. Science, 2021, 372(6545): 890–891

42
Wu J, Kuang Q, Zhang K, Feng J, Huang C, Li J, Fan Q, Dong Y, Zhao Y. Spinel Zn3V3O8: a high-capacity zinc supplied cathode for aqueous Zn-ion batteries. Energy Storage Materials, 2021, 41: 297–309

DOI

43
Yang X, Qin Z, Shi H Y, Lin Z, Wu W, Song Y, Guo D, Liu X X, Sun X. Suppressing Cu-based cathode dissolution in rechargeable aqueous zinc batteries with equilibrium principles. Applied Surface Science, 2021, 568: 150948

DOI

44
Bin D, Liu Y, Yang B, Huang J, Dong X, Zhang X, Wang Y, Xia Y. Engineering a high-energy-density and long lifespan aqueous zinc battery via ammonium vanadium bronze. ACS Applied Materials & Interfaces, 2019, 11(23): 20796–20803

DOI

45
Deka Boruah B, Mathieson A, Park S K, Zhang X, Wen B, Tan L, Boies A, de Volder M. Vanadium dioxide cathodes for high-rate photo-rechargeable zinc-ion batteries. Advanced Energy Materials, 2021, 11(13): 2100115

DOI

46
Fan L, Ru Y, Xue H, Pang H, Xu Q. Vanadium-based materials as positive electrode for aqueous zinc-ion batteries. Advanved Sustainable Systems, 2020, 4(12): 2000178

DOI

47
Liu S, Kang L, Kim J M, Chun Y T, Zhang J, Jun S C. Recent advances in vanadium-based aqueous rechargeable zinc-ion batteries. Advanced Energy Materials, 2020, 10(25): 2000477

DOI

48
Zhang L, Zhang B, Hu J, Liu J, Miao L, Jiang J. An in situ artificial cathode electrolyte interphase strategy for suppressing cathode dissolution in aqueous zinc ion batteries. Small Methods, 2021, 5(6): 2100094

DOI

49
Zhang T, Paillard E. Recent advances toward high voltage, EC-free electrolytes for graphite-based Li-ion battery. Frontiers of Chemical Science and Engineering, 2018, 12(3): 577–591

DOI

50
Huang C, Liu S, Feng J, Wang Y, Fan Q, Kuang Q, Dong Y, Zhao Y. Optimizing engineering of rechargeable aqueous zinc ion batteries to enhance the zinc ions storage properties of cathode material. Journal of Power Sources, 2021, 490: 229528

DOI

Outlines

/