RESEARCH ARTICLE

Fabrication of coconut shell-derived porous carbons for CO2 adsorption application

  • Jiali Bai 1 ,
  • Jiamei Huang 1 ,
  • Qiyun Yu 1 ,
  • Muslum Demir 2 ,
  • Eda Akgul 2 ,
  • Bilge Nazli Altay 3,4 ,
  • Xin Hu , 1 ,
  • Linlin Wang , 5
Expand
  • 1. Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
  • 2. Department of Chemical Engineering, Osmaniye Korkut Ata University, Osmaniye 80000, Turkey
  • 3. College of Engineering Technology, Print and Graphic Media Science, Rochester Institute of Technology, New York 14623, USA
  • 4. Institute of Pure and Applied Sciences, Marmara University, Istanbul 34722, Turkey
  • 5. Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology and Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
huxin@zjnu.cn
wanglinlin@zjnu.cn

Received date: 23 Oct 2022

Accepted date: 09 Dec 2022

Published date: 15 Aug 2023

Copyright

2023 Higher Education Press

Abstract

Biomass-derived porous carbons have been considered as the most potential candidate for effective CO2 adsorbent thanks to being widely-available precursor and having highly porous structure and stable chemical/physical features. However, the biomass-derived porous carbons still suffer from the poor optimization process in terms of the synthesis conditions. Herein, we have successfully fabricated coconut shell-derived porous carbon by a simple one-step synthesis process. The as-prepared carbon exhibits advanced textual activity together with well-designed micropore morphology and possesses oxygen-containing functional groups (reached 18.81 wt %) within the carbon matrix. Depending on the different activating temperatures (from 700 to 800 °C) and KOH/biomass mass ratios (from 0.3 to 1), the 750 °C and 0.5 mass ratio were found to be enabling the highest CO2 capture performance. The optimal adsorbent was achieved a high CO2 uptake capacity of 5.92 and 4.15 mmol·g−1 at 0 and 25 °C (1 bar), respectively. More importantly, as-prepared carbon adsorbent exhibited moderate isosteric heat of adsorption and high CO2/N2 selectivity. The results were revealed not only the textural feature but also the surface functional groups critically determine the CO2 capture performance, indicating coconut shell-derived porous carbon has a considerable potential as a solid-state adsorbent for the CO2 capture.

Cite this article

Jiali Bai , Jiamei Huang , Qiyun Yu , Muslum Demir , Eda Akgul , Bilge Nazli Altay , Xin Hu , Linlin Wang . Fabrication of coconut shell-derived porous carbons for CO2 adsorption application[J]. Frontiers of Chemical Science and Engineering, 2023 , 17(8) : 1122 -1130 . DOI: 10.1007/s11705-022-2292-6

Acknowledgements

Financial support was provided by Zhejiang Provincial Natural Science Foundation (Grant No. LY21B070005), National Undergraduate Training Program for Innovation and Entrepreneurship of China and Self designed scientific research project of Zhejiang Normal University (Grant No. 2021ZS06). Demir M would like to acknowledge financial support from TUBITAK 2247 with a project number of 121C217 and Gaziantep KOSGEB.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://dx.doi.org/10.1007/s11705-022-2292-6 and is accessible for authorized users.
1
Ma C, Lu T, Shao J, Huang J, Hu X, Wang L. Biomass derived nitrogen and sulfur co-doped porous carbons for efficient CO2 adsorption. Separation and Purification Technology, 2022, 281: 119899

DOI

2
Ratajczak P, Suss M E, Kaasik F, Beguin F. Carbon electrodes for capacitive technologies. Energy Storage Materials, 2019, 16: 126–145

DOI

3
Wang Y F, Zou S J, Hu W P, Wu F F, Yang J X, Cen Y Y, Yang D X, Hou Z Q, Huang K J. Biomass-derived graphene-like carbon nanoflakes for advanced supercapacitor and hydrogen evolution reaction. Journal of Alloys and Compounds, 2022, 928: 167176

DOI

4
Gao W R, Lin Z X, Chen H R, Yan S S, Huang Y, Hu X, Zhang S. A review on N-doped biochar for enhanced water treatment and emerging applications. Fuel Processing Technology, 2022, 237: 107468

DOI

5
He L, Weniger F, Neumann H, Beller M. Synthesis, characterization, and application of metal nanoparticles supported on nitrogen-doped carbon: catalysis beyond electrochemistry. Angewandte Chemie International Edition, 2016, 55(41): 12582–12594

DOI

6
Das O, Bhattacharyya D, Hui D, Lau K T. Mechanical and flammability characterisations of biochar/polypropylene biocomposites. Composites Part B: Engineering, 2016, 106: 120–128

DOI

7
Idrees M, Jeelani S, Rangari V. Three-dimensional-printed sustainable biochar-recycled PET composites. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 13940–13948

DOI

8
Li S Y, Li X Y, Chen C C, Wang H Y, Deng Q Y, Gong M, Li D G. Development of electrically conductive nano bamboo charcoal/ultra-high molecular weight polyethylene composites with a segregated network. Composites Science and Technology, 2016, 132: 31–37

DOI

9
Shi S, Liu Y. Nitrogen-doped activated carbons derived from microalgae pyrolysis byproducts by microwave/KOH activation for CO2 adsorption. Fuel, 2021, 306: 121762

DOI

10
Shen S, Shi X, Li C, Guo H, Long Q, Wang S, Yin X. Nonaqueous (amine + glycol ether) solvents for energy-efficient CO2 capture: new insights into phase change behaviors and assessment of capture performance. Separation and Purification Technology, 2022, 300: 121908

DOI

11
Millward A R, Yaghi O M. Metal−organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. Journal of the American Chemical Society, 2005, 127(51): 17998–17999

DOI

12
Chatterjee S, Jeevanandham S, Mukherjee M, Vo D V N, Mishra V. Significance of re-engineered zeolites in climate mitigation—a review for carbon capture and separation. Journal of Environmental Chemical Engineering, 2021, 9(5): 105957

DOI

13
Sun L B, Kang Y H, Shi Y Q, Jiang Y, Liu X Q. Highly selective capture of the greenhouse gas CO2 in polymers. ACS Sustainable Chemistry & Engineering, 2015, 3(12): 3077–3085

DOI

14
Sang Y, Cao Y, Wang L, Yan W, Chen T, Huang J, Liu Y N. N-rich porous organic polymers based on Schiff base reaction for CO2 capture and mercury(II) adsorption. Journal of Colloid and Interface Science, 2021, 587: 121–130

DOI

15
Yan H Y, Zhang G J, Xu Y, Zhang Q Q, Liu J, Li G Q, Zhao Y Q, Wang Y, Zhang Y F. High CO2 adsorption on amine-functionalized improved macro-/mesoporous multimodal pore silica. Fuel, 2022, 315: 123195

DOI

16
Zhang G, Zhao P, Hao L, Xu Y, Cheng H. A novel amine double functionalized adsorbent for carbon dioxide capture using original mesoporous silica molecular sieves as support. Separation and Purification Technology, 2019, 209: 516–527

DOI

17
Wang Y, Kang C, Zhang Z, Usadi A K, Calabro D C, Baugh L S, Di Yuan Y, Zhao D. Evaluation of Schif-base covalent organic frameworks for CO2 capture: structure-performance relationships, stability, and performance under wet conditions. ACS Sustainable Chemistry & Engineering, 2022, 1(10): 332–341

DOI

18
Wang J, Zhang P, Liu L, Zhang Y, Yang J, Zeng Z, Deng S. Controllable synthesis of bifunctional porous carbon for efficient gas-mixture separation and high-performance supercapacitor. Chemical Engineering Journal, 2018, 348: 57–66

DOI

19
Shao J, Ma C, Zhao J, Wang L, Hu X. Effective nitrogen and sulfur co-doped porous carbonaceous CO2 adsorbents derived from amino acid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 632: 127750

DOI

20
Huang J, Bai J, Demir M, Hu X, Jiang Z, Wang L. Efficient N-doped porous carbonaceous CO2 adsorbents derived from commercial urea-formaldehyde resin. Energy & Fuels, 2022, 36(11): 5825–5832

DOI

21
Qie Z P, Wang L J, Sun F, Xiang H, Wang H, Gao J H, Zhao G B, Fan X L. Tuning porosity of coal-derived activated carbons for CO2 adsorption. Frontiers of Chemical Science and Engineering, 2022, 16(9): 1345–1354

DOI

22
Wang Y X, Hu X D, Guo T, Hao J, Si C D, Guo Q J. Efficient CO2 adsorption and mechanism on nitrogen-doped porous carbons. Frontiers of Chemical Science and Engineering, 2021, 15(3): 493–504

DOI

23
Wang H, Wang H, Liu G, Yan Q. In-situ pyrolysis of Taihu blue algae biomass as appealing porous carbon adsorbent for CO2 capture: role of the intrinsic N. Science of the Total Environment, 2021, 771: 145424

DOI

24
Ma C, Bai J, Demir M, Hu X, Liu S, Wang L. Water chestnut shell-derived N/S-doped porous carbons and their applications in CO2 adsorption and supercapacitor. Fuel, 2022, 326: 125119

DOI

25
Guo L, Yang J, Hu G, Hu X, Wang L, Dong Y, DaCosta H, Fan M. Role of hydrogen peroxide preoxidizing on CO2 adsorption of nitrogen-doped carbons produced from coconut shell. ACS Sustainable Chemistry & Engineering, 2016, 4(5): 2806–2813

DOI

26
Tsai W T, Jiang T J. Mesoporous activated carbon produced from coconut shell using a single-step physical activation process. Biomass Conversion and Biorefinery, 2018, 8(3): 711–718

DOI

27
Mi J, Wang X R, Fan R J, Qu W H, Li W C. Coconut-shell-based porous carbons with a tunable micro/mesopore ratio for high-performance supercapacitors. Energy & Fuels, 2012, 26(8): 5321–5329

DOI

28
Lin T, Chen W, Wang L L. Particle properties in granular activated carbon filter during drinking water treatment. Journal of Environmental Sciences (China), 2010, 22(5): 681–688

DOI

29
Yorgun S, Yildiz D. Preparation and characterization of activated carbons from Paulownia wood by chemical activation with H3PO4. Journal of the Taiwan Institute of Chemical Engineers, 2015, 53: 122–131

DOI

30
Singh G, Ruban A M, Geng X, Vinu A. Recognizing the potential of K-salts, apart from KOH, for generating porous carbons using chemical activation. Chemical Engineering Journal, 2023, 451: 139045

DOI

31
Aghel B, Behaein S, Alobiad F. CO2 capture from biogas by biomass-based adsorbents: a review. Fuel, 2022, 328: 125276

DOI

32
Himeno S, Komatsu T, Fujita S. High-pressure adsorption equilibria of methane and carbon dioxide on several activated carbons. Journal of Chemical & Engineering Data, 2005, 50(2): 369–376

DOI

33
Ello A S, de Souza L K C, Trokourey A, Jaroniec M. Coconut shell-based microporous carbons for CO2 capture. Microporous and Mesoporous Materials, 2013, 180: 280–283

DOI

34
Vargas D P, Giraldo L, Silvestre-Albero J, Moreno-Pirajan J C. CO2 adsorption on binderless activated carbon monoliths. Adsorption, 2011, 17(3): 497–504

DOI

35
Prauchner M J, Oliveira S D, Rodriguez-Reinoso F. Tailoring low-cost granular activated carbons intended for CO2 adsorption. Frontiers in Chemistry, 2020, 8: 581133

DOI

36
Yang J, Yue L, Hu X, Wang L, Zhao Y, Lin Y, Sun Y, DaCosta H, Guo L. Efficient CO2 capture by porous carbons derived from coconut shell. Energy & Fuels, 2017, 31(4): 4287–4293

DOI

37
Li D W, Wang Y, Zhang X X, Zhou J J, Yang Y H, Zhang Z B, Wei L, Tian Y Y, Zhao X B. Effects of compacting activated carbons on their volumetric CO2 adsorption performance. Fuel, 2020, 262: 116540

DOI

38
Liu Y Z, Wang H, Li C C, Wang S H, Li L, Song C W, Wang T H. Hierarchical flaky porous carbon derived from waste polyimide film for high-performance aqueous supercapacitor electrodes. International Journal of Energy Research, 2022, 46(1): 370–382

DOI

39
Wang D B, Geng Z, Li B, Zhang C M. High performance electrode materials for electric double-layer capacitors based on biomass-derived activated carbons. Electrochimica Acta, 2015, 173: 377–384

DOI

40
Subramanian N, Viswanathan B. Nitrogen- and oxygen-containing activated carbons from sucrose for electrochemical supercapacitor applications. RSC Advances, 2015, 5(77): 63000–63011

DOI

41
Lu T, Ma C, Demir M, Yu Q, Aghamohammadi P, Wang L, Hu X. One-pot synthesis of potassium benzoate-derived porous carbon for CO2 capture and supercapacitor application. Separation and Purification Technology, 2022, 301: 122053

DOI

42
Sevilla M, Fuertes A B. Sustainable porous carbons with a superior performance for CO2 capture. Energy & Environmental Science, 2011, 4(5): 1765–1771

DOI

43
Ma X C, Yang Y H, Wu Q D, Liu B G, Li D P, Chen R F, Wang C H, Li H L, Zeng Z, Li L Q. Underlying mechanism of CO2 uptake onto biomass-based porous carbons: do adsorbents capture CO2 chiefly through narrow micropores?. Fuel, 2020, 282: 282

DOI

44
Sui Z Y, Cui Y, Zhu J H, Han B H. Preparation of three-dimensional graphene oxide-polyethylenimine porous materials as dye and gas adsorbents. ACS Applied Materials & Interfaces, 2013, 5(18): 9172–9179

DOI

45
Furukawa H, Yaghi O M. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. Journal of the American Chemical Society, 2009, 131(25): 8875–8883

DOI

46
Ben T, Li Y, Zhu L, Zhang D, Cao D, Xiang Z, Yao X, Qiu S. Selective adsorption of carbon dioxide by carbonized porous aromatic framework (PAF). Energy & Environmental Science, 2012, 5(8): 8370–8376

DOI

47
Zhang Y, Wei Z Q, Liu X, Liu F, Yan Z H, Zhou S Y, Wang J, Deng S G. Synthesis of palm sheath derived-porous carbon for selective CO2 adsorption. RSC Advances, 2022, 12(14): 8592–8599

DOI

48
Yang Z X, Guo X F, Zhang G J, Xu Y. One-pot synthesis of high N-doped porous carbons derived from a N-rich oil palm biomass residue in low temperature for CO2 capture. International Journal of Energy Research, 2020, 44(6): 4875–4887

DOI

49
Lu T, Bai J, Demir M, Hu X, Huang J, Wang L. Synthesis of potassium Bitartrate-derived porous carbon via a facile and Self-Activating strategy for CO2 adsorption application. Separation and Purification Technology, 2022, 296: 121368

DOI

50
Ma C, Bai J, Hu X, Jiang Z, Wang L. Nitrogen-doped porous carbons from polyacrylonitrile fiber as effective CO2 adsorbents. Journal of Environmental Sciences (China), 2023, 125: 533–543

DOI

Outlines

/