REVIEW ARTICLE

Strain and process engineering toward continuous industrial fermentation

  • Yufei Dong 1 ,
  • Ye Zhang 1 ,
  • Dehua Liu 1,2,3 ,
  • Zhen Chen , 1,2,3
Expand
  • 1. Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
  • 2. Tsinghua Innovation Center in Dongguan, Dongguan 523808, China
  • 3. Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
zhenchen2013@mail.tsinghua.edu.cn

Received date: 28 Sep 2022

Accepted date: 17 Nov 2022

Published date: 15 Oct 2023

Copyright

2023 Higher Education Press 2023

Abstract

Most current biotechnology industries are based on batch or fed-batch fermentation processes, which often show low productivity and high production costs compared to chemical processes. To increase the economic competitiveness of biological processes, continuous fermentation technologies are being developed that offer significant advantages in comparison with batch/fed-batch fermentation processes, including: (1) removal of potential substrates and product inhibition, (2) prolonging the microbial exponential growth phase and enhancing productivity, and (3) avoiding repeated fermentation preparation and lowering operation and installation costs. However, several key challenges should be addressed for the industrial application of continuous fermentation processes, including (1) contamination of the fermentation system, (2) degeneration of strains, and (3) relatively low product titer. In this study, we reviewed and discussed metabolic engineering and synthetic biology strategies to address these issues.

Cite this article

Yufei Dong , Ye Zhang , Dehua Liu , Zhen Chen . Strain and process engineering toward continuous industrial fermentation[J]. Frontiers of Chemical Science and Engineering, 2023 , 17(10) : 1336 -1353 . DOI: 10.1007/s11705-022-2284-6

Acknowledgements

This work was supported by the National Key R&D Program of China (Grant No. 2021YFC2100900), the National Natural Science Foundation of China (Grant Nos. 21938004, 22078172, and 21878172), and DongGuan Innovative Research Team Program (Grant No. 201536000100033).
1
Clomburg J M, Crumbley A M, Gonzalez R. Industrial biomanufacturing: the future of chemical production. Science, 2017, 355(6320): aag0804

DOI

2
Formenti L R, Nørregaard A, Bolic A, Hernandez D Q, Hagemann T, Heins A L, Larsson H, Mears L, Mauricio-Iglesias M, Krühne U, Gernaey K V. Challenges in industrial fermentation technology research. Biotechnology Journal, 2014, 9(6): 727–738

DOI

3
Gu Y, Jiang Y, Wu H, Liu X, Li Z, Li J, Xiao H, Shen Z, Dong H, Yang Y, Li Y, Jiang W, Yang S. Economical challenges to microbial producers of butanol: feedstock, butanol ratio and titer. Biotechnology Journal, 2011, 6(11): 1348–1357

DOI

4
Li T, Chen X B, Chen J C, Wu Q, Chen G Q. Open and continuous fermentation: products, conditions and bioprocess economy. Biotechnology Journal, 2014, 9(12): 1503–1511

DOI

5
Verbelen P J, De Schutter D P, Delvaux F, Verstrepen K J, Delvaux F R. Immobilized yeast cell systems for continuous fermentation applications. Biotechnology Letters, 2006, 28(19): 1515–1525

DOI

6
Talebnia F, Taherzadeh M J. In situ detoxification and continuous cultivation of dilute-acid hydrolyzate to ethanol by encapsulated S. cerevisiae. Journal of Biotechnology, 2006, 125(3): 377–384

DOI

7
Mussatto S I, Dragone G, Guimaraes P M, Silva J P, Carneiro L M, Roberto I C, Vicente A, Domingues L, Teixeira J A. Technological trends, global market, and challenges of bio-ethanol production. Biotechnology Advances, 2010, 28(6): 817–830

DOI

8
Ghose T K, Tyagi R D. Rapid ethanol fermentation of cellulose hydrolysate. I. Batch versus continuous systems. Biotechnology and Bioengineering, 1979, 21(8): 1387–1400

DOI

9
Ding S F, Tan T W. L-lactic acid production by Lactobacillus casei fermentation using different fed-batch feeding strategies. Process Biochemistry, 2006, 41(6): 1451–1454

DOI

10
Chen Y, Liu Q, Zhou T, Li B, Yao S, Li A, Wu J, Ying H. Ethanol production by repeated batch and continuous fermentations by Saccharomyces cerevisiae immobilized in a fibrous bed bioreactor. Journal of Microbiology and Biotechnology, 2013, 23(4): 511–517

DOI

11
Yue H T, Ling C, Yang T, Chen X B, Chen Y L, Deng H T, Wu Q, Chen J C, Chen G Q. A seawater-based open and continuous process for polyhydroxyalkanoates production by recombinant Halomonas campaniensis LS21 grown in mixed substrates. Biotechnology for Biofuels, 2014, 7(1): 1–12

DOI

12
Mitsumasu K, Liu Z S, Tang Y Q, Akamatsu T, Taguchi H, Kida K. Development of industrial yeast strain with improved acid- and thermo-tolerance through evolution under continuous fermentation conditions followed by haploidization and mating. Journal of Bioscience and Bioengineering, 2014, 118(6): 689–695

DOI

13
Branyik T, Vicente A, Cruz J M, Teixeira J. Continuous primary beer fermentation with brewing yeast immobilized on spent grains. Journal of the Institute of Brewing, 2002, 108(4): 410–415

DOI

14
WangJLihan Z IBaiF. Co-production of ethanol and yeast during continuous fermentation using self-flocculating fusant SPSC01. Journal of Chemical Industry and Engineering, 2004, 55(6): 1024−1027 (in Chinese)

15
Ren N Q, Li J Z, Li B K, Wang Y, Liu S R. Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system. International Journal of Hydrogen Energy, 2006, 31(15): 2147–2157

DOI

16
GaoM TKoide MGotouRTakanashiHHirataM HanoT. Development of a continuous electrodialysis fermentation system for production of lactic acid by Lactobacillus rhamnosus. Process Biochemistry, 2004, 40(3–4): 1033–1036

17
Hirao T, Nakano T, Azuma T, Sugimoto M, Nakanishi T. L-Lysine production in continuous culture of an L-lysine hyperproducing mutant of Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 2004, 32: 269–273

18
Yan Q, Zheng P, Tao S T, Dong J J. Fermentation process for continuous production of succinic acid in a fibrous bed bioreactor. Biochemical Engineering Journal, 2014, 91: 92–98

DOI

19
Yen H W, Li R J, Ma T W. The development process for a continuous acetone-butanol-ethanol (ABE) fermentation by immobilized Clostridium acetobutylicum. Journal of the Taiwan Institute of Chemical Engineers, 2011, 42(6): 902–907

DOI

20
Chatzifragkou A, Papanikolaou S, Dietz D, Doulgeraki A I, Nychas G J, Zeng A P. Production of 1,3-propanediol by Clostridium butyricum growing on biodiesel-derived crude glycerol through a non-sterilized fermentation process. Applied Microbiology and Biotechnology, 2011, 91(1): 101–112

DOI

21
Huang W C, Ramey D E, Yang S T. Continuous production of butanol by Clostridium acetobutylicum immobilized in a fibrous bed bioreactor. Applied Biochemistry and Biotechnology, 2004, 113–116(1–3): 887–898

DOI

22
Alfenore S, Molina Jouve C, Guillouet S E, Uribelarrea J L, Goma G, Benbadis L. Improving ethanol production and viability of Saccharomyces cerevisiae by a vitamin feeding strategy during fed-batch process. Applied Microbiology and Biotechnology, 2002, 60(1–2): 67–72

23
Tan D, Xue Y S, Aibaidula G, Chen G Q. Unsterile and continuous production of polyhydroxybutyrate by Halomonas TD01. Bioresource Technology, 2011, 102(17): 8130–8136

DOI

24
Nishie M, Nagao J, Sonomoto K. Antibacterial peptides “bacteriocins”: an overview of their diverse characteristics and applications. Biocontrol Science, 2012, 17(1): 1–16

DOI

25
Kivistö A, Santala V, Karp M. Non-sterile process for biohydrogen and 1,3-propanediol production from raw glycerol. International Journal of Hydrogen Energy, 2013, 38(27): 11749–11755

DOI

26
Saithong P, Nakamura T, Shima J. Prevention of bacterial contamination using acetate-tolerant Schizosaccharomyces pombe during bioethanol production from molasses. Journal of Bioscience and Bioengineering, 2009, 108(3): 216–219

DOI

27
Sanchez C. Bacterial evolution: phage resistance comes at a cost. Nature Reviews Microbiology, 2011, 9(6): 398–399

DOI

28
Scanlan P D, Buckling A, Hall A R. Experimental evolution and bacterial resistance: (co)evolutionary costs and trade-offs as opportunities in phage therapy research. Bacteriophage, 2015, 5(2): e1050153

DOI

29
Xiao Y, Bowen C H, Liu D, Zhang F. Exploiting nongenetic cell-to-cell variation for enhanced biosynthesis. Nature Chemical Biology, 2016, 12(5): 339–344

DOI

30
Smith A S, Rawlings D E. The poison-antidote stability system of the broad-host-range Thiobacillus ferrooxidans plasmid pTF-FC2. Molecular Microbiology, 2010, 26(5): 961–970

DOI

31
Nilsson J, Skogman S G. Stabilization of Escherichia coli tryptophan-production vectors in continuous cultures: a comparison of three different systems. Nature Biotechnology, 1986, 4(10): 901–903

DOI

32
Jojima T, Fujii M, Mori E, Inui M, Yukawa H. Engineering of sugar metabolism of Corynebacterium glutamicum for production of amino acid L-alanine under oxygen deprivation. Applied Microbiology and Biotechnology, 2010, 87(1): 159–165

DOI

33
Emmerling M, Bailey J E, Sauer U. Glucose catabolism of Escherichia coli strains with increased activity and altered regulation of key glycolytic enzymes. Metabolic Engineering, 1999, 1(2): 117–127

DOI

34
Katakura Y, Moukamnerd C, Harashima S, Kino-oka M. Strategy for preventing bacterial contamination by adding exogenous ethanol in solid-state semi-continuous bioethanol production. Journal of Bioscience and Bioengineering, 2011, 111(3): 343–345

DOI

35
Watanabe I, Nakamura T, Shima J. A strategy to prevent the occurrence of Lactobacillus strains using lactate-tolerant yeast Candida glabrata in bioethanol production. Journal of Industrial Microbiology & Biotechnology, 2008, 35(10): 1117–1122

DOI

36
SolomonE BOkull D. Utilization of bacteriophage to control bacterial contamination in fermentation processes. US Patent, 20090104157A1, 2009-04-23

37
Tiquia S M, Davis D, Hadid H, Kasparian S, Ismail M, Sahly R, Shim J, Singh S, Murray K S. Halophilic and halotolerant bacteria from river waters and shallow groundwater along the Rouge River of southeastern Michigan. Environmental Technology, 2007, 28(3): 297–307

DOI

38
Chen G Q, Jiang X R. Next generation industrial biotechnology based on extremophilic bacteria. Current Opinion in Biotechnology, 2018, 50: 94–100

DOI

39
Zhang D X, Cheryan M. Direct fermentation of starch to lactic acid by Lactobacillus amylovorus. Biotechnology Letters, 1991, 13(10): 733–738

DOI

40
Zhang D X, Cheryan M. Starch to lactic acid in a continuous membrane bioreactor. Process Biochemistry, 1994, 29(2): 145–150

DOI

41
Meng W, Zhang Y, Ma L, Lu C, Xu P, Ma C, Gao C. Non-sterilized fermentation of 2,3-butanediol with seawater by metabolic engineered fast-growing Vibrio natriegens. Frontiers in Bioengineering and Biotechnology, 2022, 10: 955097

DOI

42
Linder T. Assimilation of alternative sulfur sources in fungi. World Journal of Microbiology & Biotechnology, 2018, 34(4): 51

DOI

43
Mandell D J, Lajoie M J, Mee M T, Takeuchi R, Kuznetsov G, Norville J E, Gregg C J, Stoddard B L, Church G M. Biocontainment of genetically modified organisms by synthetic protein design. Nature, 2015, 518(7537): 55–60

DOI

44
Johannes T W, Woodyer R D, Zhao H. Efficient regeneration of NADPH using an engineered phosphite dehydrogenase. Biotechnology and Bioengineering, 2007, 96(1): 18–26

DOI

45
Hung C L, Liu J H, Chiu W C, Huang S W, Hwang J K, Wang W C. Crystal structure of Helicobacter pylori formamidase AmiF reveals a cysteine-glutamate-lysine catalytic triad. Journal of Biological Chemistry, 2007, 282(16): 12220–12229

DOI

46
Ou X Y, Wu X L, Peng F, Zeng Y J, Li H X, Xu P, Chen G, Guo Z W, Yang J G, Zong M H, Lou W Y. Metabolic engineering of a robust Escherichia coli strain with a dual protection system. Biotechnology and Bioengineering, 2019, 116(12): 3333–3348

DOI

47
Brilon C, Beckmann W, Hellwig M, Knackmuss H J. Enrichment and isolation of naphthalenesulfonic acid-utilizing pseudomonads. Applied and Environmental Microbiology, 1981, 42(1): 39–43

DOI

48
Luther M, Soeder C J. 1-Naphthalenesulfonic acid and sulfate as sulfur sources for the green ALGA Scenedesmus obliquus. Water Research, 1991, 25(3): 299–307

DOI

49
Soeder C J, Hegewald E, Kneifel H. Green microalgae can use naphthalenesulfonic acids as sources of sulfur. Archives of Microbiology, 1987, 148(4): 260–263

DOI

50
Dopson M, Johnson D B. Biodiversity, metabolism and applications of acidophilic sulfur-metabolizing microorganisms. Environmental Microbiology, 2012, 14(10): 2620–2631

DOI

51
Luther M, Soeder C J. Some naphthalenesulfonic acids as sulfur sources for the green microalga. Chemosphere, 1987, 16(7): 1565–1578

DOI

52
Cotter P D, Ross R P, Hill C. Bacteriocins—a viable alternative to antibiotics?. Nature Reviews Microbiology, 2013, 11(2): 95–105

DOI

53
Qureshi A S, Zhang J, da Costa Sousa L, Bao J. Antibacterial peptide secreted by Pediococcus acidilactici enables efficient cellulosic open L-lactic acid fermentation. ACS Sustainable Chemistry & Engineering, 2017, 5(10): 9254–9262

DOI

54
Leroy F, Moreno M R F, De Vuyst L. Enterococcus faecium RZS C5, an interesting bacteriocin producer to be used as a co-culture in food fermentation. International Journal of Food Microbiology, 2003, 88(2−3): 235–240

DOI

55
Likhacheva N A, Samsonov V V, Samsonov V V, Sineoky S P. Genetic control of the resistance to phage C1 of Escherichia coli K-12. Journal of Bacteriology, 1996, 178(17): 5309–5315

DOI

56
SzczepankowskaA KGoreckiR KKoakowski PBardowskiJ K. Lactic Acid Bacteria—R & D for Food, Health and Livestock Purposes. London: IntechOpen, 2013, 23–72

57
Sturino J M, Klaenhammer T R. Engineered bacteriophage-defence systems in bioprocessing. Nature Reviews Microbiology, 2006, 4(5): 395–404

DOI

58
Viscardi M, Capparelli R, Di Matteo R, Carminati D, Giraffa G, Iannelli D. Selection of bacteriophage-resistant mutants of Streptococcus thermophilus. Journal of Microbiological Methods, 2003, 55(1): 109–119

DOI

59
Mei Y J, Liu H. Selection of phage-resistant strains from Escherichia coli glyA genetic engineering bacteria. Agricultural Biotechnology, 2012, 1(2): 35–37

60
Fineran P C, Blower T R, Foulds I J, Humphreys D P, Lilley K S, Salmond G P. The phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(3): 894–899

DOI

61
Reyes-Cortes R, Martinez-Penafiel E, Martinez-Perez F, de la Garza M, Kameyama L. A novel strategy to isolate cell-envelope mutants resistant to phage infection: bacteriophage mEp213 requires lipopolysaccharides in addition to FhuA to enter Escherichia coli K-12. Microbiology, 2012, 158(Pt 12): 3063–3071

DOI

62
Cowley L A, Low A S, Pickard D, Boinett C J, Dallman T J, Day M, Perry N, Gally D L, Parkhill J, Jenkins C, Cain A K. Transposon insertion sequencing elucidates novel gene involvement in susceptibility and resistance to phages T4 and T7 in Escherichia coli O157. mBio, 2018, 9(4): e00705–e00718

DOI

63
Tuncer Y, Akcelik M. A protein which masks galactose receptor mediated phage susceptibility in Lactococcus lactis subsp lactis MPL56. International Journal of Food Science & Technology, 2002, 37(2): 139–144

DOI

64
McGrath S, Fitzgerald G F, van Sinderen D. Identification and characterization of phage-resistance genes in temperate lactococcal bacteriophages. Molecular Microbiology, 2002, 43(2): 509–520

DOI

65
Dupuis M E, Villion M, Magadan A H, Moineau S. CRISPR-Cas and restriction-modification systems are compatible and increase phage resistance. Nature Communications, 2013, 4(1): 2087

DOI

66
Sturino J M, Klaenhammer T R. Expression of antisense RNA targeted against Streptococcus thermophilus bacteriophages. Applied and Environmental Microbiology, 2002, 68(2): 588–596

DOI

67
Burrus V, Bontemps C, Decaris B, Guedon G. Characterization of a novel type II restriction-modification system, Sth368I, encoded by the integrative element ICESt1 of Streptococcus thermophilus CNRZ368. Applied and Environmental Microbiology, 2001, 67(4): 1522–1528

DOI

68
Lucchini S, Sidoti J, Brussow H. Broad-range bacteriophage resistance in Streptococcus thermophilus by insertional mutagenesis. Virology, 2000, 275(2): 267–277

DOI

69
Sturino J M, Klaenhammer T R. Inhibition of bacteriophage replication in Streptococcus thermophilus by subunit poisoning of primase. Microbiology, 2007, 153(Pt 10): 3295–3302

DOI

70
Xue Y P, Shen Q, Zhou X T, Guo Q, Zheng Y G. Potential of the signal peptide derived from the PAS_chr3_0030 gene product for secretory expression of valuable enzymes in Pichia pastoris. Applied and Environmental Microbiology, 2021, 88(9): e0029622

71
Reyes-Cortes R, Arguijo-Hernandez E S, Carballo-Ontiveros M A, Martinez-Penafiel E, Kameyama L. Random transposon mutagenesis for cell-envelope resistant to phage infection. Methods in Molecular Biology, 2016, 1440: 71–83

DOI

72
Wang M S, Nitin N. Rapid detection of bacteriophages in starter culture using water-in-oil-in-water emulsion microdroplets. Applied Microbiology and Biotechnology, 2014, 98(19): 8347–8355

DOI

73
deMello A, Rane A, Holzner G, Stavrakis S. Ultra-high-throughput multi-parametric imaging flow cytometry. EPJ Web of Conferences, 2019, 215: 10001

74
Edgar R H, Cook J, Noel C, Minard A, Sajewski A, Fitzpatrick M, Fernandez R, Hempel J D, Kellum J A, Viator J A. Bacteriophage-mediated identification of bacteria using photoacoustic flow cytometry. Journal of Biomedical Optics, 2019, 24(11): 1–7

DOI

75
Viscardi M, Capparelli R, Iannelli D. Rapid selection of phage-resistant mutants in Streptococcus thermophilus by immunoselection and cell sorting. International Journal of Food Microbiology, 2003, 89(2−3): 223–231

DOI

76
Mutalik V K, Adler B A, Rishi H S, Piya D, Zhong C, Koskella B, Kutter E M, Calendar R, Novichkov P S, Price M N, Deutschbauer A M, Arkin A P. High-throughput mapping of the phage resistance landscape in E. coli. PLoS Biology, 2020, 18(10): e3000877

DOI

77
Maffei E, Shaidullina A, Burkolter M, Heyer Y, Estermann F, Druelle V, Sauer P, Willi L, Michaelis S, Hilbi H, Thaler D S, Harms A. Systematic exploration of Escherichia coli phage-host interactions with the BASEL phage collection. PLoS Biology, 2021, 19(11): e3001424

DOI

78
Barrangou R, Horvath P. CRISPR: new horizons in phage resistance and strain identification. Annual Review of Food Science and Technology, 2012, 3(1): 143–162

DOI

79
Chung D K, Chung S K, Batt C A. Antisense RNA directed against the major capsid protein of Lactococcus lactis subsp. cremoris bacteriophage 4–1 confers partial resistance to the host. Applied Microbiology and Biotechnology, 1992, 37(1): 79–83

80
Mahony J, McGrath S, Fitzgerald G F, van Sinderen D. Identification and characterization of lactococcal-prophage-carried superinfection exclusion genes. Applied and Environmental Microbiology, 2008, 74(20): 6206–6215

DOI

81
Ventura M, Canchaya C, Pridmore R D, Brussow H. The prophages of Lactobacillus johnsonii NCC 533: comparative genomics and transcription analysis. Virology, 2004, 320(2): 229–242

DOI

82
Sun X, Gohler A, Heller K J, Neve H. The ltp gene of temperate Streptococcus thermophilus phage TP-J34 confers superinfection exclusion to Streptococcus thermophilus and Lactococcus lactis. Virology, 2006, 350(1): 146–157

DOI

83
Garvey P, Hill C, Fitzgerald G F. The lactococcal plasmid pNP40 encodes a third bacteriophage resistance mechanism, one which affects phage DNA penetration. Applied and Environmental Microbiology, 1996, 62(2): 676–679

DOI

84
Kim J W, Dutta V, Elhanafi D, Lee S, Osborne J A, Kathariou S. A novel restriction-modification system is responsible for temperature-dependent phage resistance in Listeria monocytogenes ECII. Applied and Environmental Microbiology, 2012, 78(6): 1995–2004

DOI

85
Cong L, Zhang F. Genome engineering using CRISPR-Cas9 system. Methods in Molecular Biology, 2015, 1239: 197–217

DOI

86
Hsu P D, Lander E S, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell, 2014, 157(6): 1262–1278

DOI

87
Liu L, Zhao D, Ye L, Zhan T, Xiong B, Hu M, Bi C, Zhang X. A programmable CRISPR/Cas9-based phage defense system for Escherichia coli BL21(DE3). Microbial Cell Factories, 2020, 19(1): 136

DOI

88
Ofir G, Melamed S, Sberro H, Mukamel Z, Silverman S, Yaakov G, Doron S, Sorek R. DISARM is a widespread bacterial defence system with broad anti-phage activities. Nature Microbiology, 2018, 3(1): 90–98

DOI

89
Bernheim A, Sorek R. The pan-immune system of bacteria: antiviral defence as a community resource. Nature Reviews Microbiology, 2020, 18(2): 113–119

DOI

90
Chopin M C, Chopin A, Bidnenko E. Phage abortive infection in lactococci: variations on a theme. Current Opinion in Microbiology, 2005, 8(4): 473–479

DOI

91
Webster R E, Cashman J S. Abortive infection of Escherichia coli with the bacteriophage f1: cytoplasmic membrane proteins and the f1 DNA-gene 5 protein complex. Virology, 1973, 55(1): 20–38

DOI

92
Durmaz E, Klaenhammer T R. Abortive phage resistance mechanism AbiZ speeds the lysis clock to cause premature lysis of phage-infected Lactococcus lactis. Journal of Bacteriology, 2007, 189(4): 1417–1425

DOI

93
Xiong X, Wu G, Wei Y, Liu L, Zhang Y, Su R, Jiang X, Li M, Gao H, Tian X, Zhang Y, Hu L, Chen S, Tang Y, Jiang S, Huang R, Li Z, Wang Y, Deng Z, Wang J, Dedon P C, Chen S, Wang L. SspABCD-SspE is a phosphorothioation-sensing bacterial defence system with broad anti-phage activities. Nature Microbiology, 2020, 5(7): 917–928

DOI

94
Zou X, Xiao X, Mo Z, Ge Y, Jiang X, Huang R, Li M, Deng Z, Chen S, Wang L, Lee S Y. Systematic strategies for developing phage resistant Escherichia coli strains. Nature Communications, 2022, 13(1): 4491

DOI

95
Denamur E, Matic I. Evolution of mutation rates in bacteria. Molecular Microbiology, 2006, 60(4): 820–827

DOI

96
Umenhoffer K, Feher T, Baliko G, Ayaydin F, Posfai J, Blattner F R, Posfai G. Reduced evolvability of Escherichia coli MDS42, an IS-less cellular chassis for molecular and synthetic biology applications. Microbial Cell Factories, 2010, 9(1): 38

DOI

97
Vidal L, Pinsach J, Striedner G, Caminal G, Ferrer P. Development of an antibiotic-free plasmid selection system based on glycine auxotrophy for recombinant protein overproduction in Escherichia coli. Journal of Biotechnology, 2008, 134(1−2): 127–136

DOI

98
Zhang Y, Liu D, Chen Z. Production of C2–C4 diols from renewable bioresources: new metabolic pathways and metabolic engineering strategies. Biotechnology for Biofuels, 2017, 10(1): 299

DOI

99
Chen Z, Geng F, Zeng A P. Protein design and engineering of a de novo pathway for microbial production of 1,3-propanediol from glucose. Biotechnology Journal, 2015, 10(2): 284–289

DOI

100
Hagg P, de Pohl J W, Abdulkarim F, Isaksson L A. A host/plasmid system that is not dependent on antibiotics and antibiotic resistance genes for stable plasmid maintenance in Escherichia coli. Journal of Biotechnology, 2004, 111(1): 17–30

DOI

101
Porter R D, Black S, Pannuri S, Carlson A. Use of the Escherichia coli SSB gene to prevent bioreactor takeover by plasmidless cells. Biotechnology, 1990, 8(1): 47–51

102
Gerdes K, Poulsen L K, Thisted T, Nielsen A K, Martinussen J, Andreasen P H. The hok killer gene family in gram-negative bacteria. New Biology, 1990, 2(11): 946–956

103
Afif H, Allali N, Couturier M, Van-Melderen L. The ratio between CcdA and CcdB modulates the transcriptional repression of the ccd poison-antidote system. Molecular Microbiology, 2010, 41(1): 73–82

DOI

104
Terrinoni M, Nordqvist S L, Kallgard S, Holmgren J, Lebens M. A novel nonantibiotic, lgt-based selection system for stable maintenance of expression vectors in Escherichia coli and Vibrio cholerae. Applied and Environmental Microbiology, 2018, 84(4): e02143–e02117

DOI

105
Posfai G, Plunkett G III, Feher T, Frisch D, Keil G M, Umenhoffer K, Kolisnychenko V, Stahl B, Sharma S S, de Arruda M, Burland V, Harcum S W, Blattner F R. Emergent properties of reduced-genome Escherichia coli. Science, 2006, 312(5776): 1044–1046

DOI

106
Wyrzykowski J, Volkert M R. The Escherichia coli methyl-directed mismatch repair system repairs base pairs containing oxidative lesions. Journal of Bacteriology, 2003, 185(5): 1701–1704

DOI

107
Galan J C, Turrientes M C, Baquero M R, Rodriguez-Alcayna M, Martinez-Amado J, Martinez J L, Baquero F. Mutation rate is reduced by increased dosage of mutL gene in Escherichia coli K-12. FEMS Microbiology Letters, 2007, 275(2): 263–269

DOI

108
Csorgo B, Feher T, Timar E, Blattner F R, Posfai G. Low-mutation-rate, reduced-genome Escherichia coli: an improved host for faithful maintenance of engineered genetic constructs. Microbial Cell Factories, 2012, 11(1): 11

DOI

109
Michener J K, Thodey K, Liang J C, Smolke C D. Applications of genetically-encoded biosensors for the construction and control of biosynthetic pathways. Metabolic Engineering, 2012, 14(3): 212–222

DOI

110
Snoek T, Romero-Suarez D, Zhang J, Ambri F, Skjoedt M L, Sudarsan S, Jensen M K, Keasling J D. An orthogonal and pH-tunable sensor-selector for muconic acid biosynthesis in yeast. ACS Synthetic Biology, 2018, 7(4): 995–1003

DOI

111
Crook N, Abatemarco J, Sun J, Wagner J M, Schmitz A, Alper H S. In vivo continuous evolution of genes and pathways in yeast. Nature Communications, 2016, 7(1): 13051

DOI

112
Zhang X, Jantama K, Moore J C, Jarboe L R, Shanmugam K T, Ingram L O. Metabolic evolution of energy-conserving pathways for succinate production in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(48): 20180–20185

DOI

113
Hauf J, Zimmermann F K, Muller S. Simultaneous genomic overexpression of seven glycolytic enzymes in the yeast Saccharomyces cerevisiae. Enzyme and Microbial Technology, 2000, 26(9−10): 688–698

DOI

114
Yamamoto S, Gunji W, Suzuki H, Toda H, Suda M, Jojima T, Inui M, Yukawa H. Overexpression of genes encoding glycolytic enzymes in Corynebacterium glutamicum enhances glucose metabolism and alanine production under oxygen deprivation conditions. Applied and Environmental Microbiology, 2012, 78(12): 4447–4457

DOI

115
Ma W, Wang J, Li Y, Hu X, Shi F, Wang X. Enhancing pentose phosphate pathway in Corynebacterium glutamicum to improve L-isoleucine production. Biotechnology and Applied Biochemistry, 2016, 63(6): 877–885

DOI

116
Irani N, Beccaria A J, Wagner R. Expression of recombinant cytoplasmic yeast pyruvate carboxylase for the improvement of the production of human erythropoietin by recombinant BHK-21 cells. Journal of Biotechnology, 2002, 93(3): 269–282

DOI

117
Wang Z, Chen T, Ma X, Shen Z, Zhao X. Enhancement of riboflavin production with Bacillus subtilis by expression and site-directed mutagenesis of zwf and gnd gene from Corynebacterium glutamicum. Bioresource Technology, 2011, 102(4): 3934–3940

DOI

118
Koebmann B J, Westerhoff H V, Snoep J L, Nilsson D, Jensen P R. The glycolytic flux in Escherichia coli is controlled by the demand for ATP. Journal of Bacteriology, 2002, 184(14): 3909–3916

DOI

119
Causey T B, Shanmugam K T, Yomano L P, Ingram L O. Engineering Escherichia coli for efficient conversion of glucose to pyruvate. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(8): 2235–2240

DOI

120
Causey T B, Zhou S, Shanmugam K T, Ingram L O. Engineering the metabolism of Escherichia coli W3110 for the conversion of sugar to redox-neutral and oxidized products: homoacetate production. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(3): 825–832

DOI

121
Wang J, Niyompanich S, Tai Y S, Wang J, Bai W, Mahida P, Gao T, Zhang K. Engineering of a highly efficient Escherichia coli strain for mevalonate fermentation through chromosomal integration. Applied and Environmental Microbiology, 2016, 82(24): 7176–7184

DOI

122
Kou M, Cui Z, Fu J, Dai W, Wang Z, Chen T. Metabolic engineering of Corynebacterium glutamicum for efficient production of optically pure (2R,3R)-2,3-butanediol. Microbial Cell Factories, 2022, 21(1): 150

DOI

123
Luo Z, Zeng W, Du G, Chen J, Zhou J. Enhanced pyruvate production in Candida glabrata by engineering ATP futile cycle system. ACS Synthetic Biology, 2019, 8(4): 787–795

DOI

124
Fuentes L G, Lara A R, Martinez L M, Ramirez O T, Martinez A, Bolivar F, Gosset G. Modification of glucose import capacity in Escherichia coli: physiologic consequences and utility for improving DNA vaccine production. Microbial Cell Factories, 2013, 12(1): 42

DOI

125
Ikeda M. Sugar transport systems in Corynebacterium glutamicum: features and applications to strain development. Applied Microbiology and Biotechnology, 2012, 96(5): 1191–1200

DOI

126
Zhou Z, Wang C, Xu H, Chen Z, Cai H. Increasing succinic acid production using the PTS-independent glucose transport system in a Corynebacterium glutamicum PTS-defective mutant. Journal of Industrial Microbiology & Biotechnology, 2015, 42(7): 1073–1082

DOI

127
Hernandez-Montalvo V, Martinez A, Hernandez-Chavez G, Bolivar F, Valle F, Gosset G. Expression of galP and glk in a Escherichia coli PTS mutant restores glucose transport and increases glycolytic flux to fermentation products. Biotechnology and Bioengineering, 2003, 83(6): 687–694

DOI

128
Lu J, Tang J, Liu Y, Zhu X, Zhang T, Zhang X. Combinatorial modulation of galP and glk gene expression for improved alternative glucose utilization. Applied Microbiology and Biotechnology, 2012, 93(6): 2455–2462

DOI

129
Hao Y, Ma Q, Liu X, Fan X, Men J, Wu H, Jiang S, Tian D, Xiong B, Xie X. High-yield production of L-valine in engineered Escherichia coli by a novel two-stage fermentation. Metabolic Engineering, 2020, 62: 198–206

DOI

130
Michalowski A, Siemann-Herzberg M, Takors R. Escherichia coli HGT: engineered for high glucose throughput even under slowly growing or resting conditions. Metabolic Engineering, 2017, 40: 93–103

DOI

131
Zhang X, Lai L, Xu G, Zhang X, Shi J, Koffas M A G, Xu Z. Rewiring the central metabolic pathway for high-yield L-serine production in Corynebacterium glutamicum by using glucose. Biotechnology Journal, 2019, 14(6): e1800497

DOI

132
Zhan Y, Shi J, Xiao Y, Zhou F, Wang H, Xu H, Li Z, Yang S, Cai D, Chen S. Multilevel metabolic engineering of Bacillus licheniformis for de novo biosynthesis of 2-phenylethanol. Metabolic Engineering, 2022, 70: 43–54

DOI

133
Gu Y, Deng J, Liu Y, Li J, Shin H D, Du G, Chen J, Liu L. Rewiring the glucose transportation and central metabolic pathways for overproduction of N-acetylglucosamine in Bacillus subtilis. Biotechnology Journal, 2017, 12(10): 170020

DOI

134
Long C P, Gonzalez J E, Feist A M, Palsson B O, Antoniewicz M R. Fast growth phenotype of E. coli K-12 from adaptive laboratory evolution does not require intracellular flux rewiring. Metabolic Engineering, 2017, 44: 100–107

DOI

135
Dragosits M, Mattanovich D. Adaptive laboratory evolution—principles and applications for biotechnology. Microbial Cell Factories, 2013, 12(1): 64

DOI

136
Portnoy V A, Bezdan D, Zengler K. Adaptive laboratory evolution—harnessing the power of biology for metabolic engineering. Current Opinion in Biotechnology, 2011, 22(4): 590–594

DOI

137
Shen Y, Chen X, Peng B, Chen L, Hou J, Bao X. An efficient xylose-fermenting recombinant Saccharomyces cerevisiae strain obtained through adaptive evolution and its global transcription profile. Applied Microbiology and Biotechnology, 2012, 96(4): 1079–1091

DOI

138
Guimaraes P M, Francois J, Parrou J L, Teixeira J A, Domingues L. Adaptive evolution of a lactose-consuming Saccharomyces cerevisiae recombinant. Applied and Environmental Microbiology, 2008, 74(6): 1748–1756

DOI

139
Radek A, Tenhaef N, Muller M F, Brusseler C, Wiechert W, Marienhagen J, Polen T, Noack S. Miniaturized and automated adaptive laboratory evolution: evolving Corynebacterium glutamicum towards an improved D-xylose utilization. Bioresource Technology, 2017, 245(Pt B): 1377–1385

140
McCloskey D, Xu S, Sandberg T E, Brunk E, Hefner Y, Szubin R, Feist A M, Palsson B O. Adaptive laboratory evolution resolves energy depletion to maintain high aromatic metabolite phenotypes in Escherichia coli strains lacking the Phosphotransferase System. Metabolic Engineering, 2018, 48: 233–242

DOI

141
Reyes L H, Gomez J M, Kao K C. Improving carotenoids production in yeast via adaptive laboratory evolution. Metabolic Engineering, 2014, 21(1): 26–33

DOI

142
Mahr R, Gatgens C, Gatgens J, Polen T, Kalinowski J, Frunzke J. Biosensor-driven adaptive laboratory evolution of L-valine production in Corynebacterium glutamicum. Metabolic Engineering, 2015, 32: 184–194

DOI

143
Niu F X, He X, Wu Y Q, Liu J Z. Enhancing production of pinene in Escherichia coli by using a combination of tolerance, evolution, and modular co-culture engineering. Frontiers in Microbiology, 2018, 9: 1623

DOI

144
Tuyishime P, Wang Y, Fan L, Zhang Q, Li Q, Zheng P, Sun J, Ma Y. Engineering Corynebacterium glutamicum for methanol-dependent growth and glutamate production. Metabolic Engineering, 2018, 49: 220–231

DOI

145
Minliang C, Chengwei M, Lin C, Zeng A P. Integrated laboratory evolution and rational engineering of GalP/Glk-dependent Escherichia coli for higher yield and productivity of L-tryptophan biosynthesis. Metabolic Engineering Communications, 2021, 12: e00167

DOI

146
Cheng J S, Qiao B, Yuan Y J. Comparative proteome analysis of robust Saccharomyces cerevisiae insights into industrial continuous and batch fermentation. Applied Microbiology and Biotechnology, 2008, 81(2): 327–338

DOI

147
Nicolaou S A, Gaida S M, Papoutsakis E T. A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation. Metabolic Engineering, 2010, 12(4): 307–331

DOI

148
Jia K, Zhang Y, Yin L. Systematic engineering of microorganisms to improve alcohol tolerance. Engineering in Life Sciences, 2010, 10(5): 422–429

DOI

149
Calamita G, Bishai W R, Preston G M, Guggino W B, Agre P. Molecular cloning and characterization of AqpZ, a water channel from Escherichia coli. Journal of Biological Chemistry, 1995, 270(49): 29063–29066

DOI

150
Laimins L A, Rhoads D B, Epstein W. Osmotic control of kdp operon expression in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 1981, 78(1): 464–468

DOI

151
Sevin D C, Sauer U. Ubiquinone accumulation improves osmotic-stress tolerance in Escherichia coli. Nature Chemical Biology, 2014, 10(4): 266–272

DOI

152
Ma R, Zhang Y, Hong H, Lu W, Lin M, Chen M, Zhang W. Improved osmotic tolerance and ethanol production of ethanologenic Escherichia coli by IrrE, a global regulator of radiation-resistance of Deinococcus radiodurans. Current Microbiology, 2011, 62(2): 659–664

DOI

153
Pan J, Wang J, Zhou Z, Yan Y, Zhang W, Lu W, Ping S, Dai Q, Yuan M, Feng B, Hou X, Zhang Y, Ruiqiang M, Liu T, Feng L, Wang L, Chen M, Lin M. IrrE, a global regulator of extreme radiation resistance in Deinococcus radiodurans, enhances salt tolerance in Escherichia coli and Brassica napus. PLoS One, 2009, 4(2): e4422

DOI

154
Stasic A J, Lee Wong A C, Kaspar C W. Osmotic and desiccation tolerance in Escherichia coli O157:H7 requires rpoS (sigma(38)). Current Microbiology, 2012, 65(6): 660–665

DOI

155
Grothe S, Krogsrud R L, McClellan D J, Milner J L, Wood J M. Proline transport and osmotic stress response in Escherichia coli K-12. Journal of Bacteriology, 1986, 166(1): 253–259

DOI

156
Jr M T R, Courtenay E S, Cayley D S, Guttman H J. Responses of E. coli to osmotic stress: large changes in amounts of cytoplasmic solutes and water. Trends in Biochemical Sciences, 1998, 23(4): 143–148

DOI

157
Weymarn N V, Nyyssola A, Reinikainen T, Leisola M, Ojamo H. Improved osmotolerance of recombinant Escherichia coli by de novo glycine betaine biosynthesis. Applied Microbiology and Biotechnology, 2000, 55(2): 214–218

DOI

158
Aranda A, Querol A, del Olmo M. Correlation between acetaldehyde and ethanol resistance and expression of HSP genes in yeast strains isolated during the biological aging of sherry wines. Archives of Microbiology, 2002, 177(4): 304–312

DOI

159
Jiang C, Xu J, Zhang H, Zhang X, Shi J, Li M, Ming F. A cytosolic class I small heat shock protein, RcHSP17.8, of Rosa chinensis confers resistance to a variety of stresses to Escherichia coli, yeast and Arabidopsis thaliana. Plant, Cell & Environment, 2009, 32(8): 1046–1059

DOI

160
Seydlova G, Halada P, Fiser R, Toman O, Ulrych A, Svobodova J. DnaK and GroEL chaperones are recruited to the Bacillus subtilis membrane after short-term ethanol stress. Journal of Applied Microbiology, 2012, 112(4): 765–774

DOI

161
Zingaro K A, Terry Papoutsakis E. GroESL overexpression imparts Escherichia coli tolerance to i-, n-, and 2-butanol, 1,2,4-butanetriol and ethanol with complex and unpredictable patterns. Metabolic Engineering, 2013, 15: 196–205

DOI

162
Sridhar M, Sree N K, Rao L V. Effect of UV radiation on thermotolerance, ethanol tolerance and osmotolerance of Saccharomyces cerevisiae VS1 and VS3 strains. Bioresource Technology, 2002, 83(3): 199–202

DOI

163
Yu L, Pei X, Lei T, Wang Y, Feng Y. Genome shuffling enhanced L-lactic acid production by improving glucose tolerance of Lactobacillus rhamnosus. Journal of Biotechnology, 2008, 134(1−2): 154–159

DOI

164
Zheng D Q, Wu X C, Tao X L, Wang P M, Li P, Chi X Q, Li Y D, Yan Q F, Zhao Y H. Screening and construction of Saccharomyces cerevisiae strains with improved multi-tolerance and bioethanol fermentation performance. Bioresource Technology, 2011, 102(3): 3020–3027

DOI

165
Xiao M, Zhu X, Fan F, Xu H, Tang J, Qin Y, Ma Y, Zhang X. Osmotolerance in Escherichia coli is improved by activation of copper efflux genes or supplementation with sulfur-containing amino acids. Applied and Environmental Microbiology, 2017, 83(7): e03050–e03016

DOI

166
Zhu X, Tan Z, Xu H, Chen J, Tang J, Zhang X. Metabolic evolution of two reducing equivalent-conserving pathways for high-yield succinate production in Escherichia coli. Metabolic Engineering, 2014, 24: 87–96

DOI

167
Jensen S I, Lennen R M, Herrgard M J, Nielsen A T. Seven gene deletions in seven days: fast generation of Escherichia coli strains tolerant to acetate and osmotic stress. Scientific Reports, 2015, 5(1): 17874

DOI

168
Lennen R M, Herrgard M J. Combinatorial strategies for improving multiple-stress resistance in industrially relevant Escherichia coli strains. Applied and Environmental Microbiology, 2014, 80(19): 6223–6242

DOI

169
Yang L B, Dai X M, Zheng Z Y, Zhu L, Zhan X B, Lin C C. Proteomic analysis of erythritol-producing Yarrowia lipolytica from glycerol in response to osmotic pressure. Journal of Microbiology and Biotechnology, 2015, 25(7): 1056–1069

DOI

170
Chen X, Yin J, Ye J, Zhang H, Che X, Ma Y, Li M, Wu L P, Chen G Q. Engineering Halomonas bluephagenesis TD01 for non-sterile production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Bioresource Technology, 2017, 244(Pt 1): 534–541

DOI

171
Hoffart E, Grenz S, Lange J, Nitschel R, Müller F, Schwentner A, Feith A, Lenfers-Lücker M, Takors R, Blombach B. High substrate uptake rates empower Vibrio natriegens as production host for industrial biotechnology. Applied and Environmental Microbiology, 2017, 83(22): e01614–e01617

DOI

172
Weinstock M T, Hesek E D, Wilson C M, Gibson D G. Vibrio natriegens as a fast-growing host for molecular biology. Nature Methods, 2016, 13(10): 849–851

DOI

173
Saha B C, Kennedy G J. Efficient itaconic acid production by Aspergillus terreus: overcoming the strong inhibitory effect of manganese. Biotechnology Progress, 2020, 36(2): e2939

DOI

174
Tevz G, Bencina M, Legisa M. Enhancing itaconic acid production by Aspergillus terreus. Applied Microbiology and Biotechnology, 2010, 87(5): 1657–1664

DOI

175
Voulgaris I, O’Donnell A, Harvey L M, McNeil B. Inactivating alternative NADH dehydrogenases: enhancing fungal bioprocesses by improving growth and biomass yield?. Scientific Reports, 2012, 2(1): 322

DOI

176
Zhang J, Wu N, Ou W, Li Y, Liang Y, Peng C, Li Y, Xu Q, Tong Y. Peptide supplementation relieves stress and enhances glycolytic flux in filamentous fungi during organic acid bioproduction. Biotechnology and Bioengineering, 2022, 119(9): 2471–2481

DOI

177
Tschirhart T, Shukla V, Kelly E E, Schultzhaus Z, NewRingeisen E, Erickson J S, Wang Z, Garcia W, Curl E, Egbert R G, Yeung E, Vora G J. Synthetic biology tools for the fast-growing marine bacterium Vibrio natriegens. ACS Synthetic Biology, 2019, 8(9): 2069–2079

DOI

178
Gao F, Hao Z, Sun X, Qin L, Zhao T, Liu W, Luo H, Yao B, Su X. A versatile system for fast screening and isolation of Trichoderma reesei cellulase hyperproducers based on DsRed and fluorescence-assisted cell sorting. Biotechnology for Biofuels, 2018, 11(1): 261

DOI

Outlines

/